Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorSoto Ospina, Carlos Yesid
dc.contributor.authorMaya Hoyos, Milena
dc.date.accessioned2021-09-27T21:32:11Z
dc.date.available2021-09-27T21:32:11Z
dc.date.issued2021-04
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80314
dc.descriptionilustraciones, fotografías, graficas, tablas
dc.description.abstractLa tuberculosis (TB) es una enfermedad infecciosa causada por el bacilo ácido alcohol resistente Mycobacterium tuberculosis (Mtb). La TB es una amenaza para la salud pública, debido a su alta incidencia, la aparición de cepas multi-fármaco-resistentes (MDR) y extremadamente-fármaco-resistentes (XDR), la coinfección con VIH y la eficacia limitada de la vacuna BCG. El diseño de nuevas estrategias de control requiere una mejor comprensión de los mecanismos moleculares utilizados por Mtb para ser un patógeno intracelular tan exitoso. En este sentido, algunos estudios han sugerido la importancia de las ATPasas tipo P en la fisiología y la supervivencia intracelular de las micobacterias. Un meta-análisis del perfil transcripcional de las ATPasas tipo P de Mtb bajo condiciones de estrés como hipoxia, estrés oxidativo, inanición, intoxicación por agentes químicos y procesos de infección in vitro e in vivo, evidenció la expresión diferencial de estos transportadores frente a estas condiciones. De las 12 ATPasas tipo P presentes en el genoma de Mtb, CtpF, que codifica para un transportador de Ca2+, es la ATPasa que muestra mayores niveles de transcripción en las diferentes condiciones de estrés. Particularmente, varias ATPasas tipo P (ctpF, ctpG, ctpC, ctpH y ctpV) exhibieron un aumento en los niveles de expresión durante la infección de macrófagos humanos, sugiriendo la importancia de dichas proteínas en los procesos de infección. Considerando la relevancia funcional de las ATPasas tipo P, el objetivo principal de este trabajo fue evaluar el efecto de la deleción de ATPasas tipo P transportadoras de metales alcalino/alcalinotérreos en la viabilidad y virulencia de Mtb. Para lograr este objetivo, mediante técnicas de recombinería se construyeron los mutantes defectivos en los genes ctpF y ctpH de Mtb, y a partir de distintos análisis funcionales con las cepas mutantes, se demostró que ambos transportadores están implicados en el eflujo de Ca2+. Adicionalmente, las cepas mutantes (MtbΔctpF y MtbΔctpH) mostraron hipersensibilidad frente agentes oxidantes en comparación con la cepa tipo silvestre (MtbWT), indicando un vinculo entre el transporte de Ca2+ y los mecanismos que utiliza el bacilo para neutralizar especies reactivas del ambiente intrafagosomal. Por otro lado, se evaluó en un modelo celular y animal el efecto de la deleción del gen ctpF en la virulencia Mtb. Así, se evidenció que dicha mutación genera una disminución significativa en la capacidad replicativa de Mtb en macrófagos alveolares murinos de la línea celular MH-S. Asimismo, se comparó la virulencia de las cepas MtbΔctpF y MtbWT en un ensayo de sobrevida en ratones BALB/c, encontrando que los ratones infectados con la cepa mutante mostraban mayor tiempo medio de supervivencia, sugiriendo la atenuación de la cepa mutante. Finalmente, se comprobó la existencia de estrategias complementarias que permiten contrarrestar deficiencias en el transporte iónico mediado por las ATPasa tipo P en Mtb. En efecto, se encontró que la cepa MtbΔctpF sobreexpresa el gen ctpH frente a concentraciones tóxicas de Ca2+ y durante los procesos de infección in vitro. De manera similar, el mutante MtbΔctpH sobreexpresó el gen ctpF bajo condiciones tóxicas de Ca2+, sugiriendo una posible actividad compensatoria entre CtpF y CtpH en Mtb. En general, los resultados obtenidos en este trabajo demuestran que las Ca+2-ATPasas están involucradas en la respuesta frente sustancias tóxicas, siendo fundamentales para la supervivencia celular de Mtb. Además, CtpF es relevante para la proliferación intracelular, y su deleción genera atenuación del bacilo tuberculoso en un modelo experimental de TB pulmonar. De esta manera, CtpF es fundamental para la virulencia de Mtb, por lo que podría considerarse un interesante blanco de atenuación. (texto tomado de la fuente)
dc.description.abstractTuberculosis (TB) is an infectious disease caused by the acid and alcohol-resistant bacillus Mycobacterium tuberculosis (Mtb). TB is considered a public health threat due to its high incidence, the emergence of drug-resistant strains (MDR and XDR), coinfection with HIV, and the limited efficacy of the BCG vaccine. Consequently, the design of new TB control strategies relies on a better comprehension of the molecular mechanisms used by Mtb to be a successful intracellular pathogen. In this sense, some studies have suggested that P-type ATPases are relevant to the physiology and intracellular survival of mycobacteria. Specifically, a meta-analysis of the transcriptional levels of Mtb P-type ATPases under conditions of hypoxia, oxidative stress, starvation, intoxication by chemical agents, and in vitro and in vivo infection processes indicated that these transporters are differentially expressed in these situations. Among the 12 P-type ATPases encoded in the Mtb genome, CtpF encodes a Ca2+ transporter and is the most activated against the conditions studied. Furthermore, several P-type ATPases (ctpF, ctpG, ctpC, ctpH, and ctpV) show over-expression during infection of human macrophages, suggesting the relevance of these proteins in the infection process. Therefore, the main objective of this study was to evaluate the effect of the deletion of alkali/alkaline earth metal-transporting P-type ATPases on the viability and virulence of Mtb. For this, recombination techniques were applied to construct mutants defective in the Mtb ctpF and ctpH genes that encode alkali/alkaline earth metal-transporting ATPases. Diverse functional analyses of these mutants demonstrated that both transporters are involved in Ca2+ efflux. Additionally, the mutant strains (MtbΔctpF and MtbΔctpH) showed hypersensitivity to oxidizing agents compared to the wild type strain (MtbWT), indicating a link between Ca2+ transport and the mechanism used by the bacillus to neutralize reactive species in the intraphagosomal environment. Moreover, the effect ctpF gene deletion on Mtb virulence was evaluated in cellular and animal infection models. Accordingly, this deletion generated a significant decrease in the replicative capacity of Mtb in murine alveolar macrophages of the MH-S cell line. Furthermore, a comparison of the virulence of MtbΔctpF and MtbWT strains through survival tests in BALB/c mice demonstrated that mice infected with the mutant strain showed a longer mean survival time, suggesting the attenuation of the deleted strain. Finally, the existence of a possible compensatory mechanism to counteract deficiencies in ion transport mediated by P-type ATPases in Mtb was evaluated. Indeed, the MtbΔctpF strain over-expresses the ctpH gene against toxic concentrations of Ca2+ and during in vitro infection processes. Similarly, the MtbΔctpH mutant over-expresses the ctpF gene under toxic concentrations of Ca2+, suggesting a possible compensatory activity between ctpF and ctpH in Mtb. This study demonstrates that Ca+2-ATPases are involved in the response to toxic substances, being essential for Mtb survival. Furthermore, CtpF is required for the intracellular proliferation of the mycobacteria, whereas its deletion attenuates the bacillus in an experimental model of pulmonary TB. Overall, CtpF is critical for Mtb virulence and can be an interesting attenuation target.
dc.description.sponsorshipConvocatoria nacional para el apoyo a proyectos de investigación y creación artística de la Universidad Nacional de Colombia 2017-2018 (Código 2010100-29088).
dc.description.sponsorshipConvocatoria nacional para el fomento de alianzas interdisciplinarias que articulen investigación, creación, extensión y formación en la Universidad Nacional de Colombia 2019-2021 (Código 2010100-29665).
dc.format.extentxviii, 156 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.otherMycobacterium tuberculosis
dc.titleATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis.
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímica
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacterias
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Bioquímica
dc.description.methodsPara el desarrollo de los objetivos propuestos en el presente trabajo, se estableció una estrategia experimental que incluyó herramientas bioquímicas, microbiológicas y de biología molecular.
dc.description.researchareaHospedero-Patógeno
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedN/A
dc.relation.referencesAgranoff, D. (2004) ‘Metal ion transport and regulation in mycobacterium tuberculosis’, Frontiers in Bioscience. doi: 10.2741/1454.
dc.relation.referencesAguilar, D. et al. (2007) ‘Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain’, Clinical and Experimental Immunology. doi: 10.1111/j.1365-2249.2006.03284.x.
dc.relation.referencesAndersen, P. and Kaufmann, S. H. E. (2014) ‘Novel vaccination strategies against tuberculosis’, Cold Spring Harbor Perspectives in Medicine, 4(6). doi: 10.1101/cshperspect.a018523.
dc.relation.referencesAndersen, P. and Scriba, T. J. (2019) ‘Moving tuberculosis vaccines from theory to practice’, Nature Reviews Immunology. doi: 10.1038/s41577-019-0174-z.
dc.relation.referencesAndreu, N. et al. (2004) ‘Mycobacterium smegmatis displays the Mycobacterium tuberculosis virulence-related neutral red character when expressing the Rv0577 gene’, FEMS Microbiology Letters. doi: 10.1016/S0378-1097(04)00008-4.
dc.relation.referencesAndrews, J. R. et al. (2012) ‘Risk of Progression to Active Tuberculosis Following Reinfection With Mycobacterium tuberculosis’, Clin. Infect. Dis., 54, pp. 784–791. doi: 10.1093/cid/cir951.
dc.relation.referencesArguello, J. M., Gonzalez-Guerrero, M. and Raimunda, D. (2011) ‘Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence’, Biochemistry, 50(46), pp. 9940–9949. doi: 10.1021/bi201418k.
dc.relation.referencesAyala-Torres, C., Novoa-Aponte, L. and Soto, C. Y. (2015) ‘Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane’, Microbiological Research, 176, pp. 1–6. doi: 10.1016/j.micres.2015.04.004.
dc.relation.referencesBakkeren, E., Dolowschiak, T. and Diard, M. R. J. (2017) ‘Detection of mutations affecting heterogeneously expressed phenotypes by colony immunoblot and dedicated semi-automated image analysis pipeline’, Frontiers in Microbiology. doi: 10.3389/fmicb.2017.02044.
dc.relation.referencesBarber-Mayer, K. D. and Barber, D. L. (2015) ‘Innate and adaptive cellular immune responses to Mycobacterium tuberculosis infection’, Cold Spring Harbor Perspectives in Medicine. doi: 10.1101/cshperspect.a018424.
dc.relation.referencesBehar, S. M., Divangahi, M. and Remold, H. G. (2010) ‘Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?’, Nature reviews. Microbiology, 8(9), pp. 668–74. doi: 10.1038/nrmicro2387.
dc.relation.referencesBogdan, C. and Schleicher, U. (2006) ‘Production of interferon-γ by myeloid cells - fact or fancy?’, Trends in Immunology. doi: 10.1016/j.it.2006.04.004.
dc.relation.referencesBonilla, D. L. et al. (2013) ‘Autophagy regulates phagocytosis by modulating the expression of scavenger receptors’, Immunity. doi: 10.1016/j.immuni.2013.08.026.
dc.relation.referencesBoradia, V. M. et al. (2016) ‘Mycobacterium tuberculosis H37Ra: A surrogate for the expression of conserved, multimeric proteins of M.tb H37Rv’, Microbial Cell Factories. doi: 10.1186/s12934-016-0537-0.
dc.relation.referencesBorgers, K. et al. (2019) ‘A guide to Mycobacterium mutagenesis’, FEBS Journal. doi: 10.1111/febs.15041.
dc.relation.referencesBoshoff, H. I. M. et al. (2004) ‘The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism. Novel insights into drug mechanisms of action’, Journal of Biological Chemistry. doi: 10.1074/jbc.M406796200.
dc.relation.referencesBotella, H. et al. (2011) ‘Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages’, Cell Host and Microbe, 10(3), pp. 248–259. doi: 10.1016/j.chom.2011.08.006.
dc.relation.referencesBublitz, M. et al. (2010) ‘In and out of the cation pumps: P-Type ATPase structure revisited’, Current Opinion in Structural Biology, pp. 431–439. doi: 10.1016/j.sbi.2010.06.007.
dc.relation.referencesBublitz, M., Morth, J. P. and Nissen, P. (2011) ‘P-type ATPases at a glance’, Journal of Cell Science. doi: 10.1242/jcs.102921.
dc.relation.referencesCadena, A. M. et al. (2018) ‘Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques’, PLoS Pathogens. doi: 10.1371/journal.ppat.1007305.
dc.relation.referencesCardona, P. J. et al. (2006) ‘Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis’, Microbes and Infection. doi: 10.1016/j.micinf.2005.06.011.
dc.relation.referencesCasadevall, A. (2016) ‘To Be or Not Be a (Functional) Antibody Against TB’, Cell. doi: 10.1016/j.cell.2016.09.041.
dc.relation.referencesChackerian, A. A. et al. (2002) ‘Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity’, Infection and Immunity. doi: 10.1128/IAI.70.8.4501-4509.2002.
dc.relation.referencesChapman, R. et al. (2010) ‘Recombinant Mycobacterium bovis BCG as an HIV vaccine vector.’, Current HIV research, 8(4), pp. 282–98. doi: 10.2174/157016210791208686.
dc.relation.referencesChhotaray, C. et al. (2018) ‘Advances in the development of molecular genetic tools for Mycobacterium tuberculosis’, Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2018.06.003.
dc.relation.referencesCho, S. H., Goodlett, D. and Franzblau, S. (2006) ‘ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis’, Tuberculosis. doi: 10.1016/j.tube.2005.10.002.
dc.relation.referencesChomczynski, P. (1993) ‘A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples’, BioTechniques.
dc.relation.referencesChourasia, M. and Sastry, G. N. (2012) ‘The Nucleotide, Inhibitor, and Cation Binding Sites of P-type II ATPases’, Chemical Biology and Drug Design. doi: 10.1111/j.1747-0285.2012.01334.x.
dc.relation.referencesCohen, Y. et al. (2013) ‘The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum’, PLoS ONE. doi: 10.1371/journal.pone.0085519.
dc.relation.referencesCollins, D. M. (2000) ‘New tuberculosis vaccines based on attenuated strains of the Mycobacterium tuberculosis complex’, Immunology and Cell Biology. doi: 10.1046/j.1440-1711.2000.00937.x.
dc.relation.referencesCook, G. M. et al. (2009) ‘Physiology of Mycobacteria’, Advances in Microbial Physiology. doi: 10.1016/S0065-2911(09)05502-7.
dc.relation.referencesCooper, A. M., Mayer-Barber, K. D. and Sher, A. (2011) ‘Role of innate cytokines in mycobacterial infection’, Mucosal Immunology. doi: 10.1038/mi.2011.13.
dc.relation.referencesda Costa, A. C. et al. (2014) ‘Recombinant BCG: Innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory’, Frontiers in Immunology. doi: 10.3389/fimmu.2014.00152.
dc.relation.referencesDaffé, M. (2008) ‘The Global Architecture of the Mycobacterial Cell Envelope’, in Daffé, M and Reyrat, J.-M. (eds) The Mycobacterial Cell Envelope. ASM Press. Washington, DC, pp. 3–23.
dc.relation.referencesDartois, V. (2014) ‘The path of anti-tuberculosis drugs: From blood to lesions to mycobacterial cells’, Nature Reviews Microbiology. doi: 10.1038/nrmicro3200.
dc.relation.referencesDatey, A. et al. (2017) ‘Mechanism of transformation in Mycobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen’, Scientific Reports. doi: 10.1038/s41598-017-08542-5.
dc.relation.referencesDennehy, M. et al. (2007) ‘Evaluation of recombinant BCG expressing rotavirus VP6 as an anti-rotavirus vaccine’, Vaccine, 25(18), pp. 3646–3657. doi: 10.1016/j.vaccine.2007.01.087.
dc.relation.referencesDicks, K. V. and Stout, J. E. (2019) ‘ Molecular Diagnostics for Mycobacterium tuberculosis Infection ’, Annual Review of Medicine. doi: 10.1146/annurev-med-040717-051502.
dc.relation.referencesDomínguez, D. C. (2018) ‘Calcium Signaling in Prokaryotes’, in Calcium and Signal Transduction. doi: 10.5772/intechopen.78546.
dc.relation.referencesDomínguez, D. C., Guragain, M. and Patrauchan, M. (2015) ‘Calcium binding proteins and calcium signaling in prokaryotes’, Cell Calcium. doi: 10.1016/j.ceca.2014.12.006.
dc.relation.referencesDulberger, C. L., Rubin, E. J. and Boutte, C. C. (2020) ‘The mycobacterial cell envelope — a moving target’, Nature Reviews Microbiology. doi: 10.1038/s41579-019-0273-7.
dc.relation.referencesDyla, M. et al. (2019) ‘Structural dynamics of P-type ATPase ion pumps’, Biochemical Society Transactions. doi: 10.1042/BST20190124.
dc.relation.referencesDyla, M. et al. (2020) ‘Structure and Mechanism of P-Type ATPase Ion Pumps’, Annual Review of Biochemistry. doi: 10.1146/annurev-biochem-010611-112801.
dc.relation.referencesEhrt, S., Schnappinger, D. and Rhee, K. Y. (2018) ‘Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis’, Nature Reviews Microbiology. doi: 10.1038/s41579-018-0013-4.
dc.relation.referencesErnst, J. D. (2012) ‘The immunological life cycle of tuberculosis’, Nature Reviews Immunology, 12(8), pp. 581–591. doi: 10.1038/nri3259.
dc.relation.referencesErnst, J. D. (2018) ‘Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design’, Cell Host and Microbe. doi: 10.1016/j.chom.2018.06.004.
dc.relation.referencesFletcher, H. A. and Schrager, L. (2016) ‘TB vaccine development and the End TB Strategy: Importance and current status’, Transactions of the Royal Society of Tropical Medicine and Hygiene. doi: 10.1093/trstmh/trw016.
dc.relation.referencesFlynn, J. L. and Chan, J. (2001) ‘Immunology of tuberculosis’, Annual Review of Immunology. doi: 10.1146/annurev.immunol.19.1.93.
dc.relation.referencesForrellad, Marina A et al. (2013) ‘Virulence factors of the Mycobacterium tuberculosis complex.’, Virulence, 4(1), pp. 3–66. doi: 10.4161/viru.22329.
dc.relation.referencesFraile-Escanciano, A. et al. (2009) ‘Role of ENA ATPase in Na+ efflux at high pH in bryophytes’, Plant Molecular Biology. doi: 10.1007/s11103-009-9543-5.
dc.relation.referencesGarg, R. et al. (2020) ‘Mycobacterium tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner’, Frontiers in Cellular and Infection Microbiology. doi: 10.3389/fcimb.2020.00461.
dc.relation.referencesGengenbacher, M. and Kaufmann, S. H. E. (2012) ‘Mycobacterium tuberculosis: Success through dormancy’, FEMS Microbiology Reviews, pp. 514–532. doi: 10.1111/j.1574-6976.2012.00331.x.
dc.relation.referencesGillespie, D., Giri, J. and Fill, M. (2009) ‘Reinterpreting the anomalous mole fraction effect: The ryanodine receptor case study’, Biophysical Journal. doi: 10.1016/j.bpj.2009.08.009.
dc.relation.referencesGong, W., Liang, Y. and Wu, X. (2018) ‘The current status, challenges, and future developments of new tuberculosis vaccines’, Human Vaccines and Immunotherapeutics. doi: 10.1080/21645515.2018.1458806.
dc.relation.referencesGonzalo-Asensio, J. et al. (2017) ‘MTBVAC: Attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic’, Frontiers in Immunology. doi: 10.3389/fimmu.2017.01803.
dc.relation.referencesGörlach, A. et al. (2015) ‘Calcium and ROS: A mutual interplay’, Redox Biology. doi: 10.1016/j.redox.2015.08.010.
dc.relation.referencesGubellini, F. et al. (2011) ‘Physiological response to membrane protein overexpression in E. coli’, Molecular and Cellular Proteomics. doi: 10.1074/mcp.M111.007930.
dc.relation.referencesGupta, H. K., Shrivastava, S. and Sharma, R. (2017) ‘ A Novel Calcium Uptake Transporter of Uncharacterized P-Type ATPase Family Supplies Calcium for Cell Surface Integrity in Mycobacterium smegmatis ’, mBio. doi: 10.1128/mbio.01388-17.
dc.relation.referencesGuragain, M. et al. (2013) ‘Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility’, Cell Calcium. doi: 10.1016/j.ceca.2013.08.004.
dc.relation.referencesHarayama, T. and Riezman, H. (2017) ‘Detection of genome-edited mutant clones by a simple competition-based PCR method’, PLoS ONE. doi: 10.1371/journal.pone.0179165.
dc.relation.referencesHelden, P. et al. (2001) ‘Isolation of DNA from Mycobacterium tuberculosis’, in Humana Press (ed.) Mycobacterium tuberculosis protocols. 2nd edn. New Jersey, USA.
dc.relation.referencesHerbaud, M. L. et al. (1998) ‘Calcium signalling in Bacillus subtilis’, Biochimica et Biophysica Acta - Molecular Cell Research. doi: 10.1016/S0167-4889(98)00145-1.
dc.relation.referencesHernández-Pando, R. et al. (1996) ‘Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis.’, Immunology.
dc.relation.referencesHernandez Pando, R. et al. (2019) ‘ Construction and characterization of the double unmarked Mycobacterium tuberculosis mutant sigE/fadD26 as a vaccine candidate ’, Infection and Immunity. doi: 10.1128/iai.00496-19.
dc.relation.referencesHernàndez Pando, R. et al. (2006) ‘The use of mutant mycobacteria as new vaccines to prevent tuberculosis’, Tuberculosis, 86(3-4 SPEC. ISS.), pp. 203–210. doi: 10.1016/j.tube.2006.01.022.
dc.relation.referencesHood, M. I. and Skaar, E. P. (2012) ‘Nutritional immunity: Transition metals at the pathogen-host interface’, Nature Reviews Microbiology. doi: 10.1038/nrmicro2836.
dc.relation.referencesHossain, M. M. and Norazmi, M. N. (2013) ‘Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection - The double-edged sword?’, BioMed Research International. doi: 10.1155/2013/179174.
dc.relation.referencesHuang, C. S., Pedersen, B. P. and Stokes, D. L. (2017) ‘Crystal structure of the potassium-importing KdpFABC membrane complex’, Nature. doi: 10.1038/nature22970.
dc.relation.referencesJackson, M. (2014) ‘The mycobacterial cell envelope-lipids’, Cold Spring Harbor Perspectives in Medicine. doi: 10.1101/cshperspect.a021105.
dc.relation.referencesJayachandran, R. et al. (2007) ‘Survival of Mycobacteria in Macrophages Is Mediated by Coronin 1-Dependent Activation of Calcineurin’, Cell. doi: 10.1016/j.cell.2007.04.043.
dc.relation.referencesJordao, L. et al. (2008) ‘On the killing of mycobacteria by macrophages’, Cellular Microbiology. doi: 10.1111/j.1462-5822.2007.01067.x.
dc.relation.referencesJorgensen, P. L., Håkansson, K. O. and Karlish, S. J. D. (2003) ‘Structure and Mechanism of Na,K-ATPase: Functional Sites and Their Interactions’, Annual Review of Physiology. doi: 10.1146/annurev.physiol.65.092101.142558.
dc.relation.referencesKalpana, G. V., Bloom, B. R. and Jacobs, W. R. (1991) ‘Insertional mutagenesis and illegitimate recombination in mycobacteria’, Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.88.12.5433.
dc.relation.referencesKamath, A. T. et al. (2005) ‘New live mycobacterial vaccines: The Geneva consensus on essential steps towards clinical development’, in Vaccine. doi: 10.1016/j.vaccine.2005.03.001.
dc.relation.referencesKaufmann, S. H. E. (2013) ‘Tuberculosis vaccines: Time to think about the next generation’, Seminars in Immunology, pp. 172–181. doi: 10.1016/j.smim.2013.04.006.
dc.relation.referencesKaufmann, S. H. E. et al. (2014) ‘Progress in tuberculosis vaccine development and host-directed therapies-a state of the art review’, The Lancet Respiratory Medicine. doi: 10.1016/S2213-2600(14)70033-5.
dc.relation.referencesKaufmann, S. H. E. (2020) ‘Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology’, Frontiers in Immunology. doi: 10.3389/fimmu.2020.00316.
dc.relation.referencesKegel, A. et al. (2006) ‘Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis’, Nucleic Acids Research. doi: 10.1093/nar/gkl064.
dc.relation.referencesKeiser, T. L. and Purdy, G. E. (2017) ‘Killing Mycobacterium tuberculosis In Vitro: What Model Systems Can Teach Us’, Microbiology Spectrum. doi: 10.1128/microbiolspec.tbtb2-0028-2016.
dc.relation.referencesvan Kessel, J. C. et al. (2007) ‘Recombineering in Mycobacterium tuberculosis.’, Nature methods, 4(2), pp. 147–52. doi: 10.1038/nmeth996.
dc.relation.referencesvan Kessel, J. C. and Hatfull, G. F. (2007) ‘Recombineering in Mycobacterium tuberculosis’, Nature Methods. doi: 10.1038/nmeth996.
dc.relation.referencesVan Kessel, J. C. and Hatfull, G. F. (2008) ‘Mycobacterial recombineering’, Methods in Molecular Biology. doi: 10.1007/978-1-59745-232-8_15.
dc.relation.referencesvan Kessel, J. C., Marinelli, L. J. and Hatfull, G. F. (2008) ‘Recombineering mycobacteria and their phages’, Nature Reviews Microbiology. doi: 10.1038/nrmicro2014.
dc.relation.referencesKilpeläinen, A. et al. (2018) ‘Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned’, Expert Review of Vaccines. Taylor & Francis, 17(11), pp. 1005–1020. doi: 10.1080/14760584.2018.1534588.
dc.relation.referencesKing, M. M. et al. (2020) ‘Calcium Regulation of Bacterial Virulence’, in Advances in Experimental Medicine and Biology, pp. 827–855. doi: 10.1007/978-3-030-12457-1_33.
dc.relation.referencesKnechel, N. A. (2009) ‘Tuberculosis: Pathophysiology, Clinical Features, and Diagnosis’, Crit Care Nurse, 20, pp. 34–43.
dc.relation.referencesKoul, A. et al. (2011) ‘The challenge of new drug discovery for tuberculosis.’, Nature, 469(7331), pp. 483–490. doi: 10.1038/nature09657.
dc.relation.referencesKühlbrandt, W. (2004) ‘Biology, structure and mechanism of P-type ATPases.’, Nature reviews. Molecular cell biology, 5(4), pp. 282–295. doi: 10.1038/nrm1354.
dc.relation.referencesLeistikow, R. L. et al. (2010) ‘The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy’, Journal of Bacteriology. doi: 10.1128/JB.00926-09.
dc.relation.referencesLeón-Torres, A. et al. (2020) ‘CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis’, Biological Research. doi: 10.1186/s40659-020-00274-7.
dc.relation.referencesLeón-Torres, A., Novoa-Aponte, L. and Soto, C. Y. (2015) ‘CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane’, BioMetals, 28(4), pp. 713–724. doi: 10.1007/s10534-015-9860-x.
dc.relation.referencesLi, H. and Javid, B. (2018) ‘Antibodies and tuberculosis: finally coming of age?’, Nature Reviews Immunology. doi: 10.1038/s41577-018-0028-0.
dc.relation.referencesLi, J. et al. (2020) ‘Tuberculosis vaccine development: from classic to clinical candidates’, European Journal of Clinical Microbiology and Infectious Diseases. doi: 10.1007/s10096-020-03843-6.
dc.relation.referencesLópez, M. et al. (2018) ‘The P-type ATPase CtpG preferentially transports Cd2+across the Mycobacterium tuberculosis plasma membrane’, Archives of Microbiology. doi: 10.1007/s00203-017-1465-z.
dc.relation.referencesLu, L. L. et al. (2016) ‘A Functional Role for Antibodies in Tuberculosis’, Cell. doi: 10.1016/j.cell.2016.08.072.
dc.relation.referencesMalaga, W., Perez, E. and Guilhot, C. (2003) ‘Production of unmarked mutations in mycobacteria using site-specific recombination’, FEMS Microbiology Letters. doi: 10.1016/S0378-1097(03)00003-X.
dc.relation.referencesManganelli, R. et al. (2001) ‘The Mycobacterium tuberculosis ECF sigma factor σE: Role in global gene expression and survival in macrophages’, Molecular Microbiology. doi: 10.1046/j.1365-2958.2001.02525.x.
dc.relation.referencesMarinelli, L. J., Piuri, M. and Hatfull, G. F. (2019) ‘Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA’, in Methods in Molecular Biology. doi: 10.1007/978-1-4939-8940-9_6.
dc.relation.referencesMarinova, D. et al. (2017) ‘MTBVAC from discovery to clinical trials in tuberculosis-endemic countries’, Expert Review of Vaccines. doi: 10.1080/14760584.2017.1324303.
dc.relation.referencesMartin, C. et al. (2006) ‘The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs’, Vaccine. doi: 10.1016/j.vaccine.2006.03.017.
dc.relation.referencesMartin, C. et al. (2020) ‘Update on TB vaccine pipeline’, Applied Sciences (Switzerland). doi: 10.3390/app10072632.
dc.relation.referencesMartín, C. et al. (2021) ‘MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG’, Vaccine. doi: 10.1016/j.vaccine.2021.06.049.
dc.relation.referencesMartin, C., Aguilo, N. and Gonzalo-Asensio, J. (2018) ‘Vacunación frente a tuberculosis’, Enfermedades Infecciosas y Microbiología Clínica. doi: 10.1016/j.eimc.2018.02.006.
dc.relation.referencesMartín Montañés, C. and Gicquel, B. (2011) ‘New tuberculosis vaccines’, Enfermedades Infecciosas y Microbiologia Clinica, 29(SUPPL. 1), pp. 57–62. doi: 10.1016/S0213-005X(11)70019-2.
dc.relation.referencesMathieu, K. et al. (2019) ‘Functionality of membrane proteins overexpressed and purified from E. coli is highly dependent upon the strain’, Scientific Reports. doi: 10.1038/s41598-019-39382-0.
dc.relation.referencesMaya-Hoyos, M. et al. (2019) ‘The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells’, Heliyon. doi: 10.1016/j.heliyon.2019.e02852.
dc.relation.referencesMbawuike, I. N. and Herscowitz, H. B. (1989) ‘MH-S, a murine alveolar macrophage cell line: Morphological, cytochemical, and functional characteristics’, Journal of Leukocyte Biology. doi: 10.1002/jlb.46.2.119.
dc.relation.referencesMcFadden, J. (1996) ‘Recombination in mycobacteria’, Molecular Microbiology. doi: 10.1046/j.1365-2958.1996.6271345.x.
dc.relation.referencesMcShane, H. (2019) ‘Insights and challenges in tuberculosis vaccine development’, The Lancet Respiratory Medicine. doi: 10.1016/S2213-2600(19)30274-7.
dc.relation.referencesMelo, M. D. and Stokes, R. W. (2000) ‘Interactioon of Mycobacterium tuberculosis with MH-S, an immortilized murine alveolar macrophage cell line: A comparison with primary murine macrophages’, Tubercle and Lung Disease. doi: 10.1054/tuld.1999.0228.
dc.relation.referencesMorth, J. P. et al. (2011) ‘A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps’, Nature Reviews Molecular Cell Biology, 12(1), pp. 60–70. doi: 10.1038/nrm3031.
dc.relation.referencesMovahedzadeh, F., Frita, R. and Gutka, H. J. (2011) ‘A two-step strategy for the complementation of M. tuberculosis mutants’, Genetics and Molecular Biology, 34(2), pp. 286–289. doi: 10.1590/S1415-47572011000200020.
dc.relation.referencesMusgaard, M. et al. (2012) ‘Tracing cytoplasmic Ca 2+ ion and water access points in the Ca 2+ -ATPase’, Biophysical Journal. doi: 10.1016/j.bpj.2011.12.009.
dc.relation.referencesMuttucumaru, D. G. N. et al. (2004) ‘Gene expression profile of Mycobacterium tuberculosis in a non-replicating state’, Tuberculosis. doi: 10.1016/j.tube.2003.12.006
dc.relation.referencesNava, A. R. et al. (2020) ‘Evidence of Calcium Signaling and Modulation of the LmrS Multidrug Resistant Efflux Pump Activity by Ca2 + Ions in S. aureus’, Frontiers in Microbiology. doi: 10.3389/fmicb.2020.573388.
dc.relation.referencesNeyrolles, O. et al. (2015) ‘Mycobacteria, metals, and the macrophage’, Immunological Reviews. doi: 10.1111/imr.12265.
dc.relation.referencesNieuwenhuizen, N. E. and Kaufmann, S. H. E. (2018) ‘Next-generation vaccines based on Bacille Calmette-Guérin’, Frontiers in Immunology. doi: 10.3389/fimmu.2018.00121.
dc.relation.referencesNovoa-Aponte, Lorena et al. (2012) ‘In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex.’, BMC structural biology, 12, p. 25. doi: 10.1186/1472-6807-12-25.
dc.relation.referencesNovoa-Aponte, L et al. (2012) ‘In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex’, BMC Struct Biol, 12, p. 25. doi: 10.1186/1472-6807-12-25.
dc.relation.referencesNovoa-Aponte, L. (2016) Potencial de las ATPasas tipo P como dianas terapéuticas o en el diseño de mutantes atenuados de Mycobacterium Tuberculosis. Universidad Nacional de Colombia.
dc.relation.referencesNovoa-Aponte, L. and Soto Ospina, C. Y. (2014) ‘Mycobacterium tuberculosis p-type atpases: Possible targets for drug or vaccine development’, BioMed Research International. doi: 10.1155/2014/296986.
dc.relation.referencesNunes-Alves, C. et al. (2014) ‘In search of a new paradigm for protective immunity to TB’, Nat Rev Microbiol, 12(4), pp. 289–299. doi: 10.1038/nrmicro3230.
dc.relation.referencesO’Garra, A. et al. (2013) ‘The immune response in tuberculosis.’, Annual review of immunology, 31(1), pp. 475–527. doi: 10.1146/annurev-immunol-032712-095939.
dc.relation.referencesO’Shea, M. K. and McShane, H. (2016) ‘A review of clinical models for the evaluation of human TB vaccines’, Human Vaccines and Immunotherapeutics, pp. 1–11. doi: 10.1080/21645515.2015.1134407.
dc.relation.referencesOchoa, L. (1999) ‘Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio’, Nom-062-Zoo.
dc.relation.referencesOhno, H. et al. (2003) ‘The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis’, Cellular Microbiology. doi: 10.1046/j.1462-5822.2003.00307.x.
dc.relation.referencesOrtalo-Magné, A. et al. (1995) ‘Molecular composition of the outermost capsular material of the tubercle bacillus.’, Microbiology. Society for General Microbiology, 141 ( Pt 7(7), pp. 1609–1620.
dc.relation.referencesPadilla-Benavides, T. et al. (2013) ‘A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria’, Journal of Biological Chemistry, 288(16), pp. 11334–11347. doi: 10.1074/jbc.M112.448175.
dc.relation.referencesPai, M. et al. (2016) ‘Tuberculosis’, Nature Reviews Disease Primers. doi: 10.1038/nrdp.2016.76.
dc.relation.referencesPalmgren, M. G. and Nissen, P. (2011) ‘P-type ATPases’, Annu Rev Biophys, 40, pp. 243–266. doi: 10.1146/annurev.biophys.093008.131331.
dc.relation.referencesPando, R. H. et al. (2010) ‘Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis’, Infection and Immunity. doi: 10.1128/IAI.00023-10.
dc.relation.referencesPaquette, M., El-Houjeiri, L. and Pause, A. (2018) ‘mTOR pathways in cancer and autophagy’, Cancers. doi: 10.3390/cancers10010018.
dc.relation.referencesParekh, A. B. and Putney, J. W. (2005) ‘Store-operated calcium channels’, Physiological Reviews. doi: 10.1152/physrev.00057.2003.
dc.relation.referencesParish, T. and Roberts, D. M. (2015) Mycobacteria protocols: Third edition, Mycobacteria Protocols: Third Edition. doi: 10.1007/978-1-4939-2450-9.
dc.relation.referencesPark, H. D. et al. (2003) ‘Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis’, Molecular Microbiology. doi: 10.1046/j.1365-2958.2003.03474.x.
dc.relation.referencesPatel, S. J. et al. (2016) ‘Fine-tuning of substrate affinity leads to alternative roles of mycobacterium tuberculosis Fe2+-ATPases’, Journal of Biological Chemistry. doi: 10.1074/jbc.M116.718239.
dc.relation.referencesPatrauchan, M. A., Sarkisova, S. A. and Franklin, M. J. (2007) ‘Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium’, Microbiology. doi: 10.1099/mic.0.2007/010371-0.
dc.relation.referencesPeddireddy, V., Doddam, S. N. and Ahmed, N. (2017) ‘Mycobacterial dormancy systems and host responses in tuberculosis’, Frontiers in Immunology. doi: 10.3389/fimmu.2017.00084.
dc.relation.referencesPeñuelas-Urquides, K. et al. (2013) ‘Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units’, Brazilian Journal of Microbiology. doi: 10.1590/S1517-83822013000100042.
dc.relation.referencesPfaffl, M. W. (2019) ‘Quantification Strategies in Real-time Polymerase Chain Reaction’, in Polymerase Chain Reaction: Theory and Technology. doi: 10.21775/9781912530243.05.
dc.relation.referencesPhilips, J. a. and Ernst, J. D. (2012) ‘Tuberculosis Pathogenesis and Immunity’, Annual Review of Pathology: Mechanisms of Disease, 7(1), pp. 353–384. doi: 10.1146/annurev-pathol-011811-132458.
dc.relation.referencesPrimeau, J. O. et al. (2018) ‘The sarcoendoplasmic reticulum calcium ATPase’, in Subcellular Biochemistry. doi: 10.1007/978-981-10-7757-9_8.
dc.relation.referencesProsser, G. et al. (2017) ‘The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition’, Microbes and Infection. doi: 10.1016/j.micinf.2016.10.001.
dc.relation.referencesPulido, P. a. et al. (2014) ‘The DosR dormancy regulator of Mycobacterium tuberculosis stimulates the Na+/K+ and Ca2+ ATPase activities in plasma membrane vesicles of mycobacteria’, Current Microbiology, 69(5), pp. 604–610. doi: 10.1007/s00284-014-0632-6.
dc.relation.referencesRaimunda, D. et al. (2014) ‘Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence’, Molecular Microbiology, 91(1), pp. 185–197. doi: 10.1111/mmi.12454.
dc.relation.referencesRathnayake, I. V. N. et al. (2010) ‘Tolerance of Heavy Metals by Gram Positive Soil Bacteria’, International Journal of Environmental Engineering.
dc.relation.referencesRodríguez-Navarro, A. and Benito, B. (2010) ‘Sodium or potassium efflux ATPase. A fungal, bryophyte, and protozoal ATPase’, Biochimica et Biophysica Acta - Biomembranes. doi: 10.1016/j.bbamem.2010.07.009.
dc.relation.referencesRodríguez, J. E. et al. (2013) ‘Transcription of Genes Involved in Sulfolipid and Polyacyltrehalose Biosynthesis of Mycobacterium tuberculosis in Experimental Latent Tuberculosis Infection’, PLoS ONE. doi: 10.1371/journal.pone.0058378.
dc.relation.referencesRosales, C. (2019) Determinación de características funcionales de CtpF, una Ca2+-ATPasa de Mycobacterium tuberculosis. Universidad Nacional de Colombia.
dc.relation.referencesRosch, J. W. et al. (2008) ‘Calcium efflux is essential for bacterial survival in the eukaryotic host’, Molecular Microbiology. doi: 10.1111/j.1365-2958.2008.06425.x.
dc.relation.referencesSable, S. B., Posey, J. E. and Scriba, T. J. (2019) ‘Tuberculosis Vaccine Development: Progress in Clinical Evaluation’, Clinical Microbiology Reviews, 33(1), pp. e00100-19. doi: 10.1128/CMR.00100-19.
dc.relation.referencesSaha, S., Das, P. and BoseDasgupta, S. (2020) ‘“It Takes Two to Tango”: Role of Neglected Macrophage Manipulators Coronin 1 and Protein Kinase G in Mycobacterial Pathogenesis’, Frontiers in Cellular and Infection Microbiology. doi: 10.3389/fcimb.2020.582563.
dc.relation.referencesSaleh, M. and Longhi, G. (2016) ‘Macrophage Infection by Mycobacteria’, Mycobacterial Diseases. doi: 10.4172/2161-1068.1000197.
dc.relation.referencesSantos, P. et al. (2020) ‘Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds’, Bioorganic and Medicinal Chemistry. doi: 10.1016/j.bmc.2019.115256.
dc.relation.referencesSassetti, C. M., Boyd, D. H. and Rubin, E. J. (2003) ‘Genes required for mycobacterial growth defined by high density mutagenesis’, Molecular Microbiology. doi: 10.1046/j.1365-2958.2003.03425.x.
dc.relation.referencesSchmeisser, K. and Parker, J. A. (2019) ‘Pleiotropic effects of mTOR and autophagy during development and aging’, Frontiers in Cell and Developmental Biology. doi: 10.3389/fcell.2019.00192.
dc.relation.referencesSchnappinger, D. et al. (2003) ‘Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages Insights into the Phagosomal Environment’, The Journal of Experimental Medicine. doi: 10.1084/jem.20030846.
dc.relation.referencesSchrager, L. K. et al. (2020) ‘The status of tuberculosis vaccine development’, The Lancet Infectious Diseases. doi: 10.1016/S1473-3099(19)30625-5.
dc.relation.referencesScriba, T. J. et al. (2016) ‘Vaccination against tuberculosis with whole-cell mycobacterial vaccines’, Journal of Infectious Diseases. doi: 10.1093/infdis/jiw228.
dc.relation.referencesSharma, S. and Meena, L. S. (2017) ‘Potential of Ca2+ in Mycobacterium tuberculosis H37Rv Pathogenesis and Survival’, Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-016-2247-9.
dc.relation.referencesSherman, D. R. et al. (2001) ‘Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding -crystallin’, Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.121172498.
dc.relation.referencesShiloh, M. U., Manzanillo, P. and Cox, J. S. (2008) ‘Mycobacterium tuberculosis Senses Host-Derived Carbon Monoxide during Macrophage Infection’, Cell Host and Microbe. doi: 10.1016/j.chom.2008.03.007.
dc.relation.referencesShin, J. M. et al. (2009) ‘The gastric HK-ATPase: Structure, function, and inhibition’, Pflugers Archiv European Journal of Physiology. doi: 10.1007/s00424-008-0495-4.
dc.relation.referencesSimeone, R. et al. (2012) ‘Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death’, PLoS Pathogens. doi: 10.1371/journal.ppat.1002507.
dc.relation.referencesSimmons, J. D. et al. (2018) ‘Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection’, Nature Reviews Immunology. doi: 10.1038/s41577-018-0025-3.
dc.relation.referencesSingh, P. et al. (2016) ‘PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence’, Scientific Reports. doi: 10.1038/srep21624.
dc.relation.referencesSingh, R. et al. (2019) ‘Recent updates on drug resistance in Mycobacterium tuberculosis’, Journal of Applied Microbiology. doi: 10.1111/jam.14478.
dc.relation.referencesSmith, T., Wolff, K. A. and Nguyen, L. (2013) ‘Molecular biology of drug resistance in Mycobacterium tuberculosis’, Current Topics in Microbiology and Immunology, 374, pp. 53–80. doi: 10.1007/82-2012-279.
dc.relation.referencesSoldati, T. and Neyrolles, O. (2012) ‘Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!’, Traffic, pp. 1042–1052. doi: 10.1111/j.1600-0854.2012.01358.x.
dc.relation.referencesSoto, C. Y. et al. (2002) ‘Simple and rapid differentiation of Mycobacterium tuberculosis H37Ra from M. tuberculosis clinical isolates through two cytochemical tests using neutral red and Nile blue stains’, Journal of Clinical Microbiology, 40(8), pp. 3021–3024. doi: 10.1128/JCM.40.8.3021-3024.2002.
dc.relation.referencesStover, C. K. et al. (1991) ‘New use of BCG for recombinant vaccines’, Nature, 351(6326), pp. 456–60. doi: 10.1038/351456a0.
dc.relation.referencesSubramani, S., Perdreau-Dahl, H. and Morth, J. P. (2016) ‘The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro’, eLife. doi: 10.7554/eLife.11407.001.
dc.relation.referencesTadini-Buoninsegni, F. et al. (2018) ‘Drug interactions with the Ca2+-ATPase from Sarco(Endo)plasmic reticulum (SERCA)’, Frontiers in Molecular Biosciences. doi: 10.3389/fmolb.2018.00036.
dc.relation.referencesTailleux, L. et al. (2008) ‘Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages’, PLoS ONE. doi: 10.1371/journal.pone.0001403.
dc.relation.referencesTang, J., Yam, W.-C. and Chen, Z. (2016) ‘Mycobacterium tuberculosis infection and vaccine development’, Tuberculosis, 98, pp. 30–41. doi: 10.1016/j.tube.2016.02.005.
dc.relation.referencesTrimble, W. S. and Grinstein, S. (2007) ‘TB or not TB: Calcium Regulation in Mycobacterial Survival’, Cell. doi: 10.1016/j.cell.2007.06.039.
dc.relation.referencesTufariello, J. A. M. et al. (2014) ‘Enhanced specialized transduction using recombineering in mycobacterium tuberculosis’, mBio. doi: 10.1128/mBio.01179-14.
dc.relation.referencesVoskuil, M. I. et al. (2003) ‘Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program’, The Journal of Experimental Medicine. doi: 10.1084/jem.20030205.
dc.relation.referencesVoskuil, M. I. et al. (2011) ‘The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species’, Frontiers in Microbiology. doi: 10.3389/fmicb.2011.00105.
dc.relation.referencesWagner, Dirk et al. (2005) ‘Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp’, Microbiology, 151(1), pp. 323–332. doi: 10.1099/mic.0.27213-0.
dc.relation.referencesWagner, D. et al. (2005) ‘Elemental Analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell’s Endosomal System’, The Journal of Immunology. doi: 10.4049/jimmunol.174.3.1491.
dc.relation.referencesWagner, S. et al. (2007) ‘Consequences of membrane protein overexpression in Escherichia coli’, Molecular and Cellular Proteomics. doi: 10.1074/mcp.M600431-MCP200.
dc.relation.referencesWalker, K. B. et al. (2010) ‘The second Geneva Consensus: Recommendations for novel live TB vaccines’, in Vaccine. doi: 10.1016/j.vaccine.2009.12.083.
dc.relation.referencesWalzl, G. et al. (2011) ‘Immunological biomarkers of tuberculosis.’, Nature reviews. Immunology, 11(5), pp. 343–54. doi: 10.1038/nri2960.
dc.relation.referencesWang, L. et al. (2015) ‘Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces’, Scientific Reports. doi: 10.1038/srep15159.
dc.relation.referencesWard, S. K. et al. (2010) ‘CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis’, Molecular Microbiology. doi: 10.1111/j.1365-2958.2010.07273.x.
dc.relation.referencesWhitlow, E., Mustafa, A. S. and Hanif, S. N. M. (2020) ‘An overview of the development of new vaccines for tuberculosis’, Vaccines. doi: 10.3390/vaccines8040586.
dc.relation.referencesWHO World Health Organization (2019) TUBERCULOSIS GLOBAL REPORT 2019.
dc.relation.referencesWHO World Health Organization (2020) Global tuberculosis report 2020.
dc.relation.referencesWorld Health Organization (2018) ‘BCG vaccine: WHO position paper, February 2018 – Recommendations’, Vaccine. doi: 10.1016/j.vaccine.2018.03.009.
dc.relation.referencesWorld Health Organization (2019) ‘WHO consolidated guidelines on drug-resistant tuberculosis treatment’, WHO consolidated guidelines on drug-resistant tuberculosis treatment.
dc.relation.referencesWorld Health Orgnaization (2017) Treatment of Tuberculosis: Guidelines for treatment of drug-susceptible tuberculosis and patient care. 2017 update, Who.
dc.relation.referencesYatime, L. et al. (2009) ‘P-type ATPases as drug targets: Tools for medicine and science’, Biochimica et Biophysica Acta - Bioenergetics, pp. 207–220. doi: 10.1016/j.bbabio.2008.12.019.
dc.relation.referencesZanotti, G. (2016) ‘Regulation of Ca2+-ATPases,V-ATPases and F-ATPases’, Regulation of Ca2+-ATPases,V-ATPases and F-ATPases, pp. 137–151. doi: 10.1007/978-3-319-24780-9.
dc.relation.referencesZheng, H. et al. (2008) ‘Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv’, PLoS ONE. doi: 10.1371/journal.pone.0002375.
dc.relation.referencesZheng, H. et al. (2017) ‘Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence’, Nature Chemical Biology. doi: 10.1038/nchembio.2259.
dc.relation.referencesZumla, A. et al. (2015) ‘Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies’, The Lancet Respiratory Medicine, pp. 220–234. doi: 10.1016/S2213-2600(15)00063-6.
dc.relation.referencesZumla, A. I. et al. (2014) ‘New antituberculosis drugs, regimens, and adjunct therapies: Needs, advances, and future prospects’, The Lancet Infectious Diseases. doi: 10.1016/S1473-3099(13)70328-1.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMycobacterium tuberculosis
dc.subject.proposalATPasas tipo P
dc.subject.proposalCepas atenuadas
dc.subject.proposalTécnica de recombinería
dc.subject.proposalCalcio
dc.subject.proposalP-type ATPase
dc.subject.proposalAttenuated strains
dc.subject.proposalMycobacterial recombineering
dc.title.translatedP2-type ATPases as targets for the attenuation of Mycobacterium tuberculosis.
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleImplicación de CtpH, una ATPasa tipo P, en el transporte de metales alcalino/alcalinotérreos a través de la membrana plasmática de Mycobacterium tuberculosis
oaire.awardtitleAlianza estratégica para la evaluación preclínica de mutantes de Mycobacterium tuberculosis defectivos en ATPasas tipo P, con potencial vacunal
oaire.fundernameDivisión de Investigación de Bogotá-DIB
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias)
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito