Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPáez Parra, Ingrid Patricia
dc.contributor.advisorCadena Muñoz, Ernesto
dc.contributor.authorVargas Rodríguez, Mauricio Alexander
dc.date.accessioned2021-10-07T16:52:25Z
dc.date.available2021-10-07T16:52:25Z
dc.date.issued2021-06-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80422
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractEsta tesis de investigación busca generar un lineamiento técnico para la provisión de Calidad de Servicio (QoS) en interconexión de extremo a extremo bajo IP Multimedia Subsystem (IMS), revisando los estándares, normas, procedimientos, metodologías, recomendaciones, lineamientos y buenas prácticas, encontradas en organismos internacionales e industria, sustentadas en la normativa vigente, caracterizando los parámetros de calidad de los servicios convergentes (voz, datos y video) y evaluando el impacto técnico de la negociación de los parámetros de QoS interdominio de dichos servicios en un entorno emulado, mediante el desarrollo de una metodología sistemática, sustentada en el enfoque cuantitativo. Se plantea que el problema central radica en brindar QoS consistente extremo a extremo en un servicio IP, de tal manera que se establezcan los requisitos de QoS solicitados por el cliente, cumpliendo con la normativa vigente cuando en el despliegue de infraestructura de servicio se involucran dos o más operadores, siendo redes autónomas, cuyos dominios administrativos se gestionan de acuerdo con sus políticas, sus topologías internas y mecanismos de QoS que dependen de sus dispositivos y otros requisitos de gestión que no son técnicos. En este sentido, el lineamiento brinda las herramientas necesarias para el diseño, implementación, mantenimiento y optimización de redes de telecomunicaciones relacionadas con QoS, dada la complejidad de las tecnologías subyacentes y su integración en el proceso de interconexión.
dc.description.abstractThis research thesis seeks to generate a technical guideline for the provision of end-to-end Quality of Service (QoS) in interconnection under IP Multimedia Subsystem (IMS), reviewing the standards, norms, procedures, methodologies, the recommendations, guidelines, and good practices, found in international organizations and industry, supported by current regulations, by characterizing the quality parameters for convergent services (voice, data, and video) and evaluating the technical impact of negotiation of the inter-domain QoS parameters of said services in an emulated environment, through the development of a systematic methodology supported by the quantitative approach. It is posed that the central problem lies in providing consistent end-to-end QoS in an IP service in such a way that the QoS requirements requested by the client are set, complying with current regulations when the deployment of service infrastructure is involved between two or more operators, being autonomous networks, whose administrative domains are managed according to their policies, their internal topologies, and QoS mechanisms that depend on their devices and other non-technical management requirements. In this sense, the guideline provides the necessary tools in the design, implementation, maintenance, and optimization of telecommunications networks related to QoS, given the complexity of the related technologies and their integration in the interconnection processes.
dc.format.extent286 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.titleLineamiento técnico para la provisión de Calidad de Servicio (QoS) extremo a extremo en interconexión bajo IP Multimedia Subsystem (IMS)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Telecomunicaciones
dc.description.methodsPara el desarrollo del proyecto de tesis se plantea el siguiente enfoque sistémico soportado en la metodología cuantitativa vista en [8] y [9], en el cual, se parte de una etapa de planeación en la que se definen los objetivos y requerimientos de acuerdo con la recolección de la información bibliográfica; una etapa de diseño del modelo emulado, en la que se realiza una especificación del entorno de pruebas y configuración; una etapa de desarrollo cuyo objetivo es realizar la emulación y obtención de los resultados; una etapa de análisis en la que se consolidan los resultados para la realización y evaluación de las conclusiones y finalmente, la realización de la documentación respectiva donde se presentan los resultados del desarrollo del proyecto para lograr la consecución de los objetivos propuestos. La metodología propuesta se llevó a cabo a través de las siguientes fases: • Fase de Planeación: En esta fase se realizó la revisión bibliográfica de la información relevante acerca de los mecanismos de control de QoS bajo la arquitectura IMS, se analizaron las diferentes recomendaciones técnicas dadas por diferentes organismos internacionales y se realizó el estudio de la arquitectura IMS y la señalización SIP, de igual manera se definieron los requerimientos de QoS para el despliegue de servicios multimedia (voz, datos y video) en redes IP. • Fase de diseño y desarrollo: En esta fase se planteó el diseño del modelo de emulación inter-dominio bajo IMS para el entorno de pruebas, así como la generación de diferentes métricas de QoS que permitieron obtener una serie de resultados acerca del comportamiento del sistema ante situaciones en las que se requiere establecer los parámetros de negociación de QoS en el establecimiento de una sesión extremo a extremo. • Fase de análisis y documentación: Luego de obtener los resultados de los experimentos se realizó una evaluación de los parámetros de QoS de acuerdo con los requerimientos planteados, estos resultados permitieron establecer los lineamientos técnicos para la provisión de Calidad de Servicio (QoS) extremo a extremo en interconexión bajo IP Multimedia Subsystem (IMS) para los servicios de voz, datos y video. Por otro lado, se realizó un análisis del estado de avance en la implementación de las redes NGN y su reglamentación en Colombia. (Texto tomado de la fuente)
dc.description.researchareaRedes y Sistemas de Telecomunicaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] N. Pignataro, P. Cristiani, D. Belotti, and P. R. Bocca, Aspectos Técnicos de las Nuevas Tecnologías de Telecomunicaciones -“Diplomado en NGN” - Módulo 3. ANTEL, 2010.
dc.relation.references[2] G. Camarillo and M.-A. García-Martín, The 3G IP Multimedia Subsystem (IMS): Merging the Internet and the Cellular Worlds, 3rd ed. Wiley, 2008.
dc.relation.references[3] D. Blandón, Y. Díaz, F. G. Guerrero, J. C. Cuellar, A. Navarro C., and C. Ochoa A., Medición de la calidad del servicio en Redes de Próxima Generación en Colombia, 1st ed. Centro de Investigación de las Telecomunicaciones - CINTEL, 2010.
dc.relation.references[4] E. Imene, D. Thierry, S. Michelle, and S. Tabbane, “Interworking Components for the end-to-end QoS into IMS-based architecture mono provider,” in Computers and Communications (ISCC), 2010 IEEE Symposium on, 2010, pp. 628–633, doi: 10.1109/ISCC.2010.5546652.
dc.relation.references[5] J. Liao, Q. Qi, T. Li, Y. Cao, and X. Zhu, “An optimized QoS scheme for IMS-NEMO in heterogeneous networks,” Int. J. Commun. Syst., vol. 25, no. 2, pp. 185–204, 2012, doi: 10.1002/dac.
dc.relation.references[6] H. A. Lara Paz, María Camila; Coral Sarria, “QoS del servicio de Video Llamada en una red IMS. Virtualizada,” Universidad del Cauca, 2017.
dc.relation.references[7] T. Mácha, L. Nagy, Z. Martinásek, and V. Novotný, “IMS Mapping of QoS Requirements on the Network Level,” Elektrorevue, vol. 1, no. 2, pp. 22–27, 2010.
dc.relation.references[8] R. Hernández Sampieri, C. Collado Fernández, and M. del P. Baptista Lucio, Metodología de la investigación, 6th ed. Mexico, 2000.
dc.relation.references[9] J. W. Creswell and J. D. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 5th ed. California, 2017.
dc.relation.references[10] UIT, Recomendación UIT-T Y.2021 : Subsistema multimedios IP (IMS) para las redes de próxima generación. 2006, pp. 1–14.
dc.relation.references[11] Telefónica, Las Telecomunicaciones y la Movilidad en la Sociedad de la Información, 1st ed. Albadalejo, 2005.
dc.relation.references[12] P. Podhradský, “New Multimedia Applications based on IMS NGN Architecture,” in Systems, Signals and Image Processing (IWSSIP), 2011 18th International Conference on, 2011, pp. 1–4.
dc.relation.references[13] UIT, Recomendación UIT-T Y.2001 :Visión general de las redes de próxima generación. 2004, pp. 1–10.
dc.relation.references[14] M. Ilyas and S. A. Ahson, IP Multimedia Subsystem (IMS) Handbook, 1st ed. CRC Press, 2008.
dc.relation.references[15] A. Handa, System Engineering for IMS Networks, 1st ed. Newnes, 2008.
dc.relation.references[16] R. Copeland, Converging NGN Wireline and Mobile 3G Networks with IMS: Converging NGN and 3G Mobile, 1st ed. Auerbach Publications, 2008.
dc.relation.references[17] P. Podhradský, R. Kadlic, J. Londák, O. Lábaj, and D. Levický, “Enhanced ICT in Virtual Training and m-learning,” in ELMAR, 2011 Proceedings, 2011, no. September, pp. 14–16.
dc.relation.references[18] P. Bellavista, A. Corradi, and L. Foschini, “IMS-based presence service with enhanced scalability and guaranteed QoS for interdomain enterprise mobility,” IEEE Wirel. Commun., vol. 16, no. 3, pp. 16–23, 2009, doi: 10.1109/MWC.2009.5109460.
dc.relation.references[19] N. Pignataro, P. Cristiani, D. Belotti, and P. R. Bocca, Aspectos Técnicos de las Nuevas Tecnologías de Telecomunicaciones -“Diplomado en NGN” - Módulo 4. 2010.
dc.relation.references[20] K. Al-Begain, C. Balakrishna, L. A. Galindo, and D. M. Fernandez, IMS - A Development and Deployment Perspective, 1st ed. Wiley, 2009.
dc.relation.references[21] N. Psimogiannos, A. Sgora, and D. D. Vergados, “An IMS-based network architecture for WiMAX-UMTS and WiMAX-WLAN interworking,” Comput. Commun., vol. 34, no. 9, pp. 1077–1099, Jun. 2011, doi: 10.1016/j.comcom.2010.02.017.
dc.relation.references[22] T. Russell, The IP Multimedia Subsystem IMS - Session Control and Other Network Operations, 1st ed. McGraw-Hill Osborne Media, 2007.
dc.relation.references[23] 3GPP, 3GPP TS 23.228 IP Multimedia Subsystem (IMS); Stage 2 (Release 14), vol. 1. 2016, pp. 0–316.
dc.relation.references[24] CRC, “Resolución 5050 de 2016,” Resolución, no. 5050, p. 714, 2016.
dc.relation.references[25] T. Janevski, QoS for Fixed and Mobile Ultra-Broadband, 1st ed. Great Britain: Wiley - IEEE, 2019.
dc.relation.references[26] M. Boucadair, I. Borges, and P. M. Neves, IP Telephony Interconnection Reference: Challenges, Models, and Engineering. CRC PressINC, 2011.
dc.relation.references[27] GSM Association, “SIP - SDP Inter - IMS NNI Profile,” Off. Doc. IR.95, pp. 1–161, 2018.
dc.relation.references[28] GSM Association, “RCS Interworking Guidelines,” Off. Doc. IR.90, 2019.
dc.relation.references[29] GSM Association, “IMS Roaming , Interconnection and Interworking Guidelines,” Off. Doc. IR.65, pp. 1–61, 2018.
dc.relation.references[30] K. I. Lakhtaria, “Enhancing QOS and QOE in IMS enabled next generation networks,” Int. J. Appl. graph theory Wirel. ad hoc networks Sens. networks, vol. 2, no. 2, pp. 61–71, 2010, doi: 10.5121/jgraphoc.2010.2206.
dc.relation.references[31] UIT-T, Recomendación UIT-T E.800 Definiciones de términos relativos a la calidad de servicio. 2008, pp. 1–34.
dc.relation.references[32] T. Truong, T. Nguyen, and H. Nguyen, “On Relationship between Quality of Experience and Quality of Service Metrics for IMS-Based IPTV Networks,” in Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012 IEEE RIVF International Conference on, 2012, pp. 1–6, doi: 10.1109/rivf.2012.6169844.
dc.relation.references[33] H. Koumaras, N. Zotos, L. Boula, and A. Kourtis, “A QoE-aware IMS Infrastrusture for Multimedia Services,” in Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2011 3rd International Congress on, 2011, pp. 1–7.
dc.relation.references[34] A. Cuevas and J. I. Moreno, “Managing QoS-enabled ‘ information transport ’ as any other service in NGN service platforms,” in Wireless Communications and Networking Conference (WCNC), 2010, pp. 1–6, doi: 10.1109/WCNC.2010.5506495.
dc.relation.references[35] UIT- T, “G.1000 Calidad del servicio en las comunicaciones: marco y definiciones.,” Ser. G Sist. Y MEDIOS Transm. Sist. Y REDES Digit. Calid. Serv. y Transm., pp. 58–60, 2001, [Online]. Available: http://www.itu.int/rec/T-REC-G.1000-200111-I/en.
dc.relation.references[36] UIT-T, “Quality of service guaranteed mechanisms and performance model for public packet telecommunication data networks,” Recom. Y.2617, 2016.
dc.relation.references[37] UIT-T, “Information technology – Quality of Service: Framework,” Recom. X.641, vol. 641, 1997.
dc.relation.references[38] ITU-T, “Internet protocol data communication service – IP packet transfer and availability performance parameters,” Recom. Y.1540, 2019.
dc.relation.references[39] J. C. Cuéllar Quiñonez, Caracterización de mecanismos de QoS utilizados en redes NGN. Lexinton, 2013.
dc.relation.references[40] R. Suarez, A. Solarte, Z. María, Q. Cuéllar, and J. Carlos, “Herramienta para el monitoreo de parámetros de Calidad de Servicio en redes NGN Tools for monitoring Quality of Service parameters in Next Generation Networks,” Rev. S&T, vol. 11, no. 26, pp. 81–94, 2013, [Online]. Available: http://www.icesi.edu.co/revistas/index.php/sistemas_telematica.
dc.relation.references[41] GSM Association, “Guidelines for IPX Provider networks (Previously Inter - Service Provider IP Backbone Guidelines),” Off. Doc. IR.34, no. 13, pp. 1–50, 2016, [Online]. Available: http://www.gsma.com/newsroom/all-documents/official-document-ir-34-guidelines-for-ipx-provider-networks-previously-inter-service-provider-ip-backbone-guidelines-2/.
dc.relation.references[42] UIT-T, “Objetivos de calidad de funcionamiento de red para servicios basados en el protocolo Internet,” Recom. Y.1541, 2006.
dc.relation.references[43] X. Marichal Borges, “Curso Profesional de MPLS QoS,” Telecapp, 2019. https://www.telecapp.com/ (accessed Apr. 25, 2020).
dc.relation.references[44] M. S. Siddiqui and C. S. Hong, “Virtual platform support for QoS management in IMS based multiple provider networks,” 2010 Int. Conf. Netw. Serv. Manag., pp. 350–353, Oct. 2010, doi: 10.1109/CNSM.2010.5691231.
dc.relation.references[45] B. Yu, D. Yu, J. Jia, and J. Lin, “A Review of the Policy-Based QoS Architecture in IMS,” in 2010 First International Conference on Pervasive Computing, Signal Processing and Applications, Sep. 2010, pp. 175–178, doi: 10.1109/PCSPA.2010.54.
dc.relation.references[46] B. Raouyane, M. Bellafkih, and D. Ranc, “QoS Management in IMS: DiffServ Model,” in 2009 Third International Conference on Next Generation Mobile Applications, Services and Technologies, Sep. 2009, pp. 39–43, doi: 10.1109/NGMAST.2009.21.
dc.relation.references[47] J. W. Evans and C. Filsfils, Deploying IP and MPLS QoS for Multiservice Networks: Theory & Practice, 1st ed. Morgan Kaufmann, 2007.
dc.relation.references[48] B. Raouyane, M. Bellafkih, M. Errais, and M. Ramdani, “IMS Management based eTOM framework for Multimedia service,” in Telecommunications Network Strategy and Planning Symposium (NETWORKS), 2010 14th International, 2010, no. Figure 1, pp. 1–6.
dc.relation.references[49] M. Ageal, R. Good, A. Elmangosh, M. Ashibani, N. Ventura, and F. Ben-, “Centralized policy provisioning for inter-domain IMS QOS,” in EUROCON 2009, 2009, pp. 1793–1797, doi: 10.1109/EURCON.2009.5167887.
dc.relation.references[50] J. Baraković and H. Bajrić, “QoS Aspects in NGN Interconnection,” 2009.
dc.relation.references[51] R. Yavatkar, D. Pendarakis, and R. Guerin, “RFC 2753 - A Framework for Policy- Based Admission Control.” 2000.
dc.relation.references[52] S. Venkataram and P. Venkataram, “Transaction-based QoS management in a Hybrid Wireless Superstore Environment,” I.J. Comput. Netw. Inf. Secur., vol. 3, no. March, pp. 1–11, 2011.
dc.relation.references[53] C. Egger, M. Happenhofer, J. Fabini, and P. Reichl, “BIQINI – A Flow-Based QoS Enforcement Architecture for NGN Services,” in Testbeds and Research Infrastructures, Development of Networks and Communities, 2011, pp. 653–667.
dc.relation.references[54] ETSI, ES 282 003 - V3.4.0 - Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Resource and Admission Control Sub-System (RACS): Functional Architecture, vol. 0. 2009, pp. 1–181.
dc.relation.references[55] A. Bellabas and A. K. Najah, “Convergent IPTV Services over IP Multimedia Subsystem,” in Wireless Personal Multimedia Communications (WPMC), 2011 14th International Symposium on, 2011, pp. 1–5.
dc.relation.references[56] M. Samie, H. Yeganeh, and M. Shakiba, “A Proposed Model for QoS Provisioning in IMS-Based IPTV Subsystem,” in 2009 Fourth International Conference on Systems and Networks Communications, Sep. 2009, pp. 113–118, doi: 10.1109/ICSNC.2009.102.
dc.relation.references[57] 3GPP, 3GPP TS 23.203 Policy and charging control architecture (Release 14), vol. 0. 2015, pp. 0–245.
dc.relation.references[58] T. Grgic, N. Boskovic, and M. Matijasevic, “QoS-enabled IPv6 Emulation Environment Based on the Open IMS Core,” in Software, Telecommunications and Computer Networks (SoftCOM), 2011 19th International Conference on, 2011, pp. 1–5.
dc.relation.references[59] O. Magnus, S. Shabnam, R. Stefan, F. Lars, and C. Mulligan, SAE and the Evolved Packet Core: Driving the Mobile Broadband Revolution, 1st ed. Academic Press, 2009.
dc.relation.references[60] 3GPP, 3GPP TS 23.107 Quality of Service (QoS) concept and architecture (Release 13), vol. 0. 2015, pp. 0–42.
dc.relation.references[61] 3GPP, 3GPP TS 23.207 End-to-end Quality of Service (QoS) concept and architecture (Release 13), vol. 0. 2015, pp. 0–39.
dc.relation.references[62] T. Grgic and M. Matijasevic, “Online charging in IMS for multimedia services with negotiable QoS requirements based on service agreements,” Int. J. Intell. Inf. Database Syst., vol. 4, no. 6, pp. 656–672, 2010, doi: 10.1504/IJIIDS.2010.036899.
dc.relation.references[63] L. Gupta, “QoS in interconnection of next generation networks,” Proc. - 5th Int. Conf. Comput. Intell. Commun. Networks, CICN 2013, no. July, pp. 91–96, 2013, doi: 10.1109/CICN.2013.29.
dc.relation.references[64] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead,” Comput. Networks, vol. 182, no. December, pp. 1–32, 2020, doi: 10.1016/j.comnet.2020.107516.
dc.relation.references[65] VMWare, “Virtualización,” Virtualización. https://www.vmware.com/co/solutions/virtualization.html#:~:text=Tipos de virtualización,-Virtualización de servidores&text=La virtualización de servidores permite,eficiencia del entorno de TI (accessed Feb. 28, 2021).
dc.relation.references[66] Red Hat, “¿Qué es un hipervisor?,” Virtualización. https://www.redhat.com/es/topics/virtualization/what-is-a-hypervisor (accessed Feb. 28, 2021).
dc.relation.references[67] Microsoft, “Introduction to Hyper-V on Windows 10,” The home for Microsoft documentation and learning for developers and technology professionals, 2018. https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/ (accessed Mar. 03, 2021).
dc.relation.references[68] VMWare, “VMware Workstation 16 Pro,” VMWare, 2013. https://www.vmware.com/co/products/workstation-pro/workstation-pro-evaluation.html (accessed Mar. 03, 2021).
dc.relation.references[69] Oracle, “VirtualBox,” VirtualBox, 2007. https://www.virtualbox.org/ (accessed Mar. 03, 2021).
dc.relation.references[70] F. Bellard, “What is QEMU?,” QEMU, 2013. https://www.qemu.org/ (accessed Mar. 03, 2021).
dc.relation.references[71] Open Virtualization Alliance, “Kernel Virtual Machine,” KVM, 2008. https://www.linux-kvm.org/page/Main_Page (accessed Mar. 03, 2021).
dc.relation.references[72] Cisco, “What is VIRL (Virtual Internet Routing Lab),” Learning Network, 2020. https://learningnetwork.cisco.com/s/article/what-is-virl-virtual-internet-routing-lab-x (accessed Mar. 03, 2021).
dc.relation.references[73] Huawei, “eNSP - Enterprise Network Simulation Platform,” Asistencia de servicio empresarial - Huawei, 2018. https://support.huawei.com/enterprise/es/nce-data-communication/ensp-pid-9017384 (accessed Mar. 03, 2021).
dc.relation.references[74] GNS3 Team, “GNS3,” GNS3, 2019. https://www.gns3.com/ (accessed Mar. 03, 2021).
dc.relation.references[75] Eve-ng Ltd., “EVE - Emulated Virtual Environment,” EVE-ng, 2021. https://www.eve-ng.net/ (accessed Mar. 03, 2021).
dc.relation.references[76] PNetLabs, “PNETLab (Packet Network Emulator Tool Lab),” The PNETLab Store, 2020. https://pnetlab.com/pages/main (accessed Mar. 03, 2021).
dc.relation.references[77] The Kamailio SIP Server Project, “Kamailio,” Welcome To Kamailio – The Open Source SIP Server, 2015. https://www.kamailio.org/ (accessed Feb. 28, 2021).
dc.relation.references[78] Fraunhofer FOKUS, “Open IMS Core,” Open IMS Core’s Homepage, 2008. http://openimscore.sourceforge.net/ (accessed Feb. 28, 2021).
dc.relation.references[79] Metaswitch, “Project Clearwater,” Clearwater IMS, 2018. https://www.projectclearwater.org/.
dc.relation.references[80] VideoLAN Organization, “VLC Media Player,” Video LAN, 2021. https://www.videolan.org/vlc/index.es.html.
dc.relation.references[81] Wowza Media System, “Wowza Streaming Engine,” Wowza Streaming Engine Reliable streaming — no matter the device, scale, or network condition., 2021. https://www.wowza.com/products/streaming-engine (accessed Feb. 28, 2021).
dc.relation.references[82] Google Corp., “¿Por qué usar contenedores?,” CONTENEDORES EN GOOGLE Una mejor manera de desarrollar e implementar aplicaciones, 2020. https://cloud.google.com/containers?hl=es-419 (accessed Feb. 28, 2021).
dc.relation.references[83] Docker, “What is a Container?,” Docker, 2018. https://www.docker.com/resources/what-container (accessed Mar. 03, 2021).
dc.relation.references[84] Cloud Native Computing Foundation, “Cloud Native Computing Foundation becomes home to Pod-Native container engine project rkt,” Cloud Native Computing Foundation, 2017. https://www.cncf.io/announcements/2017/03/29/cloud-native-computing-foundation-becomes-home-pod-native-container-engine-project-rkt/ (accessed Mar. 03, 2021).
dc.relation.references[85] Apache Foundation, “What is Mesos? A distributed systems kernel,” Apache Mesos, 2013. http://mesos.apache.org/.
dc.relation.references[86] QXIP Team, “HOMER,” 100% Open-Source VoIP & RTC Capture, Troubleshooting & Monitoring, 2020. https://github.com/sipcapture/homer (accessed Mar. 03, 2021).
dc.relation.references[87] M. Vít, “VoIP Monitor,” VoIP Monitor, 2021. https://www.voipmonitor.org/ (accessed Mar. 03, 2021).
dc.relation.references[88] S. Ltd., “Zoiper,” Zoiper, 2020. https://www.zoiper.com/ (accessed Mar. 03, 2021).
dc.relation.references[89] Counterpath, “Bria Solo,” Counterpath, 2020. https://www.counterpath.com/ (accessed Mar. 03, 2021).
dc.relation.references[90] Doubango, “Boghe IMS client,” boghe, 2015. https://code.google.com/archive/p/boghe/ (accessed Mar. 03, 2021).
dc.relation.references[91] Doubango, “IMSDroid,” imsdroid, 2015. https://code.google.com/archive/p/imsdroid/ (accessed Mar. 03, 2021).
dc.relation.references[92] T. W. Team, “Wireshark,” About Wireshark, 2012. https://www.wireshark.org/ (accessed Mar. 13, 2021).
dc.relation.references[93] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, “iPerf,” iPerf - The ultimate speed test tool for TCP, UDP and SCTP, 2014. https://iperf.fr/ (accessed Mar. 13, 2021).
dc.relation.references[94] X. Marichal, “Curso de Redes IP Backhaul,” Telecapp, 2020. https://telecapp.com/ (accessed May 19, 2020).
dc.relation.references[95] X. Marichal, “Curso Profesional de MPLS QoS,” Telecapp, 2020. https://telecapp.com/ (accessed Apr. 30, 2020).
dc.relation.references[96] X. Marichal, “Curso Profesional de IP RAN,” Telecapp, 2020. https://telecapp.com/ (accessed Jan. 08, 2021).
dc.relation.references[97] X. Marichal, “Curso de Ingeniería de Tráfico en Redes IP/MPLS,” Telecapp, 2020. https://telecapp.com/ (accessed May 20, 2020).
dc.relation.references[98] B. Edgeworth, R. Rios, J. Gooley, and D. Hucaby, CCNP and CCIE Enterprise Core ENCOR 350-401 Official Cert Guide , no. 31574. 2019.
dc.relation.references[99] R. Molenaar, “BGP Route Reflector,” Network lessons, 2020. https://networklessons.com/bgp/bgp-route-reflector (accessed Jan. 25, 2012).
dc.relation.references[100] Juniper Networks Inc., “Descripción de las operaciones de etiqueta de MPLS en los conmutadores de la serie EX,” Manual de usuario de MPLS aplicaciones, 2020. .
dc.relation.references[101] K. Barker, “MPLS Fundamentals,” CBT Nuggets, 2015. https://www.cbtnuggets.com/ (accessed Jan. 10, 2021).
dc.relation.references[102] N. Leymann, B. Decraene, C. Filsfils, M. Konstantynowicz, and D. Steinberg, “Seamless MPLS Architecture,” IETF, 2015. https://tools.ietf.org/html/draft-ietf-mpls-seamless-mpls-07 (accessed Jan. 29, 2021).
dc.relation.references[103] Juniper Networks, “Building multi-generation scalable networks with end-to-end MPLS,” 2012. [Online]. Available: https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000452-en.pdf.
dc.relation.references[104] M. S. Siddiqui, R. A. Shaikh, and C. S. Hong, “QoS Control in Service Delivery in IMS,” in Advanced Communication Technology, 2009. ICACT 2009. 11th International Conference on, 2009, pp. 157–160.
dc.relation.references[105] M. Bellafkih, D. Ranc, and R. Mohammed, “INQA : Management project of QoS in an architecture IMS,” in Multimedia Computing and Systems, 2009. ICMCS ’09. International Conference on, 2009, pp. 1–6.
dc.relation.references[106] N. Russo, “Designing QoS for IP and MPLS Networks,” Pluralsight, 2020. https://www.pluralsight.com/ (accessed Jan. 31, 2021).
dc.relation.references[107] N. Russo, “Implementing and Validating QoS Designs,” Pluralsight, 2020. https://www.pluralsight.com/ (accessed Jan. 31, 2021).
dc.relation.references[108] R. Molenaar, “Introduction to QoS,” Quality of Service, 2017. https://networklessons.com/quality-of-service/introduction-qos-quality-service (accessed Feb. 25, 2021).
dc.relation.references[109] 3GPP, “3GPP TS 23.203.” 2019, [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=810.
dc.relation.references[110] 3GPP, “3GPP TS 23.501.” 3GPP Portal, 2020, [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144.
dc.relation.references[111] J. C. Cuéllar Quiñonez, Caracterización de Mecanismos de QoS utilizados en Redes NGN: Simulación e Implementación. LAP Lambert Acad. Publ., 2011.
dc.relation.references[112] Cisco, “Quality of Service (QoS) Management for SGSN,” Cisco, 2016. http://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/20/SGSN/b_20_SGSN_Admin/b_20_SGSN_Admin_chapter_011011.pdf.
dc.relation.references[113] F. J. Ramos de Santiago, “Análisis e implementación de un sistema real de medida de ancho de banda,” Universidad Autónoma de Madrid, 2010.
dc.relation.references[114] University of Zilina, “NGN/IMS,” Nerwork Information Library, 2012. https://nil.uniza.sk/category/ngn-ims/.
dc.relation.references[115] Calix, “How to use iPerf for bandwidth/throughput tests,” Calix Community - Knowl. Artic., 2017, [Online]. Available: https://community.calix.com/s/article/How-to-use-iPerf-for-bandwidththroughput-tests-1.
dc.relation.references[116] Code World, “Herramienta de prueba de rendimiento de red Iperf3,” www.codetd.com, 2020. www.codetd.com (accessed Mar. 13, 2021).
dc.relation.references[117] X. Xiao, Technical, Commercial and Regulatory Challenges of QoS. Elsevier, 2008.
dc.relation.references[118] Alcaldía de Bogotá, “Régimen legal de Bogotá,” Compilación de Normatividad, Doctrina y Jurisprudencia, 2021. https://www.alcaldiabogota.gov.co/sisjur/listados/tematica2.jsp?subtema=28465 (accessed Apr. 12, 2021).
dc.relation.references[119] I. Telecom Infra Project, “End-to-End Quality of Service Recommendations for Mobile Networks,” 2021. [Online]. Available: https://telecominfraproject.com/naas/.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBGP
dc.subject.proposalDiffServ
dc.subject.proposalIMS
dc.subject.proposalInterconexión
dc.subject.proposalMPLS
dc.subject.proposalQoS
dc.subject.proposalVPN
dc.subject.spinesAnálisis de redes
dc.subject.spinesNetwork analysis
dc.subject.spinesRedes de información
dc.subject.spinesInformation networks
dc.title.translatedTechnical guideline for the provision of end-to-end Quality of Service (QoS) in interconnection under IP Multimedia Subsystem (IMS)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito