Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorFontanilla Duque, Martha Raquel
dc.contributor.advisorGualtero Escobar, Diego Fernando
dc.contributor.authorTorres Amaya, Maria Alejandra
dc.date.accessioned2021-10-12T13:59:44Z
dc.date.available2021-10-12T13:59:44Z
dc.date.issued2020-07-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80508
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractEn este trabajo se optimizó cultivo celular tridimensional (3D) de Células Endoteliales de Arteria Coronaria Humana (HCAEC) sobre soportes de colágeno tipo I para el estudio de la respuesta celular inducida por la presencia de Aggregatibacter actinomycetemcomitans, como modelo in vitro de enfermedad aterosclerótica. Se realizaron pruebas de caracterización fisicoquímica y la estandarización de un procedimiento que permitiera obtener soportes de colágeno tipo I sobre la cara apical completamente adheridos a las paredes internas de Insertos TranswellTM; luego sobre estos, se sembraron 5x105 HCAEC/inserto (cultivo 3D-HCAEC) con el fin de determinar la formación de monocapa y posteriormente, se infectó con A. actinomycetemcomitans a MOI 1:1, 1:10 y 1:100; se utilizaron como controles cultivos sin infección, así como con estimulación con LPS-Aa (1µg/mL), finalmente, se realizó un co-cultivo con monocitos THP-1, con el fin de evaluar procesos inflamatorios -migración y adhesión- al cultivo 3D-HCAEC; se realizaron ensayos por citometría de flujo con el fin de detectar las citocinas proinflamatorias, y la expresión de TGF-β1 mediante ELISA. La serie de experimentos se realizó por triplicado y la significancia para cada grupo fue tomada con p<0.05. Los resultados obtenidos permitieron determinar un cultivo 3D-HCAEC por 7 días, en donde se observó viabilidad y formación de monocapa continua sobre el soporte de colágeno elaborado, además se demostró la función de barrera endotelial. Los cultivos 3D-HCAEC infectados con A. actinomycetemcomitans a los diferentes MOI utilizados indujeron diferencias significativas con respecto al control en la adhesión y migración de monocitos THP-1. De igual manera, se mostró aumentos significativos respecto a los controles en la expresión los factores proinflamatorios: MCP-1, IL-8, IL-6 y TGF-β1. Estos resultados in vitro indican el potencial de A. actinomycetemcomitans en inducir una respuesta inflamatoria pro-aterosclerótica mediante un mecanismo de adhesión, migración de monocitos y disfunción endotelial. (Texto tomado de la fuente).
dc.description.abstractThe role of periodontopathogens in inflammatory endothelial dysfunction is not known. This study characterizes a three-dimensional model with human coronary artery endothelial cells on three-dimensional (HCAEC-3D) type I collagen scaffolds to evaluate whether infection with Aggregatibacter actinomycetemcomitans induces a proinflammatory response associated with atherosclerosis. The HCAEC-3D culture was physicochemically characterized with regard to biocompatibility and barrier function. Then, the culture was infected with A. actinomycetemcomitans strain ATCC 29522 at multiplicities of infection (MOIs) of 1:1, 1:10, and 1:100. Cultures without infection and stimulated with A. actinomycetemcomitans lipopolysaccharide were used as controls. The secretion of soluble factors (IL-6, IL-1β, MCP-1, RANTES, MIP-1, IL-8, IL-1α, and TNF-α) was evaluated via flow cytometry; TGF-β1 was evaluated via enzyme-linked immunosorbent assay (ELISA). The adhesion and migration of fluorescent human THP-1 monocytes was evaluated. IL-8, MCP-1, and IL-6 secretion increased in a dose-dependent manner with A. actinomycetemcomitans infection and was significantly greater than that under control treatment. The concentration of TGF-β1 was significantly higher at MOI 1:100 than in controls. Treatment of the 3D cultures with A. actinomycetemcomitans at different MOIs induced significant differences in the adhesion of monocytes to the endothelium compared to the control without infection. Lastly, conditioned media from 3D cultures treated with A. actinomycetemcomitans induced monocyte migration. The effects of IL-8, MCP-1, IL-6, and TGF-β1 on the endothelium indicate the ability of A. actinomycetemcomitans to induce an inflammatory response through a mechanism of monocyte adhesion and migration and endothelial dysfunction.
dc.format.extent76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleOptimización de un cultivo celular tridimensional para evaluar la respuesta inducida por Aggregatibacter actinomycetemcomitans en células endoteliales
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupGrupo de Trabajo en Ingeniería de Tejidos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaBiotecnología en salud
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Biotecnología (IBUN)
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdulkareem, A. A., Shelton, R. M., Landini, G., Cooper, P. R., & Milward, M. R. (2018). Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial‐mesenchymal transition. Journal of periodontal research, 53(4), 565-574.
dc.relation.referencesAbusleme, L., Dupuy, A. K., Dutzan, N., Silva, N., Burleson, J. A., Strausbaugh, L. D., ... & Diaz, P. I. (2013). The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME journal, 7(5), 1016.
dc.relation.referencesAlekseeva, T., Unger, R. E., Brochhausen, C., Brown, R. A., & Kirkpatrick, J. C. (2014). Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Engineering Part A, 20(19-20), 2656-2665.
dc.relation.referencesAl-Soudi, A., Kaaij, M. H., & Tas, S. W. (2017). Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmunity reviews, 16(9), 951-962.
dc.relation.referencesAmbrosio, N., Marín, M. J., Laguna, E., Herrera, D., Sanz, M., & Figuero, E. (2019). Detection and quantification of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in bacteremia induced by interdental brushing in periodontally healthy and periodontitis patients. Archives of Oral Biology, 98, 213–219. https://doi-org.ezproxy.javeriana.edu.co/10.1016/j.archoralbio.2018.11.025
dc.relation.referencesAntoni, D., Burckel, H., Josset, E., & Noel, G. (2015). Three-dimensional cell culture: a breakthrough in vivo. International journal of molecular sciences, 16(3), 5517-5527.
dc.relation.referencesArdila Medina, C. M., Alzate Vega, J., & Guzmán Zuluaga, I. C. (2010). Asociación de Aggregatibacter actinomycetemcomitans y microorganismos del complejo rojo con parámetros clínicos de pacientes con periodontitis crónica. Revista Archivo Médico de Camagüey, 14(3), 0-0.
dc.relation.referencesAtarbashi-Moghadam, F., Havaei, S. R., Havaei, S. A., Hosseini, N. S., Behdadmehr, G., & Atarbashi-Moghadam, S. (2018). Periopathogens in atherosclerotic plaques of patients with both cardiovascular disease and chronic periodontitis. ARYA atherosclerosis, 14(2), 53.
dc.relation.referencesBalashova NV, Crosby JA, Al Ghofaily L, Kachlany SC. La leucotoxina confiere actividad betahemolítica a Actinobacillus actinomycetemcomitans . Infect Immun. 2006; 74 : 2015– 21.
dc.relation.referencesBale, B. F., Doneen, A. L., & Vigerust, D. J. (2017). High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgraduate Medical Journal, 93(1098), 215–220. doi:10.1136/postgradmedj-2016-134279
dc.relation.referencesBarbosa-Ribeiro, M., Arruda-Vasconcelos, R., de-Jesus-Soares, A., Zaia, A. A., Ferraz, C. C. R., de Almeida, J. F. A., & Gomes, B. P. (2019). Effectiveness of calcium hydroxidebased intracanal medication on infectious/inflammatory contents in teeth with posttreatment apical periodontitis. Clinical Oral Investigations, 23(6), 2759-2766.
dc.relation.referencesBenakanakere, M., & Kinane, D. F. (2012). Innate cellular responses to the periodontal biofilm. In Periodontal Disease (Vol. 15, pp. 41-55). Karger Publishers.
dc.relation.referencesBrown, R. A., Wiseman, M., Chuo, C. B., Cheema, U., & Nazhat, S. N. (2005). Ultrarapid engineering of biomimetic materials and tissues: Fabrication of nano‐and microstructures by plastic compression. Advanced Functional Materials, 15(11), 1762-1770.
dc.relation.referencesBourgeois, D., Inquimbert, C., Ottolenghi, L., & Carrouel, F. (2019). Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease-is there cause for consideration? Microorganisms, 7(10), 424. doi:10.3390/microorganisms7100424.
dc.relation.referencesBustos, R. H., Suesca, E., Millán, D., González, J. M., & Fontanilla, M. R. (2014). Real-time quantification of proteins secreted by artificial connective tissue made from uni-or multidirectional collagen I scaffolds and oral mucosa fibroblasts. Analytical chemistry, 86(5), 2421-2428.
dc.relation.referencesChan, E. C., Kuo, S. M., Kong, A. M., Morrison, W. A., Dusting, G. J., Mitchell, G. M., ... & Liu, G. S. (2016). Three-dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PloS one, 11(2), e0149799.
dc.relation.referencesChattopadhyay, S., & Raines, R. T. (2014). Review collagen‐based biomaterials for wound healing. Biopolymers, 101(8), 821-833.
dc.relation.referencesChen, P. Y., Qin, L., Baeyens, N., Li, G., Afolabi, T., Budatha, M., ... & Simons, M. (2015). Endothelial-to-mesenchymal transition drives atherosclerosis progression. The Journal of clinical investigation, 125(12), 4514-4528.
dc.relation.referencesChistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 100(1), 220-235.
dc.relation.referencesCui, H., Zhu, W., Huang, Y., Liu, C., Yu, Z. X., Nowicki, M., ... & Zhou, Y. (2019). In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication, 12(1), 015004.
dc.relation.referencesDamek-Poprawa, M., Haris, M., Volgina, A., Korostoff, J., & DiRienzo, J. M. (2011). Cytolethal distending toxin damages the oral epithelium of gingival explants. Journal of dental research, 90(7), 874-879.
dc.relation.referencesDavalos, D., & Akassoglou, K. (2012). Fibrinogen as a key regulator of inflammation in disease. Seminars in Immunopathology, 34(1), 43–62. doi:10.1007/s00281-011-0290-8
dc.relation.referencesDelNero, P., Lane, M., Verbridge, S. S., Kwee, B., Kermani, P., Hempstead, B., ... & Fischbach, C. (2015). 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials, 55, 110-118.
dc.relation.referencesDíaz Zúñiga, J., Yáñez Figueroa, J., Melgar Rodríguez, S., Álvarez Rivas, C., Rojas Lagos, C., & Vernal Astudillo, R. (2012). Virulencia y variabilidad de Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans y su asociación a la periodontitis. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 5(1), 40-45
dc.relation.referencesDietmann, A., Millonig, A., Combes, V., Couraud, P. O., Kachlany, S. C., & Grau, G. E. (2013). Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells. Microbial Pathogenesis, 61-62, 43–50. doi:10.1016/j.micpath.2013.05.001.
dc.relation.referencesDong, C., & Lv, Y. (2016). Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers, 8(2), 42.
dc.relation.referencesEchazú, M. I. A., Tuttolomondo, M. V., Foglia, M. L., Mebert, A. M., Alvarez, G. S., & Desimone, M. F. (2016). Advances in collagen, chitosan and silica biomaterials for oral tissue regeneration: from basics to clinical trials. Journal of Materials Chemistry B, 4(43), 6913-6929.
dc.relation.referencesEcheverría C, Montorfano I, Sarmiento D, et al. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med. 2013;17(6):800–814. doi:10.1111/jcmm.12066.
dc.relation.referencesEcheverría C, Montorfano I, Tapia P, Riedel C, Cabello-Verrugio C, Simon F. Endotoxininduced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2 [published correction appears in Infect Immun. 2016 Feb;84(2):609-10]
dc.relation.referencesEl Kholy, K., Genco, R. J., & Van Dyke, T. E. (2015). Oral infections and cardiovascular disease. Trends in Endocrinology & Metabolism, 26(6), 315-321.
dc.relation.referencesEvrard SM, Lecce L, Michelis KC, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016; 7:11853. Published 2016 Jun 24. doi:10.1038/ncomms11853.
dc.relation.referencesEspinosa, L., Sosnik, A., & Fontanilla, M. R. (2010). Development and preclinical evaluation of acellular collagen scaffolding and autologous artificial connective tissue in the regeneration of oral mucosa wounds. Tissue Engineering Part A, 16(5), 1667-1679.
dc.relation.referencesEttinger, G., MacDonald, K., Reid, G., & Burton, J. P. (2014). The influence of the human microbiome and probiotics on cardiovascular health. Gut microbes, 5(6), 719-728.
dc.relation.referencesFélétou, M. (2011, June). The endothelium, Part I: Multiple functions of the endothelial cells-- focus on endothelium-derived vasoactive mediators. In Colloquium Series on Integrated Systems Physiology: From Molecule to Function (Vol. 3, No. 4, pp. 1-306). Morgan & Claypool Life Sciences.
dc.relation.referencesFontanilla, M. R., & Espinosa, L. G. (2012). In vitro and in vivo assessment of oral autologous artificial connective tissue characteristics that influence its performance as a graft. Tissue Engineering Part A, 18(17-18), 1857-1866
dc.relation.referencesFriedl, P., & Wolf, K. (2010). Plasticity of cell migration: a multiscale tuning model. Journal of Cell Biology, 188(1), 11-19
dc.relation.referencesGaripcan, B., Maenz, S., Pham, T., Settmacher, U., Jandt, K. D., Zanow, J., & Bossert, J. (2011). Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries–a preliminary study. Advanced engineering materials, 13(1‐2), B54-B57
dc.relation.referencesGelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—structure, function, and biosynthesis. Advanced drug delivery reviews, 55(12), 1531-1546
dc.relation.referencesGeorge, E. L., Baldwin, H. S., & Hynes, R. O. (1997). Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood, 90(8), 3073-3081
dc.relation.referencesGholizadeh, P., Pormohammad, A., Eslami, H., Shokouhi, B., Fakhrzadeh, V., & Kafil, H. S. (2017). Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microbial pathogenesis, 113, 303-311
dc.relation.referencesGimbrone Jr, M. A., & García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation research, 118(4), 620-636
dc.relation.referencesGualtero, D. F., Viafara‐Garcia, S. M., Morantes, S. J., Buitrago, D. M., Gonzalez, O. A., & Lafaurie, G. I. (2017). Rosuvastatin inhibits interleukin (IL)‐8 and IL‐6 production in human coronary artery endothelial cells stimulated with Aggregatibacter actinomycetemcomitans serotype b. Journal of periodontology, 88(2), 225-235
dc.relation.referencesGualtero Escobar, Diego Fernando (2018). Desarrollo de un modelo celular endotelial tridimensional para la evaluación del efecto de lipopolisacáridos de Porphyromonas gingivalis en la expresión de algunos marcadores inflamatorios. (Tesis Doctorado en Biotecnología). Instituto de Biotecnología. Universidad Nacional de Colombia. Bogotá
dc.relation.referencesGualtero, D. F., Lafaurie, G. I., & Fontanilla, M. R. (2018). Two‐dimensional and three‐ dimensional models for studying atherosclerosis pathogenesis induced by periodontopathogenic microorganisms. Molecular oral microbiology, 33(1), 29-37
dc.relation.referencesGualtero, D. F., Lafaurie, G. I., & Fontanilla, M. R. (2019). Differential responses of endothelial cells on three‐dimensional scaffolds to lipopolysaccharides from periodontopathogens. Molecular Oral Microbiology, 34(5), 183-193
dc.relation.referencesHaffajee, A. D., Socransky, S. S., Patel, M. R., & Song, X. (2008). Microbial complexes in supragingival plaque. Oral microbiology and immunology, 23(3), 196-205.
dc.relation.referencesHajishengallis, G., & Lamont, R. J. (2014). Breaking bad: Manipulation of the host response by Porphyromonas gingivalis. European journal of immunology, 44(2), 328-338
dc.relation.referencesHajishengallis, G. (2015). Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology, 15(1), 30–44. doi:10.1038/nri3785.
dc.relation.referencesHajishengallis, G., & Moutsopoulos, N. M. (2016). Role of bacteria in leukocyte adhesion deficiency-associated periodontitis. Microbial pathogenesis, 94, 21-26
dc.relation.referencesHashizume, T., Kurita-Ochiai, T., & Yamamoto, M. (2011). Porphyromonas gingivalis stimulates monocyte adhesion to human umbilical vein endothelial cells. FEMS Immunology & Medical Microbiology, 62(1), 57-65.
dc.relation.referencesHenderson B, Ward JM, Ready D. Aggregatibacter ( Actinobacillus ) actinomycetemcomitans : ¿Un periodontopatógeno triple A *? Periodontol 2000. 2010; 54 : 78-105.
dc.relation.referencesHess, S., Methe, H., Kim, J. O., & Edelman, E. R. (2009). NF-kB Activity in Endothelial Cells Is Modulated by Cell Substratum Interactions and Influences Chemokine-Mediated Adhesion of Natural Killer Cells. Cell transplantation, 18(3), 261-273
dc.relation.referencesHerbert, B. A., Novince, C. M., & Kirkwood, K. L. (2016). Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Molecular oral microbiology, 31(3), 207-227
dc.relation.referencesHo, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A y col. Toxina de distensión citoletal en aislados de Aggregatibacter actinomycetemcomitans de adolescentes de Ghana y asociación con el serotipo y la progresión de la enfermedad. Más uno. 2013; 8 : e65781. in the characterization of scaffolds. Biomaterials, 27(8), 1362-1376.
dc.relation.referencesIm, S. I., Heo, J., Kim, B. J., Cho, K. I., Kim, H. S., Heo, J. H., & Hwang, J. Y. (2018). Impact of periodontitis as representative of chronic inflammation on long-term clinical outcomes in patients with atrial fibrillation. Open heart, 5(1), e000708.
dc.relation.referencesImai, H., Fujita, T., Kajiya, M., Ouhara, K., Yoshimoto, T., Matsuda, S., ... & Kurihara, H. (2016). Mobilization of TLR4 into lipid rafts by Aggregatibacter Actinomycetemcomitans in gingival epithelial cells. Cellular Physiology and Biochemistry, 39(5), 1777-1786.
dc.relation.referencesIndolfi, L., Baker, A. B., & Edelman, E. R. (2012). The role of scaffold microarchitecture in engineering endothelial cell immunomodulation. Biomaterials, 33(29), 7019-7027
dc.relation.referencesIslam, K., Timraz, S. B. H., Nasser, R., Gater, D. L., Pearson, Y. E., & Christoforou, N. (2016). Co-culture methods used to model atherosclerosis in vitro using endothelial, smooth muscle and monocyte cells. SM J Biomed Eng, 2(1), 1008
dc.relation.referencesJohansson A, Claesson R, Hänström L, Sandström G, Kalfas S. Desgranulación de leucocitos polimorfonucleares inducida por leucotoxina de Actinobacillus actinomycetemcomitans . J Periodontal Res. 2000; 35 : 85–92
dc.relation.referencesKallio, K. E., Hyvärinen, K., Kovanen, P. T., Jauhiainen, M., & Pussinen, P. J. (2013). Very low-density lipoproteins derived from periodontitis patients facilitate macrophage activation via lipopolysaccharide function. Metabolism, 62(5), 661-668.
dc.relation.referencesKebschull, Á., Demmer, R. T., & Papapanou, P. N. (2010). “Gum bug leave my heart alone!”— epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. Journal of Dental Research, 89(9), 879-902.
dc.relation.referencesKelk, P., Claesson, R., Chen, C., Sjöstedt, A., & Johansson, A. (2008). IL-1β secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. International Journal of Medical Microbiology, 298(5-6), 529-541
dc.relation.referencesKelk, P., Abd, H., Claesson, R., Sandström, G., Sjöstedt, A., & Johansson, A. (2011). Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell death & disease, 2(3), e126-e126.
dc.relation.referencesKennedy, S., & Touyz, R. M. (2019). Anatomy and Pharmacology of Vessels. In Textbook of Vascular Medicine (pp. 3-11). Springer, Cham
dc.relation.referencesKing EO, Tatum HW. Actinobacillus actinomycetemcomitans and Hemophilus aphrophilus. J Infect Dis. 1962;111:85–94
dc.relation.referencesKisling, A., Lust, R. M., & Katwa, L. C. (2019). What is the role of peptide fragments of collagen I and IV in health and disease? Life sciences, 228, 30-34.
dc.relation.referencesKonkel, J. E., O'Boyle, C., & Krishnan, S. (2019). Distal consequences of oral inflammation. Frontiers in Immunology, 10, 1403. doi:10.3389/fimmu.2019.01403.
dc.relation.referencesKovacic, J. C., Mercader, N., Torres, M., Boehm, M., & Fuster, V. (2012). Epithelial-tomesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation, 125(14), 1795-1808.
dc.relation.referencesKozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A., & Progulske-Fox, A. (2005). Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), e17–e18. doi:10.1161/01.ATV.0000155018.67835.1a
dc.relation.referencesLee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, 14(1), 61-86.
dc.relation.referencesLibby, P., Lichtman, A. H., & Hansson, G. K. (2013). Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity, 38(6), 1092-1104
dc.relation.referencesLiu, B., Faller, L. L., Klitgord, N., Mazumdar, V., Ghodsi, M., Sommer, D. D., ... & Stine, O. C. (2012). Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PloS One, 7(6), e37919
dc.relation.referencesMahler, G. J., Farrar, E. J., & Butcher, J. T. (2013). Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arteriosclerosis, thrombosis, and vascular biology, 33(1), 121-130
dc.relation.referencesManon‐Jensen, T., Kjeld, N. G., & Karsdal, M. A. (2016). Collagen‐mediated hemostasis. Journal of Thrombosis and Haemostasis, 14(3), 438-448
dc.relation.referencesMartins‐Green, M., Petreaca, M., & Yao, M. (2008). An assay system for in vitro detection of permeability in human “endothelium”. Methods in enzymology, 443, 137-15.
dc.relation.referencesMcCoy, M. G., Seo, B. R., Choi, S., & Fischbach, C. (2016). Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta biomaterialia, 44, 200-208
dc.relation.referencesMesa, F., Magan-Fernandez, A., Castellino, G., Chianetta, R., Nibali, L., & Rizzo, M. (2019). Periodontitis and mechanisms of cardiometabolic risk: novel insights and future perspectives. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(2), 476-484.
dc.relation.referencesMethe, H., & Edelman, E. R. (2006). Tissue engineering of endothelial cells and the immune response. In Transplantation proceedings (Vol. 38, No. 10, pp. 3293-3299). Elsevier
dc.relation.referencesMethe H, Hess S, & Edelman ER. (2007). Endothelial Immunogenicity-A Matter of Matrix Microarchitecture. Journal of Vascular Research, 43(6), 535-536.
dc.relation.referencesMethe, H., Hess, S., & Edelman, E. R. (2008). The effect of three-dimensional matrixembedding of endothelial cells on the humoral and cellular immune response. In Seminars in immunology (Vol. 20, No. 2, pp. 117-122). Academic Press
dc.relation.referencesMillán, D., Chiriboga, C., Patarroyo, M. A., & Fontanilla, M. R. (2013). Enterococcus faecalis internalization in human umbilical vein endothelial cells (HUVEC). Microbial Pathogenesis, 57, 62-69.
dc.relation.referencesMonzón, J., Acuña, M., Caramello, C., & Sesín, J. (2017). Periodontitis como factor de riesgo de enfermedades cardiovasculares. Revista de la Facultad de Odontología, 10(1), 32-37
dc.relation.referencesMoutsopoulos, N. M., & Konkel, J. E. (2018). Tissue-specific immunity at the oral mucosal barrier. Trends in Immunology, 39(4), 276-287.
dc.relation.referencesMozos, I., & Stoian, D. (2019). Oral Health and Cardiovascular Disorders. In Crosstalk in Biological Processes. IntechOpen. DOI: 10.5772/intechopen.85708.
dc.relation.referencesMurikipudi, S., Methe, H., & Edelman, E. R. (2013). The effect of substrate modulus on the growth and function of matrix-embedded endothelial cells. Biomaterials, 34(3), 677- 684
dc.relation.referencesMurray, J. L., Connell, J. L., Stacy, A., Turner, K. H., & Whiteley, M. (2014). Mechanisms of synergy in polymicrobial infections. Journal of microbiology, 52(3), 188-199.
dc.relation.referencesNakamura, N., Yoshida, M., Umeda, M., Huang, Y., Kitajima, S., Inoue, Y., ... & Iwai, T. (2008). Extended exposure of lipopolysaccharide fraction from Porphyromonas gingivalis facilitates mononuclear cell adhesion to vascular endothelium via Toll-like receptor-2 dependent mechanism. Atherosclerosis, 196(1), 59-67.
dc.relation.referencesNakano, K., Inaba, H., Nomura, R., Nemoto, H., Tamura, K., Miyamoto, E., ... & Ooshima, T. (2007). Detection and serotype distribution of Actinobacillus actinomycetemcomitans in cardiovascular specimens from Japanese patients. Oral microbiology and immunology, 22(2), 136-139
dc.relation.referencesNg, H. M., Kin, L. X., Dashper, S. G., Slakeski, N., Butler, C. A., & Reynolds, E. C. (2016). Bacterial interactions in pathogenic subgingival plaque. Microbial Pathogenesis, 94, 60-69
dc.relation.referencesNiu, J., & Kolattukudy, P. E. (2009). Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clinical science, 117(3), 95-109
dc.relation.referencesO'brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials today, 14(3), 88-95.
dc.relation.referencesOffeddu, G. S., Ashworth, J. C., Cameron, R. E., & Oyen, M. L. (2015). Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. Journal of the mechanical behavior of biomedical materials, 42, 19-25.
dc.relation.referencesOffeddu, G. S., Ashworth, J. C., Cameron, R. E., & Oyen, M. L. (2016). Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta biomaterialia, 41, 193-203.
dc.relation.referencesOhtani, M., & Nishimura, T. (2020). Sulfur‐containing amino acids in aged garlic extract inhibit inflammation in human gingival epithelial cells by suppressing intercellular adhesion molecule‐1 expression and IL‐6 secretion. Biomedical Reports, 12(3), 99-108.
dc.relation.referencesPan, W., Wang, Q., & Chen, Q. (2019). The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science, 11(3), 1-13
dc.relation.referencesPanduwawala, C. P., Zhan, X., Dissanayaka, W. L., Samaranayake, L. P., Jin, L., & Zhang, C. (2017). In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three‐dimensional cell sheet constructs. Journal of Periodontal Research, 52(3), 408-418.
dc.relation.referencesPanduwawala, C. P., Zhan, X., Dissanayaka, W. L., Samaranayake, L. P., Jin, L., & Zhang, C. (2017). In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three‐dimensional cell sheet constructs. Journal of Periodontal Research, 52(3), 408-418.
dc.relation.referencesPanduwawala, C. P., Zhan, X., Dissanayaka, W. L., Samaranayake, L. P., Jin, L., & Zhang, C. (2017). In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three‐dimensional cell sheet constructs. Journal of Periodontal Research, 52(3), 408-418.
dc.relation.referencesRajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., & Nishigaki, I. (2013). The vascular endothelium and human diseases. International journal of biological sciences, 9(10), 1057.
dc.relation.referencesRocco, C. J., Bakaletz, L. O., & Goodman, S. D. (2018). Targeting the HUβ protein prevents Porphyromonas gingivalis from entering into preexisting biofilms. Journal of bacteriology, 200(11), e00790-17
dc.relation.referencesRocco, C. J., Bakaletz, L. O., & Goodman, S. D. (2018). Targeting the HUβ protein prevents Porphyromonas gingivalis from entering into preexisting biofilms. Journal of bacteriology, 200(11), e00790-17
dc.relation.referencesSaxton, A., & Manna, B. (2019). Anatomy, Thorax, Heart Right Coronary Arteries. In StatPearls [Internet]. StatPearls Publishing. Sitio Web: https://www.ncbi.nlm.nih.gov/books/NBK537357/
dc.relation.referencesSaxton, A., & Manna, B. (2019). Anatomy, Thorax, Heart Right Coronary Arteries. In StatPearls [Internet]. StatPearls Publishing. Sitio Web: https://www.ncbi.nlm.nih.gov/books/NBK537357/
dc.relation.referencesSchenkein HA, Barbour SE, Berry CR, Kipps B, Tew JG. Invasion of human vascular endothelial cells by Actinobacillus actinomycetemcomitans via the receptor for platelet-activating factor. Infect Immun. 2000 Sep;68(9):5416-9.
dc.relation.referencesShamir, E. R., & Ewald, A. J. (2014). Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nature reviews Molecular cell biology, 15(10), 647-664
dc.relation.referencesSheehy, E. J., Cunniffe, G. M., & O'Brien, F. J. (2018). Collagen-based biomaterials for tissue regeneration and repair. In Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair (pp. 127-150).
dc.relation.referencesSkaria, T., Bachli, E., & Schoedon, G. (2017). Wnt5A/Ryk signaling critically affects barrier function in human vascular endothelial cells. Cell adhesion & migration, 11(1), 24-38
dc.relation.referencesSmith, P. C., & Martínez, C. (2018). Wound Healing in the Oral Mucosa. In Oral Mucosa in Health and Disease (pp. 77-90). Springer, Cham.
dc.relation.referencesSocransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent Jr, R. L. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 25(2), 134-144.
dc.relation.referencesSorushanova, A., Delgado, L. M., Wu, Z., Shologu, N., Kshirsagar, A., Raghunath, R., ... & Zeugolis, D. I. (2019). The collagen suprafamily: from biosynthesis to advanced biomaterial development. Advanced Materials, 31(1), 1801651
dc.relation.referencesSuesca Quintero, Edward. (2013). Optimización de la obtención de soportes de colágeno y estudio del efecto de su microestructura en el desarrollo de mucosa oral artificial. (Doctorado en Ciencias Farmacéuticas), Universidad Nacional de Colombia, Bogotá
dc.relation.referencesSuesca, E., Dias, A. M. A., Braga, M. E. M., de Sousa, H. C., & Fontanilla, M. R. (2017). Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering: C, 77, 333-341.
dc.relation.referencesSumpio, B. E., Riley, J. T., & Dardik, A. (2002). Cells in focus: endothelial cell. The international journal of biochemistry & cell biology, 34(12), 1508-1512.
dc.relation.referencesSuprith, S. S., Setty, S., Bhat, K., & Thakur, S. (2018). Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: a clinico-microbiological study. Journal of Indian Society of Periodontology, 22(3), 201.
dc.relation.referencesTorras, N., García-Díaz, M., Fernández-Majada, V., & Martínez, E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Frontiers in bioengineering and biotechnology, 6, 197.
dc.relation.referencesToyofuku, T., Inoue, Y., Kurihara, N., Kudo, T., Jibiki, M., Sugano, N., ... & Izumi, Y. (2011). Differential detection rate of periodontopathic bacteria in atherosclerosis. Surgery today, 41(10), 1395
dc.relation.referencesVega, B. A., Schober, L. T., Kim, T., Belinka, B. A., & Kachlany, S. C. (2019). Aggregatibacter actinomycetemcomitans leukotoxin (LtxA) requires death receptor fas, in addition to LFA-1, to trigger cell death in T lymphocytes. Infection and Immunity, 87(8), e00309– e00319. doi:10.1128/iai.00309-19
dc.relation.referencesViáfara-Garcia, S. M., Gualtero, D. F., Avila-Ceballos, D., & Lafaurie, G. I. (2018). Eikenella corrodens lipopolysaccharide stimulates the pro-atherosclerotic response in human coronary artery endothelial cells and monocyte adhesion. European Journal of Oral Sciences, 126(6), 476–484. doi:10.1111/eos.12580.
dc.relation.referencesWalters, B. D., & Stegemann, J. P. (2014). Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta biomaterialia, 10(4), 1488-1501.
dc.relation.referencesWebber, B., & Hoerstrup, S. P. (2014). Human bioengineered artery models for in vitro atherosclerosis research: fact or fiction?. Alternatives to Laboratory Animals, 42(3), P28-P32
dc.relation.referencesWebber, M. J., Khan, O. F., Sydlik, S. A., Tang, B. C., & Langer, R. (2015). A perspective on the clinical translation of scaffolds for tissue engineering. Annals of biomedical engineering, 43(3), 641-656
dc.relation.referencesWolf, K., Alexander, S., Schacht, V., Coussens, L. M., von Andrian, U. H., van Rheenen, J., ... & Friedl, P. (2009, October). Collagen-based cell migration models in vitro and in vivo. In Seminars in cell & developmental biology (Vol. 20, No. 8, pp. 931-941). Academic Press
dc.relation.referencesWu, Y., Xu, W., Hou, J., Liu, Y., Li, R., Liu, J., ... & Zhang, D. (2019). Porphyromonas gingivalisInduced MIF Regulates Intercellular Adhesion Molecule-1 Expression in EA. hy926 Cells and Monocyte-Endothelial Cell Adhesion Through the Receptors CD74 and CXCR4. Inflammation, 42(3), 874-883
dc.relation.referencesXu, W., Pan, Y., Xu, Q., Wu, Y., Pan, J., Hou, J., ... & Zhang, D. (2018). Porphyromonas gingivalis ATCC 33277 promotes intercellular adhesion molecule-1 expression in endothelial cells and monocyte-endothelial cell adhesion through macrophage migration inhibitory factor. BMC microbiology, 18(1), 16.
dc.relation.referencesYew, H. S., Chambers, S. T., Roberts, S. A., Holland, D. J., Julian, K. A., Raymond, N. J., ... & Murdoch, D. R. (2014). Association between HACEK bacteraemia and endocarditis. Journal of medical microbiology, 63(6), 892-895.
dc.relation.referencesYilmaz, Ö., & Lee, K. L. (2015). The inflammasome and danger molecule signaling at the crossroads of inflammation and pathogen persistence in the oral cavity. Periodontology 2000, 69(1), 83-95.
dc.relation.referencesZambon JJ, Slots J, Genco RJ. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease. Infect Immun. 1983;41:19–27
dc.relation.referencesZhang, D., Zheng, H., Zhao, J., Lin, L., Li, C., Liu, J., & Pan, Y. (2011). Porphorymonas gingivalis induces intracellular adhesion molecule‐1 expression in endothelial cells through the nuclear factor‐kappaB pathway, but not through the p38 MAPK pathway. Journal of periodontal research, 46(1), 31-38.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsEndotelio Vascular
dc.subject.decsEndothelium, Vascular
dc.subject.decsAterosclerosis
dc.subject.decsAtherosclerosis
dc.subject.decsPeriodontitis
dc.subject.decsPeriodontitis
dc.subject.proposalColágeno tipo I
dc.subject.proposalCélulas endoteliales
dc.subject.proposalAggregatibacter actinomycetemcomitans
dc.subject.proposalDisfunción endotelial
dc.subject.proposalAterosclerosis
dc.subject.proposalType I collagen
dc.subject.proposalEndothelial cells
dc.subject.proposalEndothelial disfunction
dc.subject.proposalAtherosclerosis
dc.title.translatedOptimization of a three-dimensional cell culture to evaluate the response induced by Aggregatibacter actinomycetemcomitans in endothelial cells
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito