Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorMancera Pineda, Jose Ernesto
dc.contributor.authorVega Rojas, Juan Sebastián
dc.date.accessioned2021-09-25T02:19:45Z
dc.date.available2021-09-25T02:19:45Z
dc.date.issued2020-11-17
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80307
dc.descriptionfotografías , graficas, ilustraciones, mapas, tablas
dc.description.abstractEste proyecto tuvo como fin indagar sobre la influencia de los mixtaje (combinación de dos especies de pastos marinos sobre una misma área) de praderas marinas de las especies Thalassia testudinum y Syringodium filiforme sobre los valores de biomasa total y sus fracciones radicular (Raíz y Rizoma) y foliar(Hoja), las condiciones físicas (tamaño de las partículas del sedimento) y químicas (contenido de materia orgánica y carbono orgánico) del sedimento, y la producción de raíces mediante una nueva metodología para el estudio in situ de incubación de biomasa radicular mediante bolsas de poli sombra. Se demostró que en la mayoría de las muestras existe una influencia positiva de los mixtajes en los valores de biomasa y que esta varía en torno a la ubicación y las condiciones diferenciales de cada una de las praderas que se analice. Se encontró de igual forma que los entornos con menor disposición de partículas en la columna de agua tienen los valores más altos de biomasa en mixtajes y que pese a eso, la temporada influye considerablemente en la producción de biomasa de la fracción foliar y radicular. La relación entre las fracciones de la biomasa se ve alterada y, tanto la alocación como la relación entre los valores de biomasa foliar y radicular, cambia considerablemente invirtiéndose más hacia la biomasa foliar en temporada de menor lluvia y mayor inversión en biomasa radicular en temporada lluvia. En la biomasa existe un efecto mixto entre la temporada, localidad y composición de la muestra sobre los valores de esta, siendo significativo en la biomasa de hoja y rizoma. Los mixtajes cambian considerablemente las características físicas como el tamaño de las partículas del sedimento significativamente los valores de los tamaños de las partículas más grandes y la temporada parece afectar en gran medida los valores de las partículas más pequeñas del sedimento. Pese a eso, la localidad influye en gran medida las condiciones físicas del sedimento. En cuanto al contenido de materia orgánica y carbono orgánico en el sedimento, los mixtajes parecen no tener efecto significativo en el contenido de Locas características tanto foliar hasta 30 cm de profundidad, a comparación de la temporada y la localidad los cuales si tienen efecto en los valores foliares de estos dos y únicamente la localidad influye sobre los valores a 30 cm de profundidad. En cuanto al crecimiento radicular se demostró que a la par con los valores de biomasa por temporadas, se denota mayor crecimiento radicular en temporada de mayor precipitación, pese a eso, no siempre los mixtajes presentan los mayores valores en Locas temporadas. La temporada seca influye en el crecimiento del S. filiforme con valores más altos que los de los mixtajes en Locas localidades. La especie T. testudinum por otro lado, demuestra ser de lento crecimiento con los valores de biomasa radicular más bajos para un periodo de cinco meses de incubación de pastos. Para Colombia, son los primeros datos que se obtienen del comportamiento de las praderas en cuanto a su crecimiento radicular y la alocación de biomasa en temporada de alta pluviosidad y baja (Texto tomado de la fuente)
dc.description.abstractThe purpose of this project was to investigate the influence of the mixted (combination of two species of seagrasses on the same area) in marine seagrass beds of the species Thalassia testudinum and Syringodium filiforme on the values of total biomass and its underground (Root and Rhizome ) and foliar (Leaf) fractions, the physical conditions (size of sediment particles) and chemical conditions (organic matter and organic carbon content) of the sediment, and the production of roots through a new methodology for the in situ study of biomass incubation root through poly shadow bags. We demonstrated that in most of the samples there is a positive influence of the mixages on the biomass values and that this varies around the location and the differential conditions of each one of the seagrass that is analyzed. It was found in the same way that the environments with less particle disposition in the water column have the highest values of biomass in mixages and that despite this, the season has a considerable influence on the biomass production of the foliar and underground fraction. The relationship between the fractions of the biomass is altered and, both the allocation and the relationship between the values of surface and underground biomass, changes considerably by investing more towards leaf biomass in the season of less rain and greater investment in root biomass in rainy season. In the biomass there is a mixed effect between the season, location and composition of the sample on the values of this, being significant in the biomass of leaf and rhizome. Mixed seagrass beds were significantly change the physical characteristics as the size of the sediment particles significantly values the sizes of the larger particles and the season seems to greatly affect the values of the smallest particles of the sediment. Despite this, the locality greatly influences the physical conditions of the sediment. Regarding the content of organic matter and organic carbon in the sediment, the mixtations seem to have no significant effect on the content of both characteristics, both foliarup to 30 cm deep, compared to the season and the locality which do have an effect on the foliarvalues of these two and only the locality influences the values at 30 cm depth. In terms of root growth, it was shown that, along with seasonal biomass values, greater root growth is recorded in the season of greater precipitation, despite this, mixages do not always present the highest values in both seasons. The dry season influences the growth of S. filiforme with higher values than those of the mixtajes in both locations. The species T. testudinum on the other hand, proves to be of slow growth with the lowest values of root biomass for a period of five months of pasture incubation. For Colombia, it is the first data obtained from the behavior of the prairies in terms of root growth and allocation of biomass in high rainfall and low season.
dc.format.extentx, 57 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología
dc.titleCrecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biología
dc.contributor.researchgroupModelacion de Ecosistemas Costeros
dc.coverage.regionBarú, Caribe
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.description.researchareaEcología de Pastos Marinos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMAR
dc.publisher.facultyFacultad Caribe
dc.publisher.placeCaribe, Santa Marta
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacional
dc.relation.referencesArmitage, A. R., & Fourqurean, J. W. (2016). Carbon storage in seagrass soils: Long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences, 13(1), 313–321. https://doi.org/10.5194/bg-13-313-2016
dc.relation.referencesBach, S. S., Borum, J., Fortes, M. D., & Duarte, C. M. (1998). Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. Marine Ecology Progress Series, 174, 247–256. https://doi.org/10.3354/meps174247
dc.relation.referencesBarbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs. https://doi.org/10.1890/10-1510.1
dc.relation.referencesBarry, S. C., Jacoby, C. A., & Frazer, T. K. (2017). Environmental influences on growth and morphology of Thalassia testudinum. Marine Ecology Progress Series. https://doi.org/10.3354/meps12112
dc.relation.referencesBay, C. C., Lee, K., & Dunton, K. H. (1996). Production and carbon reserve dynamics of the seagrass Thalassia testudinum in.
dc.relation.referencesBostro, C., Jackson, E. L., & Simenstad, C. A. (2006). Seagrass landscapes and their effects on associated fauna : A review, 68. https://doi.org/10.1016/j.ecss.2006.01.026
dc.relation.referencesBrouns, J. J. W. M. (1987). Quantitative and dynamic aspects of a mixed seagrass meadow in Papua New Guinea. Aquatic Botany, 29(1), 33–47. https://doi.org/10.1016/0304-3770(87)90027-1
dc.relation.referencesBrouwer, R. (1963). Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van Het Instituut Voor Biologisch En Scheikundig Onderzoek van Landbouwgewassen Wageningen, 31–40.
dc.relation.referencesBulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes, (October). https://doi.org/10.1016/j.marpolbul.2015.09.032
dc.relation.referencesCaldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365–365. https://doi.org/10.1038/425365a
dc.relation.referencesCostanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., … Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature. https://doi.org/10.1038/387253a0
dc.relation.referencesCousens, R., & Hutchings, M. J. (1983). The relationship between density and mean frond weight in monospecific seaweed stands. Nature. https://doi.org/10.1038/301240a0
dc.relation.referencesCreed, J. C. (1997). Morphological variation in the seagrass Halodule wrightii near its southern distributional limit, 59, 163–172.
dc.relation.referencesDawes, C. J., & Lawrence, J. M. (1979). Effects of blade removal on the proximate composition of the rhizome of the seagrass Thalassia testudinum banks ex könig. Aquatic Botany. https://doi.org/10.1016/0304-3770(79)90026-3
dc.relation.referencesDennisonl, C. (1999). Responses of seagrass to nutrients in the Great Barrier Reef, Australia, (Kuhlman 1988).
dc.relation.referencesDi Carlo, G., & Kenworthy, W. J. (2008). Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds. Oecologia, 158(2), 285–298. https://doi.org/10.1007/s00442-008-1120-0
dc.relation.referencesDíaz, J. M., Barrios, L., & Gomez-López, D. (2003). Las praderas de pastos marinos en Colombia: Estructura y dsitribución de un ecosistema estratégico. https://doi.org/10.13140/2.1.4073.6322
dc.relation.referencesDuarte, C. M. (1991). Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series, 77(2–3), 289–300. https://doi.org/10.3354/meps077289
dc.relation.referencesDuarte, C M, Savela, R. S., & Fortes, M. D. (2014). Recolonization in a Mixed The Role Dynamics Seagrass Meadow : of Clonal Versus Sexual Processes, 27(5), 770–780.
dc.relation.referencesDuarte, Carlos M., Marba, N., Agawin, N., Cebrian, J., Enriquez, S., Fortes, M. D., … Vermaat, J. (1994). Reconstruction of seagrass dynamics - Age determinations and associated tools for the seagrass ecologist. Marine Ecology Progress Series, 107(1–2), 195. https://doi.org/10.3354/meps107195
dc.relation.referencesDuarte, Carlos M., Terrados, J., Agawin, N. S. R., Fortes, M. D., Bach, S., & Kenworthy, W. J. (1997). Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series. https://doi.org/10.3354/meps147285
dc.relation.referencesDuarte, Carlos M. (2015). Global Change and the Future Ocean : A Grand Challenge for Marine Sciences Global change and the future ocean : a grand challenge for marine sciences, (August). https://doi.org/10.3389/fmars.2014.00063
dc.relation.referencesDuarte, Carlos M, & Chiscano, C. L. (1999). Seagrass biomass and production : a reassessment, 65, 159–174.
dc.relation.referencesDuarte, Carlos M, & Gallegos, M. E. (1998). Root production and belowground seagrass biomass, (May 2014). https://doi.org/10.3354/meps171097
dc.relation.referencesDuarte, Carlos M, Gallegos, M. E., Gallegos, E., Marba, N., & Hemminga, M. A. (1998). Root production and belowground seagrass biomass, 171(May 2014), 97–108. https://doi.org/10.3354/meps171097
dc.relation.referencesEnríquez, S., Marbà, N., Duarte, C. M., & Tussenbroek, B. I. Van. (2001). Effects of seagrass Thalassia testudinum on sediment redox, 219, 149–158.
dc.relation.referencesErftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals : A review. Marine Pollution Bulletin, 64(9), 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008
dc.relation.referencesErftemeijer, P. L. A., Robin, R. R., & Iii, L. (2006). Environmental impacts of dredging on seagrasses : A review, 52, 1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006
dc.relation.referencesFourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., … Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505–509. https://doi.org/10.1038/ngeo1477
dc.relation.referencesFourqurean, J. W., Johnson, B., Kauffman, B. J., Kennedy, H., Lovelock, C. E., Alongi, D. M., … Serrano, O. (2014). Field Sampling of Soil Carbon Pools in Coastal Ecosystems. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves. Tidal Marshes. and Seagrass Meadows, (October), 39–66. https://doi.org/10.13140/2.1.1445.3442
dc.relation.referencesFourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., & Zieman, J. C. (1995). The Effects of Long-Term Manipulation of Nutrient Supply on Competition between the Seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos. https://doi.org/10.2307/3546120
dc.relation.referencesFourqurean, J. W., & Zieman, J. C. (1991). Photosynthesis , respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Marine Ecology Progress Series, 69, 161–170.
dc.relation.referencesFourqurean, J. W., & Zieman, J. C. (2002). Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry, 61(3), 229–245. https://doi.org/10.1023/A:1020293503405
dc.relation.referencesFrankignoulle, M., & Bouquegneau, J. (1987). Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Marine Ecology Progress Series. https://doi.org/10.3354/meps038197
dc.relation.referencesGallegos, M., Merino, M., Rodriguez, a, Marba, N., & Duarte, C. (1994). Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology Progress Series, 109(August 1991), 99–104. https://doi.org/10.3354/meps109099
dc.relation.referencesGreen, E. P., & Short, F. (2004). World Atlas of Seagrasses. Botanica Marina (Vol. 47). https://doi.org/10.1515/BOT.2004.029
dc.relation.referencesGrimsditch, G., Alder, J., & Nakamura, T. (2013). The blue carbon special edition – Introduction and overview. Ocean and Coastal Management, 83, 1–4. https://doi.org/10.1016/j.ocecoaman.2012.04.020
dc.relation.referencesGuinotte, J. M., & Fabry, V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences. https://doi.org/10.1196/annals.1439.013
dc.relation.referencesGutiérrez-Moreno, C., Marrugo, M., Lozano-Rivera, P., Sierra, P., & Andrade, C. (2011). El Entorno Ambiental del Parque Nacional Natural Corales del Rosario y de San Bernardo.
dc.relation.referencesHansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Rev. Geophys., 48(4), RG4004. https://doi.org/10.1029/2010RG000345.1.INTRODUCTION
dc.relation.referencesHarlin, M. M. (1981). Nutrient Enrichment of Seagrass Beds in a Rhode Island Coastal Lagoon, 229, 221–229.
dc.relation.referencesHartog, C. Den, & Kuo, J. (2006). Taxonomy and biogeography of seagrasses. In Seagrasses: Biology, Ecology and Conservation (pp. 1–23). https://doi.org/10.1007/978-1-4020-2983-7_1
dc.relation.referencesHeiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481
dc.relation.referencesHemminga, M. A. (1998). The root = rhizome system of seagrasses : an asset and a burden, 39, 183–196.
dc.relation.referencesHendriks, I. (2013). The role of coastal plant communities for climate change mitigation and adaptation, (November). https://doi.org/10.1038/nclimate1970
dc.relation.referencesHill, V. J., Zimmerman, R. C., Bissett, W. P., Dierssen, H., & Kohler, D. D. R. (2014). Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts, 37(6), 1467–1489. https://doi.org/10.1007/s12237-013-9764-3
dc.relation.referencesHogarth, P. J. (2012). The biology of mangrove and seagrass. Oxford University Press, (2). https://doi.org/10.1007/s13398-014-0173-7.2
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1–180. Retrieved from thebluecarboninitiative.org
dc.relation.referencesJr, K. L. H., & Valentine, J. F. (2006). Plant – herbivore interactions in seagrass meadows, 330, 420–436. https://doi.org/10.1016/j.jembe.2005.12.044
dc.relation.referencesKaldy, J. E., & Dunton, K. H. (2000). Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Marine Ecology Progress Series, 193, 271–283. https://doi.org/10.3354/meps193271
dc.relation.referencesKenov, I. A., Deus, R., Alves, C. N., & Neves, R. (2013). Modelling Seagrass Biomass and Relative Nutrient Content. Journal of Coastal Research, 292, 1470–1476. https://doi.org/10.2112/JCOASTRES-D-13-00047.1
dc.relation.referencesKenworthy, W. J., & Fonseca, M. S. (2006). Light Requirements of Seagrasses Halodule wrightii and Syringodium filiforme Derived from the Relationship between Diffuse Light Attenuation and Maximum Depth Distribution. Estuaries. https://doi.org/10.2307/1352533
dc.relation.referencesKristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems : A review, 89, 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005
dc.relation.referencesLarkum, A. W. D., Orth, R. J., & Duarte, C. M. (2015). Seagrasses: Biology, Ecology and Conservation. Statewide Agricultural Land Use Baseline 2015 (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesLarkum, A. W. D., Orth, R. J., & Durarte, C. M. (2006). SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Seagrasses: Biology, Ecology and Conservation. https://doi.org/10.1007/978-1-4020-2983-7
dc.relation.referencesLau, W. W. Y. (2013). Beyond carbon : Conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean and Coastal Management, 83, 5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011
dc.relation.referencesLee, K., Park, S. R., & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 350, 144–175. https://doi.org/10.1016/j.jembe.2007.06.016
dc.relation.referencesLong, B. G., Skewes, T. D., & Poiner, I. R. (1994). An efficient method for estimating seagrass biomass. Aquatic Botany, 47(3–4), 277–291. https://doi.org/10.1016/0304-3770(94)90058-2
dc.relation.referencesLonsdale, W. M., & Watkinson, A. R. (1983). Plant Geometry and Self-Thinning. The Journal of Ecology. https://doi.org/10.2307/2259977
dc.relation.referencesMacreadie, P. I., Baird, M. E., Trevathan-tackett, S. M., Larkum, A. W. D., & Ralph, P. J. (n.d.). Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment, 83(2), 430–439. https://doi.org/10.1016/j.marpolbul.2013.07.038
dc.relation.referencesMarbà, N., & Duarte, C. M. (2001). Growth and sediment space occupation by seagrass Cymodocea nodosa roots, 224, 291–298.
dc.relation.referencesMateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. (1997). Dynamics of Millenary Organic Deposits Resulting from the Growth of the Mediterranean SeagrassPosidonia oceanica. Estuarine, Coastal and Shelf Science, 44(1), 103–110. https://doi.org/10.1006/ecss.1996.0116
dc.relation.referencesMcleod, E., Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., & Duarte, C. M. (2017). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, (January). https://doi.org/10.1890/110004
dc.relation.referencesMtwana, L., Koch, E. W., Barbier, E. B., & Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163091
dc.relation.referencesNellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon. A rapid response assessment. United Nations Environment …, 71 pp. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Blue+carbon:+a+rapid+response+assessment#0%5Cnhttp://www.grida.no/files/publications/blue-carbon/BlueCarbon_screen.pdf
dc.relation.referencesRalph, P. J., Durako, M. J., Enríquez, S., Collier, C. J., & Doblin, M. A. (2007). Impact of light limitation on seagrasses, 350, 176–193. https://doi.org/10.1016/j.jembe.2007.06.017
dc.relation.referencesRattanachot, E., & Prathep, A. (2015a). Species-specific effects of seagrass on belowground biomass, redox potential and Pillucina vietnamica (Lucinidae). In Journal of the Marine Biological Association of the United Kingdom. https://doi.org/10.1017/S0025315415000934
dc.relation.referencesRattanachot, E., & Prathep, A. (2015b). Species specific effects of three morphologically different belowground seagrasses on sediment properties. Estuarine, Coastal and Shelf Science, 167, 427–435. https://doi.org/10.1016/j.ecss.2015.10.019
dc.relation.referencesRicart, A. M., York, P. H., Rasheed, M. A., Pérez, M., Romero, J., Bryant, C. V., … Bulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Bulletin, 100(1), 476–482. https://doi.org/10.1016/j.marpolbul.2015.09.032
dc.relation.referencesRoad, A. P. (1987). Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment, 27, 41–57.
dc.relation.referencesRomero, J., Pérez, M., Mateo, M. A., & Sala, E. (1994). The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquatic Botany, 47(1), 13–19. https://doi.org/10.1016/0304-3770(94)90044-2
dc.relation.referencesSerrano, O., Rozaimi, M., & Lavery, P. S. (2013). Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service, 8(9). https://doi.org/10.1371/journal.pone.0073748
dc.relation.referencesSfriso, A., & Ghetti, P. F. (1998). Seasonal variation in biomass , morphometric parameters and production of seagrasses in the lagoon of Venice, 61, 207–223.
dc.relation.referencesShort, F. T., & Duarte, C. M. (2001). Methods for the measurement of seagrass growth and production. Global Seagrass Research Methods, (December 2001), 155–182. https://doi.org/10.1016/B978-044450891-1/50009-8
dc.relation.referencesShort, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Sidik, J., … Zieman, J. C. (2011). Extinction risk assessment of the world ’ s seagrass species. Biological Conservation, 144(7), 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010
dc.relation.referencesShort, Frederick, Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity : A bioregional model, 350, 3–20. https://doi.org/10.1016/j.jembe.2007.06.012
dc.relation.referencesShort, FT, Dennison, W., & Capone, D. (1990). Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series. https://doi.org/10.3354/meps062169
dc.relation.referencesSmith, R. D., Dennison, W. C., & Alberte, R. S. (1984). Role of Seagrass Photosynthesis in Root Aerobic Processes ’, 1055–1058.
dc.relation.referencesThomas, S. (2016). Between Tun Mustapha and the deep blue sea : the political ecology of blue carbon in Sabah. Environmental Science and Policy, 55, 20–35. https://doi.org/10.1016/j.envsci.2015.08.017
dc.relation.referencesTilman, D. (1982). Resource competition and community structure. Monographs in Population Biology. https://doi.org/10.2307/4549
dc.relation.referencesTomlinson, P. B. (1974). Vegetative morphology and meristem dependence - The foundation of productivity in seagrasses. Aquaculture. https://doi.org/10.1016/0044-8486(74)90027-1
dc.relation.referencesTouchette, B. W. (2007). Seagrass-salinity interactions : Physiological mechanisms used by submersed marine angiosperms for a life at sea, 350, 194–215. https://doi.org/10.1016/j.jembe.2007.05.037
dc.relation.referencesUnesco. (2009). Blue Carbon, the rodel of healthy oceans in binding carbon. (G. (Eds). 2009. Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, Ed.).
dc.relation.referencesUnsworth, R. K. F., Collier, C. J., Henderson, G. M., & McKenzie, L. J. (2012). Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7(024026), 9. https://doi.org/10.1088/1748-9326/7/2/024026
dc.relation.referencesVieira, V. M. N. C. S., Lopes, I. E., & Creed, J. C. (2018). The biomass-density relationship in seagrasses and its use as an ecological indicator. BMC Ecology. https://doi.org/10.1186/s12898-018-0200-1
dc.relation.referencesVirnstein, R. W., & Carbonara, P. A. (1985). Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquatic Botany, 23(1), 67–82. https://doi.org/10.1016/0304-3770(85)90021-X
dc.relation.referencesWaycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., … Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106
dc.relation.referencesWilliams, S. (1990). Experimental studies of caribbean seagrass bed development1. Development, 60(4), 449–469.
dc.relation.referencesWilliams, S. L. (1987). Competition between the seagrasses Thalassia testudin um and Syringodium filiforme in a Caribbean lagoon *, 35, 91–98.
dc.relation.referencesZarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126627
dc.relation.referencesZieman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum König, with reference to temperature and salinity effects. Aquatic Botany. https://doi.org/10.1016/0304-3770(75)90016-9
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPastos Marinos
dc.subject.proposalThalassia testudinum
dc.subject.proposalSyringodium filiforme
dc.subject.proposalPraderas mixtas
dc.title.translatedGrowth and allocation of root biomass of Thalassia testudinum and Syringodium filiforme, in monospecific and mixed seagrass beds of the Barú region, southwestern Caribbean
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito