Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorValle, Jorge Ignacio del
dc.contributor.authorGiraldo, Jorge A.
dc.date.accessioned2021-10-07T15:29:01Z
dc.date.available2021-10-07T15:29:01Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80415
dc.descriptionilustraciones, mapas, tablas
dc.description.abstractIn this dissertation, I explore the dendrochronological potential of trees from a lowlands tropical wet forest (Precipitation over 7,200 mm y-1), without seasonal water deficit or flooding. I study the causes and sensitivity of annual growth rings to climate variables in several tree species by different methods. I analyzed the anatomical features of 81 tree species (~ 45% showed well-defined tree rings) (Chapter 1). Then I present results of tree ring frequency and possible causes of tree ring formation. I observed both positive and negative growth answers to water and light availability, depending on the tree species, suggesting that either excess or deficit of growth factors may explain seasonal growth rhythms in some trees (Chapter 2). This fact is also observed by the intra-annual variability of stable isotopes in tree rings (Chapter 3). As a study case, I present a practical application of dendroecology as an effective tool for resolving disputes in forensic sciences, the first carried in the biogeographic Chocó region (Chapter 4). This research opens a new frontier for tree rings science, the ever-wet tropical forests without water deficit.
dc.description.abstractEn esta disertación, exploro el potencial dendrocronológico de los árboles de los bosques siempre húmedos tropicales (Precipitación superior a 7,200 mm año-1 ), que no presentan déficit hídrico o inundaciones periódicas. Se estudian las causas y la sensibilidad de los anillos de crecimiento anuales a variables climáticas en muchas especies de árboles, a través de diferentes métodos. Son analizadas las características anatómicas de la madera en 81 especies de árboles (~ 45% presentan anillos de crecimiento bien definidos) (Capítulo 1). En el Capítulo 2, se presentan los resultados de la frecuencia de anillos en muchas especies y se exploran los posibles detonantes ambientes de su formación. Se obtienen observaciones tanto positivas como negativas entre el crecimiento, el agua y la disponibilidad de luz, dependiendo de la especie; lo cual sugiere que tanto el déficit como el exceso del crecimiento pueden ser factores que determinan el crecimiento rítmico en algunas especies de árboles. Dicha evidencia También es observada a través de la variabilidad intra anual de las proporciones isotópicas del oxígeno en la celulosa (δ 18Ocelulosa) (Capítulo 3). Como un caso de estudio, se presenta una aplicación práctica de la dendrocronología como una herramienta efectiva para resolver disputas legales, siendo ese el primer ejemplo de dicha aplicación, llevado a cabo en la región biogeográfica del Chocó (Capítulo 4). Esta investigación abre una nueva frontera en la ciencia de los anillos de crecimiento, los bosques siempre húmedos tropicales carentes de déficit hídrico. (Texto tomado de la fuente)
dc.format.extentxii, 131 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleAnnual tree rings in the rainiest forests of the Americas
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ecología
dc.contributor.researchgroupBosques y Cambio Climático
dc.coverage.cityChocó, Colombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ecología
dc.description.funderBeca para estudiantes de doctorado Nacionales de COLCIENCIAS
dc.description.researchareaDendrocronología tropical
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbdul Azim AA, Okada N (2014) Occurrence and anatomical features of growth rings in tropical rainforest trees in Peninsular Malaysia: a preliminary study. Tropics 23:15–31. doi: 10.3759/tropics.23.15
dc.relation.referencesAguilar-Rodríguez S, Barajas-Morales J (2005) Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bot Sci 77:51–58. doi: 10.17129/botsci.1712
dc.relation.referencesAlbert LP, Restrepo-Coupe N, Smith MN, et al (2019) Cryptic phenology in plants: Case studies, implications, and recommendations. Glob Chang Biol 25:3591–3608. doi: 10.1111/gcb.14759
dc.relation.referencesÁlvarez E, Cayuela L, González-Caro S, et al (2017) Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One 12:1–16. doi: https://doi.org/10.1371/ journal.pone.0171072
dc.relation.referencesAlves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:3–30. doi: 10.1078/0367-2530-0058
dc.relation.referencesAlvim P (1964) Tree growth periodicity in tropical climates. In: The formation of wood in forest trees. Academic Press, New York, pp 479–495
dc.relation.referencesAnchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. doi: 10.1029/2007JG000613
dc.relation.referencesAndreu-Hayles L, Santos G, Herrera D, et al (2015) Matching Dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57:1–13. doi: 10.2458/azu
dc.relation.referencesAraya MÁ (2012) Manual para la identificación de maderas a nivel macroscópico de 110 especies maderables del caribe norte de Costa Rica. Instituto Tecnológico de Costa Rica
dc.relation.referencesArevalo R, Londoño A (2005) Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Corporación Autónoma Regional del Tolima (Cortolima), Ibagué, Tolima
dc.relation.referencesBabst F, Bouriaud O, Poulter B, et al (2019) Twentieth century redistribution in climatic drivers of global tree growth. Sci Adv 5:1–10. doi: 10.1126/sciadv.aat4313
dc.relation.referencesBagnouls B, Gaussen H (1957) Les climats biologiques et leur classification. Ann Georgr 355:193–220
dc.relation.referencesBaguinon NT, Borgaonkar H, Meteorology T, et al (2008) Collaborative studies in tropical Asian dendrochronology: Addressing challenges in climatology and forest ecology. Asia-Pacific Network for Global Change Research-APN- Final Report submited to APN. Project: ARCP 2008-03CMY-Baguinon
dc.relation.referencesBaker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009. doi: 10.1007/s00468-017-1604-9
dc.relation.referencesBallantyne AP, Baker PA, Chambers JQ, et al (2011) Regional differences in south american monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15:1–35. doi: 10.1175/2010EI277.1
dc.relation.referencesBarbosa A, Pereira G, Granato-Souza G, et al (2018) Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Aust J Bot 66:414–427. doi: doi:10.1071/BT17212
dc.relation.referencesBarthélémy D, Blaise F, Fourcaud T, Nicolini E (1995) Modelisation et simulation de l’architecture des arbres bilan et perspectives. Rev For Française 47:71–96. doi: 10.4267/2042/26721
dc.relation.referencesBeech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sustain For 36:454–489. doi: 10.1080/10549811.2017.1310049
dc.relation.referencesBegon M, Harper JL, Townsend CR (2006) Ecology: Individuals, Populations and Communities
dc.relation.referencesBeltran L, Valencia G (2013) Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev Biol Trop 61:1025–1037
dc.relation.referencesBernabei M, Bontadi J, Čufar K, Baici A (2017) Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. J Cult Herit 27:S55–S62. doi: 10.1016/j.culher.2016.11.010
dc.relation.referencesBoninsegna JA, Villalba R, Amarilla L, Ocampo J (1989) Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA J 10:161–169. doi: 10.1163/22941932-90000484
dc.relation.referencesBorchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247
dc.relation.referencesBorchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221. doi: 10.1093/treephys/21.4.213
dc.relation.referencesBräuning A, Volland-Voigt F, Burchardt I, et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345. doi: 10.3112/erdkunde.2009.04.04
dc.relation.referencesBreitsprecher A, Bethel J (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:1156–1164
dc.relation.referencesBrienen R, Lebrija-trejos E, Breugel M Van, et al (2009) The potential of tree rings for the Study of forest succession in Southern Mexico. Biotropica 41:186–195. doi: 10.1111/j.1744-7429.2008.00462.x
dc.relation.referencesBrienen R, Schöngart J, Zuidema P (2016) Tree rings in the tropics: Insights into the Ecology and Climate Sensitivity of tropical trees. In: Goldstein G, Santiago SL (eds) Tropical Tree Physiology. Springer, Switzerland, pp 441–461
dc.relation.referencesBrienen R, Zuidema P (2005) Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 146:1–12. doi: 10.1007/s00442-005-0160-y
dc.relation.referencesBullock SH (1997) Effects of seasonal rainfall on radial growth in two tropical tree species. Int J Biometeorol 41:13–16. doi: 10.1007/s004840050047
dc.relation.referencesBunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi: 10.1016/j.dendro.2008.01.002
dc.relation.referencesBunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–258. doi: 10.1016/j.dendro.2009.12.001
dc.relation.referencesCallado C, Da Silva Neto S, Scarano F, Costa C (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497. doi: 10.1007/s00468-001-0128-4
dc.relation.referencesCampos LE, Lobão MS, Rosero Alvarado J, et al (2008) Potencialidad de especies forestales para dendrocronología a traves de la caracterización anatómica de los anillos de crecimiento en la Amazonía Peruana – Brasilera. In: VII Congreso Nacional de Estudiantes Forestales. Madre de Dios, Perú
dc.relation.referencesCardoso S, Sousa VB, Quilhó T, Pereira H (2015) Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J Wood Sci 61:326–333. doi: 10.1007/s10086-015-1474-y
dc.relation.referencesCarlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer Berlin Heidelberg
dc.relation.referencesChowdhury MQ, Kitin P, De Ridder M, et al (2016) Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees - Struct Funct 30:227–239. doi: 10.1007/s00468-015-1292-2
dc.relation.referencesCintra BBL, Gloor M, Boom A, et al (2019) Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiol 39:845–860. doi: 10.1093/treephys/tpz009
dc.relation.referencesCintra BBL, Schietti J, Emillio T, et al (2013) Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area. Biogeosciences Discuss 10:6417–6459. doi: 10.5194/bgd-10-6417-2013
dc.relation.referencesClark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J Ecol 82:865–872
dc.relation.referencesCook ER, Kairiukstis L Methods of dendrochronology - Applications in the envi- ronmental science. Kluwer, Dordrecht
dc.relation.referencesCook ER, Pederson N (2011) Uncertainty, Emergence, and Statistics in Dendrochronology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology, Developments in Paleoenvironmental Research. Springer, pp 77–112
dc.relation.referencesD’Arrigo R, Palmer J, Ummenhofer CC, et al (2011) Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophys Res Lett 38:1–5. doi: 10.1029/2011GL049927
dc.relation.referencesSolander KC, Newman BD, Carioca De Araujo A, et al (2020) The pantropical response of soil moisture to El Niño. Hydrol Earth Syst Sci 24:2303–2322. doi: 10.5194/hess-24-2303-2020
dc.relation.referencesSoliz-Gamboa C, Rozendaal DMA, Ceccantini G, et al (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. doi: 10.1007/s00468-010-0468-z
dc.relation.referencesSoudani K, Hmimina G, Delpierre N, et al (2012) Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens Environ 123:234–245. doi: 10.1016/j.rse.2012.03.012
dc.relation.referencesSpeer J (2010) Fundamentals of tree ring research. University of Arizona Press
dc.relation.referencesStahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J. 20:249–253
dc.relation.referencesStahle DW, Torbenson MCA, Howard IM, et al (2020) Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes. Environ Res Lett 15:. doi: 10.1088/1748-9326/ababc6
dc.relation.referencesSteinhof A, Altenburg M, Machts H (2017) Sample preparation at the Jena 14C Laboratory. Radiocarbon 59:815–830. doi: 10.1017/RDC.2017.50
dc.relation.referencesStenström KE, Skog G, Georgiadou E, et al (2011) A guide to radiocarbon units and calculations
dc.relation.referencesStine AR (2019) Global Demonstration of Local Liebig’s Law Behavior for Tree-Ring Reconstructions of Climate. Paleoceanogr Paleoclimatology 34:203–216. doi: 10.1029/2018PA003449
dc.relation.referencesStoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research - An overview. Nat Hazards Earth Syst Sci 8:187–202. doi: 10.5194/nhess-8-187-2008
dc.relation.referencesStoffel M, Bollschweiler M, Butler DR, Luckman B (2011) Tree Rings and Natural Hazards – A State of the Art. Springer
dc.relation.referencesSudworth G, Mell C (1911) “Colombian mahogany” (Cariniana pyriformis), its characteristics and its use as a substitute for true mahogany (Swietenia mahagoni). Department of Agriculture, Forest Service
dc.relation.referencesTanaka A (2005) Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã-AM. Dissertação (Doutorado), Universidade Federal do Amazonas – UFAM Instituto Nacional de Pesquisas da Amazônia – INPA
dc.relation.referencesTarelkin Y, Delvaux C, De Ridder M, et al (2016) Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J 37:275–294. doi: 10.1163/22941932-20160134
dc.relation.referencesTarhule A, Hughes M (2002) Tree-ring research in semi-arid West Africa: Need and potential item. Tree-Ring Res 58:31–46
dc.relation.referencesTaylor WP (1934) Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig’s Law of Minimum. Ecology 15:374–379. doi: 10.2307/1932352
dc.relation.referencesThomas P (2014) Trees: Their natural history. Cambridge University Press, Cambridge
dc.relation.referencesThornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. doi: 10.2307/210739
dc.relation.referencesTomlinson P, Longman K (1981) Growth phenology of tropical trees in relation to cambial activity. In: Bormann F, Berlyn G (eds) Age and growth rate of tropical trees: New dimensions for research. New Haven: Yale University, New Haven, pp 7–19
dc.relation.referencesTomlinson T, Craichead F (1972) Growth-ring studies on the native trees of subtropical Florida. In: Ghouse K, Yunus M (eds) Research trends in plant anatomy. McGraw Hill, New Delhi, pp 39–51
dc.relation.referencesTrevizor TT (2011) Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará Tássio. Universidade de São Paulo
dc.relation.referencesTRMM (2011) TRMM Microwave Imager Precipitation Profile L3 1 month 0.5 degree x 0.5 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov/datacollection/TRMM_3A12_7.html
dc.relation.referencesTrouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382. doi: 10.1111/j.1744-7429.2006.00155.x
dc.relation.referencesTuck SL, Phillips HRP, Hintzen RE, et al (2014) MODISTools - downloading and processing MODIS remotely sensed data in R. Ecol Evol 4:4658–4668. doi: 10.1002/ece3.1273
dc.relation.referencesTurner IM (2004) The Ecology of Trees in the Tropical Rain Forest. J Appl Ecol 33:1–314. doi: 10.2307/2404743
dc.relation.referencesUNODC (2016) Best Practice Guide for Forensic Timber Identification. UNODC, United Nations Off Drugs Crime 226
dc.relation.referencesVaganov E, Hughes M, Shashkin A (2006) Growth dynamics of conifer tree ring. Springer, Berlin
dc.relation.referencesVan der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Glob Planet Change 127:58–66. doi: 10.1016/j.gloplacha.2015.01.014
dc.relation.referencesvan der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Funct Ecol 31:1674–1689. doi: 10.1111/1365-2435.12889
dc.relation.referencesVásquez A, Ramírez A (2005) Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, Medellín
dc.relation.referencesVetter RE, Botosso PC (1989) Remarks on age and growth rate determination of amazonian trees. IAWA J 10:133–145. doi: 10.1163/22941932-90000481
dc.relation.referencesWagner F, Rossi V, Stahl C, et al (2012) Water availability is the main climate driver of neotropical tree growth. PLoS One 7:1–11. doi: 10.1371/journal.pone.0034074
dc.relation.referencesWalter H, Harnickell E, Mueller-Dombois D (1976) Climate-diagram maps of the individual continents and the ecological climatic regions of the Earth. Springer-Verlag, Berlin
dc.relation.referencesWalter H, Harnickell E, Mueller-Dombois D (1975) Climate-diagrams maps. Springer, Berlin
dc.relation.referencesWang D, Tian L, Cai Z, et al (2020) Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth Planet Sci Lett 529:115837. doi: 10.1016/j.epsl.2019.115837
dc.relation.referencesWang KH, Hamzah MZ (2018) Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees - Struct Funct 32:1519–1530. doi: 10.1007/s00468-018-1730-z
dc.relation.referencesWheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J 28:229–258. doi: 10.1163/22941932-90001638
dc.relation.referencesWhitmore T (1990) An introduction to tropical rain forests. Clarendon Press, Oxford
dc.relation.referencesWhitmore T (1975) Tropical rain forest of the Far East. Clarendon Press, Oxford
dc.relation.referencesWiedenhoeft A (2011) Identificación de las especies maderables de centroamérica. USDA
dc.relation.referencesWolodarsky-Franke A, Lara A (2005) The role of “forensic” dendrochronology in the conservation of alerce (Fitzroya cupressoides ((Molina) Johnston)) forests in Chile. Dendrochronologia 22:235–240. doi: 10.1016/j.dendro.2005.05.008
dc.relation.referencesWorbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. doi: 10.1078/1125-7865-00018
dc.relation.referencesWorbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi: 10.1046/j.1365-2745.1999.00361.x
dc.relation.referencesWorbes M (1995) How to measure growth dynamics in tropical trees. IAWA J 16:337–351. doi: 10.1163/22941932-90001424
dc.relation.referencesWorbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, et al. (eds) Amazonian floodplain forest. Springer, pp 329–346
dc.relation.referencesWorbes M, Herawati H, Martius C (2017) Tree growth rings in tropical peat swamp forests of Kalimantan, Indonesia. Forests 8:1–15. doi: 10.3390/f8090336
dc.relation.referencesWorbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507
dc.relation.referencesYáñez-Espinosa L, Terrazas T, López-Mata L (2010) Phenology and radial stem growth periodicity in evergreen subtropical rainforest trees. IAWA J 31:293–307. doi: Article
dc.relation.referencesZang C, Biondi F (2015) Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–436. doi: 10.1111/ecog.01335
dc.relation.referencesZuidema P, Brienen R, Schöngart J (2012) Tropical Forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembDendroclimatology
dc.subject.lembDendroclimatología
dc.subject.lembTree-Rings
dc.subject.lembÁrboles - Anillos de crecimiento
dc.subject.proposalBiogeographic Chocó Region
dc.subject.proposalRadiocarbon
dc.subject.proposalDendrochronology
dc.subject.proposalEver-wet forest
dc.subject.proposalTropical trees
dc.subject.proposalDendrocronología
dc.subject.proposalRegión del Chocó Biogeográfico
dc.subject.proposalIsótopos estables
dc.subject.proposalÁrboles tropicales
dc.subject.proposalRadiocarbono
dc.title.translatedAnillos de crecimeinto anuales en los árboles de la región mas lluviosa de las Américas
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProyecto 4083 de la Universidad Nacional de Colombia
oaire.awardtitleProyecto 1118-714-51372 de Colciencias
oaire.awardtitleConvocatoria 785 de Colciencias
oaire.fundernameMinciencias
oaire.fundernameUniversidad Nacional de Colombia, Sede Medellín
oaire.fundernameInstituto Max Planck para la Biogeoquímica
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito