Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOsorio Arias, Andrés Fernando
dc.contributor.authorRoldan Carvajal, Mateo
dc.date.accessioned2021-10-13T16:29:42Z
dc.date.available2021-10-13T16:29:42Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80539
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEn esta tesis se presenta un estudio del diseño de un equipo de Electrodiálisis Inversa (RED) para la recuperación de energía de la salmuera resultante de la desalinización de agua de mar. Para ello, se discuten modelos termodinámicos usados en el cálculo teórico de la energía disponible en un gradiente salino, y se plantea un modelo multiescala que considera fenómenos propios de una celda y de la interacción entre varias celdas, como corrientes parásitas y caídas de presión, lo cual es un acople novedoso en el modelamiento de RED. El modelo se apoya en dinámica de fluidos computacional para la estimación de caídas de presión en ramificaciones y combinaciones de flujo. Se encontró que los cálculos termodinámicos se pueden hacer más rigurosos estimando adecuadamente las moles del solvente y los coeficientes de actividad; por otro lado, la comparación del modelo multiescala con diferentes experimentaciones reportadas en la literatura indica que el modelo predice satisfactoriamente la potencia bruta, pero subestima las pérdidas por bombeo y, por ende, las potencia neta. Se recomienda mayor estudio en la estimación de las caídas de presión en RED. Tanto el modelo termodinámico como el multiescala se usaron en un estudio paramétrico de 18 combinaciones para un equipo operando a condiciones típicas de RED con soluciones de 171 y 1000 mol.m-3 (salmuera de desalinización). Los resultados sugieren que un equipo de 500 celdas con 7 ductos (de cada solución) de 6.35x10-3 m de diámetro y con espaciadores de 330x10-6 m de espesor, entregan mayor densidad de potencia neta que equipos con combinaciones de diámetros mayores o empaques más delgados. Los resultados de este estudio paramétrico deben ser validados experimentalmente. (Texto tomado de la fuente)
dc.description.abstractThis thesis addresses the design of a Reverse Electrodialysis stack for its application in the recovery of energy from the brine resulting in seawater desalination. Thermodynamic models for the theoretical calculations of the available energy in a Salinity gradient are discussed, also, a multi-scale model considering unitary cell and overall stack phenomena, such as parasitic currents and pressure drop, is proposed. The coupling of these three approaches: unitary cell, parasitic currents, and pressure drop in the same model is a novelty in the RED field. The model uses computational fluid dynamics for the estimation of pressure drops associated to flow branching and combination. It was found that thermodynamics calculation might be more accurate by the proper estimation of the solvent moles and the activity coefficients; on the other hand, the comparison of the multi-scale model with some experimentation reported on literature depicts that the model predicts gross power correctly, however pressure drops are underestimated, consequently, the net power is overestimated. Deeper research in RED pressure drops is recommended. Both, the thermodynamic and multi-scale models were used in a parametric study of 18 different configurations for a RED stack operating at typical conditions with NaCl solutions of 171 and 1000 mol.m-3 (desalination brine). The results suggest that a higher net power density can be achieved with a stack with 500 cells, 7 ducts (of each type of solution) with 6.35x10-3 m diameter, and spacers with 330x10-6 m thickness, than with stacks with higher diameters and thinner spacers. The results of this parametric study still must be validated experimentally.
dc.description.sponsorshipCentro Mexicano de Innovación en Energía del Océano (CEMIE-O)
dc.format.extentxi, 160 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleDiseño de un equipo de electrodiálisis inversa para su aplicación en esquemas híbridos de desalinización de agua de mar.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.description.notesLa presente tesis se realizó en el marco de un convenio de cooperación entre la Facultad de Minas de la Universidad Nacional de Colombia, Sede Medellín y el Centro Mexicano de Innovación en Energía del Océano (CEMIE-O). En esta, se presenta un modelo para diseñar un equipo de electrodiálisis inversa, la cual probó para condiciones de sistemas híbridos con desalinización de agua de mar.
dc.contributor.researchgroupOCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacional
dc.contributor.researchgroupGrupo de Ingenieria Electroquímica - GRIEQUI
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.methodsPlanteamiento de modelo multiescala validado con datos experimentales en la literatura.
dc.description.researchareaEnergía del Gradiente Salino
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesOrganización de Naciones Unidas, “Transformar nuestro mundo: Agenda 2030 Para El Desarrollo Sostenible,” Nueva York, 2015.
dc.relation.referencesU.S Energy Information Administration, “International Energy Outlook 2019 with projections to 2050.”
dc.relation.referencesOrganización de Naciones Unidas, “Energía asequible y no contaminante - Desarrollo Sostenible.” [Online]. Available:
dc.relation.referencesS. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, Aug. 2012.
dc.relation.referencesOrganización de Naciones Unidas, “Agua y saneamiento - Desarrollo Sostenible.” [Online]. Available: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/. [Accessed: 08-Nov-2019].
dc.relation.referencesS. N. Gosling and N. W. Arnell, “A global assessment of the impact of climate change on water scarcity,” Clim. Change, vol. 134, no. 3, pp. 371–385, Feb. 2016.
dc.relation.referencesJ. Schewe et al., “Multimodel assessment of water scarcity under climate change,” Proc. Natl. Acad. Sci., vol. 111, no. 9, pp. 3245–3250, Mar. 2014.
dc.relation.referencesG. McGranahan, D. Balk, and B. Anderson, “The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones,” Environ. Urban., vol. 19, no. 1, pp. 17–37, Apr. 2007.
dc.relation.referencesB. Neumann, A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, “Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment,” PLoS One, vol. 10, no. 3, 2015.
dc.relation.referencesC. Small and R. J. Nicholls, “A global analysis of human settlement in coastal zones,” J. Coast. Res., vol. 19, no. 3, pp. 584–599, 2003.
dc.relation.referencesE. Jones, M. Qadir, M. T. H. van Vliet, V. Smakhtin, and S. mu Kang, “The state of desalination and brine production: A global outlook,” Sci. Total Environ., vol. 657, pp. 1343–1356, 2019.
dc.relation.referencesDepartamento Nacional de Planeación, “Clean water and sanitation - The 2030 Agenda in Colombia - Sustainable Development Goals,” 2018. [Online]. Available: https://www.ods.gov.co/en/goals/clean-water-and-sanitation. [Accessed: 09-Mar-2020].
dc.relation.referencesA. F. Osorio, S. Ortega, and S. Arango-Aramburo, “Assessment of the marine power potential in Colombia,” Renew. Sustain. Energy Rev., vol. 53, pp. 966–977, Jan. 2016.
dc.relation.referencesE. Brauns, “An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy,” Desalin. Water Treat., vol. 13, no. 1–3, pp. 53–62, Jan. 2010.
dc.relation.referencesM. Vanoppen, G. Blandin, S. Derese, P. Le Clech, J. Post, and A. R. D. Verliefde, “Salinity gradient power and desalination,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 281–313.
dc.relation.referencesF. La Mantia, D. Brogioli, and M. Pasta, “Capacitive mixing and mixing entropy battery,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 181–218.
dc.relation.referencesN. Y. Yip, D. Brogioli, H. V. M. Hamelers, and K. Nijmeijer, “Salinity gradients for sustainable energy: Primer, progress, and prospects,” Environ. Sci. Technol., vol. 50, no. 22, pp. 12072–12094, 2016.
dc.relation.referencesR. A. Tufa et al., “Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage,” Appl. Energy, vol. 225, no. May, pp. 290–331, Sep. 2018.
dc.relation.referencesG. Micale, A. Cipollina, and A. Tamburini, “Salinity gradient energy,” in Sustainable Energy from Salinity Gradients, First., Elsevier, 2016, pp. 1–17.
dc.relation.referencesS. Vallejo-Castaño, “GENERACIÓN DE ENERGÍA A PARTIR DEL GRADIENTE SALINO ENTRE EL AGUA DE RÍO Y DE MAR UTILIZANDO UNA CELDA DE ELECTRODIALISIS INVERSA,” Universidad Nacional de Colombia, 2013.
dc.relation.referencesA. Cipollina et al., “Reverse electrodialysis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 135–180.
dc.relation.referencesE. Güler, R. Elizen, D. a. Vermaas, M. Saakes, and K. Nijmeijer, “Performance-determining membrane properties in reverse electrodialysis,” J. Memb. Sci., vol. 446, pp. 266–276, 2013.
dc.relation.referencesS. Pawlowski, J. G. Crespo, and S. Velizarov, “Profiled ion exchange membranes: A comprehensible review,” Int. J. Mol. Sci., vol. 20, no. 1, 2019.
dc.relation.referencesJ. Veerman, J. W. Post, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model,” J. Memb. Sci., vol. 310, no. 1–2, pp. 418–430, Mar. 2008.
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, and G. Micale, “A simulation tool for analysis and design of reverse electrodialysis using concentrated brines,” Chem. Eng. Res. Des., vol. 93, no. May, pp. 441–456, 2015.
dc.relation.referencesD. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, “Theoretical power density from salinity gradients using reverse electrodialysis,” Energy Procedia, vol. 20, pp. 170–184, 2012.
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis,” J. Memb. Sci., vol. 468, pp. 133–148, 2014.
dc.relation.referencesS. Vallejo, “Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis,” Universidad Nacional de Colombia - Sede Medellín, 2017.
dc.relation.referencesS. Vallejo-Castaño and C. Ignacio Sánchez-Sáenz, “Design and optimization of a reverse electrodialysis stack for energy generation through salinity gradients •,” Rev. DYNA, vol. 84, no. 202, pp. 84–91, 2017.
dc.relation.referencesM. Chen et al., “An internal-integrated RED/ED system for energy-saving seawater desalination: A model study,” Energy, vol. 170, pp. 139–148, Mar. 2019.
dc.relation.referencesR. E. Pattle, “Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile,” Nature, vol. 174, no. 4431, pp. 660–660, 1954.
dc.relation.referencesO. Alvarez-Silva, A. F. Osorio, and C. Winter, “Practical global salinity gradient energy potential,” Renew. Sustain. Energy Rev., vol. 60, pp. 1387–1395, 2016.
dc.relation.referencesO. Alvarez-Silva, C. Winter, and A. F. Osorio, “Salinity Gradient Energy at River Mouths,” Environ. Sci. Technol. Lett., vol. 1, no. 10, pp. 410–415, Oct. 2014.
dc.relation.referencesInternational Energy Agency, “Total Electricity Generation,” IEA Energy Atlas, 2017. [Online]. Available: http://energyatlas.iea.org/#!/tellmap/-1118783123. [Accessed: 12-Mar-2020].
dc.relation.referencesO. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, Feb. 2015.
dc.relation.referencesF. Helfer and C. Lemckert, “The power of salinity gradients : An Australian example,” Renew. Sustain. Energy Rev., vol. 50, pp. 1–16, 2015.
dc.relation.referencesO. Reyes-mendoza, O. Alvarez-silva, X. Chiappa-carrara, and C. Enriquez, “Variability of the thermohaline structure of a coastal hypersaline lagoon and the implications for salinity gradient energy harvesting,” Sustain. Energy Technol. Assessments, vol. 38, no. January, p. 100645, 2020.
dc.relation.referencesJ.-Y. Nam et al., “Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent,” Water Res., vol. 148, pp. 261–271, Jan. 2019.
dc.relation.referencesG. Amy et al., “Membrane-based seawater desalination: Present and future prospects,” Desalination, vol. 401, pp. 16–21, 2017.
dc.relation.referencesD. a. Vermaas, M. Saakes, and K. Nijmeijer, “Doubled power density from salinity gradients at reduced intermembrane distance,” Environ. Sci. Technol., vol. 45, no. 16, pp. 7089–7095, 2011.
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Evaluation of suitable electrode systems,” J. Appl. Electrochem., vol. 40, no. 8, pp. 1461–1474, 2010.
dc.relation.referencesF. Giacalone, M. Papapetrou, G. Kosmadakis, A. Tamburini, G. Micale, and A. Cipollina, “Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment,” Energy, vol. 181, pp. 532–547, 2019.
dc.relation.referencesJ. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density,” J. Memb. Sci., vol. 343, no. 1, pp. 7–15, 2009.
dc.relation.referencesJ. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, “Mitigation of the effects of multivalent ion transport in reverse electrodialysis,” J. Memb. Sci., vol. 550, no. December 2017, pp. 155–162, 2018.
dc.relation.referencesJ. Veerman and D. A. Vermaas, “Reverse electrodialysis: Fundamentals,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 77–133.
dc.relation.referencesS. Pawlowski, J. G. Crespo, and S. Velizarov, “Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs,” J. Memb. Sci., vol. 462, pp. 96–111, 2014.
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water,” J. Memb. Sci., vol. 327, no. 1–2, pp. 136–144, Feb. 2009.
dc.relation.referencesS. Pawlowski, V. Geraldes, J. G. Crespo, and S. Velizarov, “Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis,” J. Memb. Sci., vol. 502, pp. 179–190, 2016.
dc.relation.referencesL. Gurreri, G. Battaglia, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Multi-physical modelling of reverse electrodialysis,” Desalination, vol. 423, no. August, pp. 52–64, 2017.
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, and G. Micale, “Modelling the Reverse ElectroDialysis process with seawater and concentrated brines,” Desalin. Water Treat., vol. 49, no. 1–3, pp. 404–424, 2012.
dc.relation.referencesO. Scialdone, A. Albanese, A. D’Angelo, A. Galia, and C. Guarisco, “Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs,” J. Electroanal. Chem., vol. 704, pp. 1–9, Sep. 2013.
dc.relation.referencesS.-Y. Lee, D.-J. Lee, K.-H. Yeon, W.-G. Kim, M.-S. Kang, and J.-S. Park, “A Cyclic Voltammetric Study of Electrodes for Reverse Electrodialysis,” J. Korean Electrochem. Soc., vol. 16, no. 3, pp. 145–150, Aug. 2013.
dc.relation.referencesO. Scialdone, C. Guarisco, S. Grispo, a D. Angelo, and a Galia, “Investigation of electrode material - Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples,” J. Electroanal. Chem., vol. 681, pp. 66–75, 2012.
dc.relation.referencesJ. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, “Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system,” Environ. Sci. Technol., vol. 42, no. 15, pp. 5785–5790, 2008.
dc.relation.referencesR. Audinos, “Electrodialyse inverse. Etude de l’energie electrique obtenue a partir de deux solutions de salinites differentes,” J. Power Sources, vol. 10, no. 3, pp. 203–217, 1983.
dc.relation.referencesD. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, and K. Nijmeijer, “Clean energy generation using capacitive electrodes in reverse electrodialysis,” Energy Environ. Sci., vol. 6, no. 2, pp. 643–651, 2013.
dc.relation.referencesA. Daniilidis, D. A. Vermaas, R. Herber, and K. Nijmeijer, “Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis,” Renew. Energy, 2014.
dc.relation.referencesP. Długołęcki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, “On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport,” J. Memb. Sci., vol. 349, no. 1–2, pp. 369–379, Mar. 2010.
dc.relation.referencesM. L. La Cerva et al., “Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks,” J. Memb. Sci., vol. 541, no. May, pp. 595–610, 2017.
dc.relation.referencesR. Long, B. Li, Z. Liu, and W. Liu, “Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization,” Energy, vol. 151, pp. 1–10, 2018.
dc.relation.referencesF. Giacalone, P. Catrini, A. Tamburini, A. Cipollina, A. Piacentino, and G. Micale, “Exergy analysis of reverse electrodialysis,” Energy Convers. Manag., vol. 164, no. March, pp. 588–602, 2018.
dc.relation.referencesM. Tedesco et al., “Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up,” J. Memb. Sci., vol. 492, pp. 9–20, 2015.
dc.relation.referencesD. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy Environ. Sci., vol. 7, no. 4, pp. 1434–1445, 2014.
dc.relation.referencesJ. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, “Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system,” J. Memb. Sci., vol. 330, no. 1–2, pp. 65–72, 2009.
dc.relation.referencesE. Fontananova et al., “Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion,” J. Power Sources, vol. 340, pp. 282–293, 2017.
dc.relation.referencesA. H. Avci, R. A. Tufa, E. Fontananova, G. Di Profio, and E. Curcio, “Reverse Electrodialysis for energy production from natural river water and seawater,” Energy, vol. 165, pp. 512–521, Dec. 2018.
dc.relation.referencesD. a. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy Environ. Sci., vol. 7, no. 4, pp. 1434–1445, 2014.
dc.relation.referencesJ. Moreno, N. de Hart, M. Saakes, and K. Nijmeijer, “CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis,” Water Res., vol. 125, pp. 23–31, 2017.
dc.relation.referencesT. Rijnaarts, N. T. Shenkute, J. A. Wood, W. M. De Vos, and K. Nijmeijer, “Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis,” ACS Sustain. Chem. Eng., vol. 6, no. 5, pp. 7035–7041, 2018.
dc.relation.referencesD. a. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, “Fouling in reverse electrodialysis under natural conditions,” Water Res., vol. 47, no. 3, pp. 1289–1298, 2013.
dc.relation.referencesD. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, and K. Nijmeijer, “Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.,” Environ. Sci. Technol., vol. 48, no. 5, pp. 3065–73, Mar. 2014.
dc.relation.referencesM. Turek and B. Bandura, “Renewable energy by reverse electrodialysis,” Desalination, vol. 205, no. 1–3, pp. 67–74, 2007.
dc.relation.referencesM. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, and G. Micale, “Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines.,” J. Memb. Sci., vol. 500, pp. 33–45, Feb. 2016.
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, “Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines,” J. Memb. Sci., vol. 522, pp. 226–236, 2016.
dc.relation.referencesREDStack, “Blue Energy Demo Katwijk - Intentieverklaring niet verlengd,” Nieuws, 2020. [Online]. Available: https://www.redstack.nl/nl/nieuws/95/blue-energy-demo-katwijk--intentieverklaring-niet-verlengd. [Accessed: 18-Mar-2020].
dc.relation.referencesOcean Energy Systems, “Annual Report Annual Report - An overview of Ocean Energy Activities,” 2019.
dc.relation.referencesF. Helfer, C. Lemckert, and Y. G. Anissimov, “Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends - A review,” J. Memb. Sci., vol. 453, pp. 337–358, 2014.
dc.relation.referencesA. P. Straub, A. Deshmukh, and M. Elimelech, “Pressure-retarded osmosis for power generation from salinity gradients: is it viable?,” Energy Environ. Sci., vol. 9, no. 1, pp. 31–48, 2016.
dc.relation.referencesN. Y. Yip and M. Elimelech, “Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis,” Environ. Sci. Technol., vol. 46, no. 9, pp. 5230–5239, 2012.
dc.relation.referencesJ. M. Salamanca, O. Álvarez-Silva, and F. Tadeo, “Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data,” Energy, vol. 180, pp. 548–555, 2019.
dc.relation.referencesStatkraft, “Crown Princess of Norway to open the world’s first osmotic power plant,” Pressrelease, 2009. [Online]. Available: https://www.statkraft.com/media/press-releases/Press-releases-archive/2009/crown-princess-mette-marit-to-open-the-worlds-first-osmotic-power-plant/. [Accessed: 13-Oct-2019].
dc.relation.referencesS. Zhang, G. Han, X. Li, C. Wan, and T.-S. Chung, “Pressure retarded osmosis: Fundamentals,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 19–53.
dc.relation.referencesStatkraft, “Statkraft halts osmotic power investments,” news, 2013. [Online]. Available: https://www.statkraft.com/media/news/News-archive/2013/Statkraft-halts-osmotic-power-investments. [Accessed: 13-Sep-2019].
dc.relation.referencesM. Kurihara, H. Sakai, A. Tanioka, and H. Tomioka, “Role of pressure-retarded osmosis (PRO) in the mega-ton water project,” Desalin. Water Treat., vol. 57, no. 55, pp. 26518–26528, Nov. 2016.
dc.relation.referencesM. Kurihara and H. Takeuchi, “SWRO-PRO System in ‘ Mega-ton Water System ’ for Energy Reduction and Low Environmental Impact,” vol. 1, pp. 1–15, 2018.
dc.relation.referencesA. Achilli and K. L. Hickenbottom, “Pressure retarded osmosis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 55–75.
dc.relation.referencesD. Brogioli, “Extracting Renewable Energy from a Salinity Difference Using a Capacitor,” Phys. Rev. Lett., vol. 103, no. 5, p. 058501, Jul. 2009.
dc.relation.referencesB. B. Sales, M. Saakes, J. W. Post, C. J. N. Buisman, P. M. Biesheuvel, and H. V. M. Hamelers, “Direct Power Production from a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell,” Environ. Sci. Technol., vol. 44, no. 14, pp. 5661–5665, Jul. 2010.
dc.relation.referencesF. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, “Batteries for Efficient Energy Extraction from a Water Salinity Difference,” Nano Lett., vol. 11, no. 4, pp. 1810–1813, Apr. 2011.
dc.relation.referencesM. Papapetrou and K. Kumpavat, “Environmental aspects and economics of salinity gradient power (SGP) processes,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 315–335.
dc.relation.referencesE. J. Marín Coria et al., Energía del Gradiente Salino, 1st ed. CEMIE-Océano: Universidad Autónoma de Campeche, 2020.
dc.relation.referencesC. Seyfried, H. Palko, and L. Dubbs, “Potential local environmental impacts of salinity gradient energy: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 111–120, Mar. 2019.
dc.relation.referencesR. C. Newell, L. J. Seiderer, N. M. Simpson, and J. E. Robinson, “Impacts of Marine Aggregate Dredging on Benthic Macrofauna off the South Coast of the United Kingdom,” J. Coast. Res., vol. 201, no. 201, pp. 115–125, 2004.
dc.relation.referencesO. Alvarez-Silva, A. Y. Maturana, C. A. Pacheco-Bustos, and A. F. Osorio, “Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea,” J. Ocean Eng. Mar. Energy, vol. 5, no. 3, pp. 227–240, Aug. 2019.
dc.relation.referencesT. Höpner and J. Windelberg, “Elements of environmental impact studies on coastal desalination plants,” Desalination, vol. 108, no. 1–3, pp. 11–18, Feb. 1997.
dc.relation.referencesC. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, “State-of-the-art of reverse osmosis desalination,” Desalination, vol. 216, no. 1–3, pp. 1–76, Oct. 2007.
dc.relation.referencesJ. Veerman, “Reverse Electrodialysis design and optimization by modeling and experimentation,” University of Groningen, Groningen, 2010.
dc.relation.referencesJ. Moreno, S. Grasman, R. Van Engelen, and K. Nijmeijer, “Upscaling Reverse Electrodialysis,” Environ. Sci. Technol., vol. 52, no. 18, pp. 10856–10863, 2018.
dc.relation.referencesP. S. Z. Rogers and K. S. Pitzer, “Volumetric Properties of Aqueous Sodium Chloride Solutions,” J. Phys. Chem. Ref. Data, vol. 11, no. 1, pp. 15–81, 1982.
dc.relation.referencesJ. W. Post et al., “Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis,” J. Memb. Sci., vol. 288, pp. 218–230, 2007.
dc.relation.referencesK. S. Pitzer, J. C. Peiper, and R. H. Busey, “Thermodynamic Properties of Aqueous Sodium Chloride Solutions,” J. Phys. Chem. Ref. Data, vol. 13, no. 1, pp. 1–102, Jan. 1984.
dc.relation.referencesR. A. Tufa, E. Curcio, E. Brauns, W. van Baak, E. Fontananova, and G. Di Profio, “Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination,” J. Memb. Sci., vol. 496, pp. 325–333, 2015.
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: A validated process model for design and optimization,” Chem. Eng. J., vol. 166, pp. 256–268, 2011.
dc.relation.referencesR. Long, B. Li, Z. Liu, and W. Liu, “Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization,” Energy, vol. 158, pp. 427–436, 2018.
dc.relation.referencesR. Ortiz-Imedio, L. Gomez-Coma, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, “Comparative performance of Salinity Gradient Power-Reverse Electrodialysis under different operating conditions,” Desalination, vol. 457, no. December 2018, pp. 8–21, May 2019.
dc.relation.referencesM. Tedesco et al., “Analysis and simulation of scale-up potentials in reverse electrodialysis,” Desalin. Water Treat., vol. 55, no. 12, pp. 3391–3403, 2015.
dc.relation.referencesJ. G. Hong, W. Zhang, J. Luo, and Y. Chen, “Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions,” Appl. Energy, vol. 110, pp. 244–251, Oct. 2013.
dc.relation.referencesJ. G. Hong, W. Zhang, J. Luo, and Y. Chen, “Corrigendum to ‘Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions’ [Appl. Energy 110 (2013) 244–251],” Appl. Energy, vol. 129, pp. 398–399, Sep. 2014.
dc.relation.referencesL. Gómez-Coma et al., “Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis,” J. Memb. Sci., vol. 592, p. 117385, Dec. 2019.
dc.relation.referencesI. Rubinstein, J. Pretz, and E. Staude, “Open circuit voltage in a reverse electrodialysis cell,” Phys. Chem. Chem. Phys., vol. 3, no. 9, pp. 1666–1667, 2001.
dc.relation.referencesA. Culcasi et al., “Ionic shortcut currents via manifolds in reverse electrodialysis stacks,” Desalination, vol. 485, p. 114450, Jul. 2020.
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, and G. Micale, “CFD analysis of the fluid flow behavior in a reverse electrodialysis stack,” Desalin. Water Treat., vol. 48, no. 1–3, pp. 390–403, 2012.
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study,” J. Memb. Sci., vol. 497, pp. 300–317, 2016.
dc.relation.referencesA. Tamburini, G. La Barbera, A. Cipollina, M. Ciofalo, and G. Micale, “CFD simulation of channels for direct and reverse electrodialysis,” Desalin. Water Treat., vol. 48, pp. 370–389, 2012.
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “CFD simulation of mass transfer phenomena in spacer filled channels for reverse electrodialysis applications,” Chem. Eng. Trans., vol. 32, no. 2010, pp. 1879–1884, 2013.
dc.relation.referencesL. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, W. Van Baak, and G. Micale, “CFD modelling of profiled-membrane channels for reverse electrodialysis,” Desalin. Water Treat., vol. 55, no. 12, pp. 3404–3423, 2015.
dc.relation.referencesJ. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, “Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes,” Desalination, vol. 491, no. May, p. 114540, 2020.
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant,” Environ. Sci. Technol., vol. 44, no. 23, pp. 9207–9212, Dec. 2010.
dc.relation.referencesD. A. Vermaas, J. Veerman, N. Y. Yip, M. Elimelech, M. Saakes, and K. Nijmeijer, “High efficiency in energy generation from salinity gradients with reverse electrodialysis,” ACS Sustain. Chem. Eng., vol. 1, no. 10, pp. 1295–1302, 2013.
dc.relation.referencesC. Simões, D. Pintossi, M. Saakes, Z. Borneman, W. Brilman, and K. Nijmeijer, “Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency,” Desalination, vol. 492, no. July, p. 114604, 2020.
dc.relation.referencesP. Trinidad, C. Ponce de León, and F. C. Walsh, “The application of flow dispersion models to the FM01-LC laboratory filter-press reactor,” Electrochim. Acta, vol. 52, no. 2, pp. 604–613, 2006.
dc.relation.referencesE. H. Hossen et al., “Temporal variation of power production via reverse electrodialysis using coastal North Carolina waters and its correlation to temperature and conductivity,” Desalination, vol. 491, p. 114562, Oct. 2020.
dc.relation.referencesH. Strathmann, Ion-Exchange Membrane Separation Processes. Elsevier Science, 2004.
dc.relation.referencesF. Coeuret, Introducción a la ingeniería electroquímica, En español. Barcelona: Reverté, 1992.
dc.relation.referencesJ. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles, 3rd Edition, Third. John Wiley Incorporated, 2010.
dc.relation.referencesL. Han, S. Galier, and H. Roux-de Balmann, “Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution,” Desalination, vol. 373, pp. 38–46, Oct. 2015.
dc.relation.referencesV. M. Ortiz-Martínez et al., “A comprehensive study on the effects of operation variables on reverse electrodialysis performance,” Desalination, vol. 482, no. November 2019, p. 114389, 2020.
dc.relation.referencesC. Tristán, M. Fallanza, R. Ibáñez, and I. Ortiz, “Recovery of salinity gradient energy in desalination plants by reverse electrodialysis,” Desalination, vol. 496, no. August, p. 114699, Dec. 2020.
dc.relation.referencesY. A. Cengel and J. M. Cimbala, “Flujo en tuberías,” in Mecánica de Fluidos - Fundamentos y Aplicaciones, 1ra Edició., Ciudad de México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V., 2006, pp. 321–386.
dc.relation.referencesF. M. White, “Viscous Flow in Ducts,” in Fluid Mechanics, Eighth., New York: McGraw-Hill, 2015, pp. 339–421.
dc.relation.referencesJ. Wang, “Theory of flow distribution in manifolds,” Chem. Eng. J., vol. 168, no. 3, pp. 1331–1345, 2011.
dc.relation.referencesW. L. McCabe, J. C. Smith, and P. Harriot, “Flujo de fluidos no compresibles en tuberías y canales de conducción,” in OPERACIONES UNITARIAS EN INGENIERÍA QUÍMICA, Séptima Ed., Ciudad de México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. de C.V, 2007, p. 130.
dc.relation.referencesJ. P. Van Doormaal and G. D. Raithby, “ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS,” Numer. Heat Transf., vol. 7, no. 2, pp. 147–163, Apr. 1984.
dc.relation.referencesI. ANSYS, ANSYS Fluent User’s Guide. U.S.A.: ANSYS, Inc., 2013.
dc.relation.referencesJiro, “GRABIT, MATLAB Central File Exchange.,” 2016. [Online]. Available: https://la.mathworks.com/matlabcentral/fileexchange/7173-grabit.
dc.relation.referencesJ. S. Newman and K. E. Thomas-Alyea, Electrochemical systems, Third. New Jersey: John Wiley & Sons, Inc., 2014.
dc.relation.referencesM. Elimelech and W. A. Phillip, “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science (80-. )., vol. 333, no. 6043, pp. 712–717, Aug. 2011.
dc.relation.referencesS. Lee, J. Choi, Y. G. Park, H. Shon, C. H. Ahn, and S. H. Kim, “Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects,” Desalination, no. September 2017, pp. 0–1, 2018.
dc.relation.references“GMVP opened the SWRO-PRO pilot plant of recovering the salinity gradient energy.” [Online]. Available: https://www.desalination.biz/news/5/GMVP-opened-the-SWRO-PRO-pilot-plant-of-recovering-the-salinity-gradient-energy/8891/. [Accessed: 13-Apr-2018].
dc.relation.referencesY. G. Park, K. Chung, I. H. Yeo, W. I. Lee, and T. S. Park, “Development of a SWRO-PRO hybrid desalination system: Pilot plant investigations,” Water Sci. Technol. Water Supply, vol. 18, no. 2, pp. 473–481, 2018.
dc.relation.referencesB. J. Feinberg, G. Z. Ramon, and E. M. V. Hoek, “Thermodynamic Analysis of Osmotic Energy Recovery at a Reverse Osmosis Desalination Plant,” Environ. Sci. Technol., vol. 47, no. 6, pp. 2982–2989, 2013.
dc.relation.referencesJ. Kim, M. Park, S. A. Snyder, and J. H. Kim, “Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study,” Desalination, vol. 322, pp. 121–130, 2013.
dc.relation.referencesM. Vanoppen, S. Derese, A. Bakelants, and A. Verliefde, “Reduction of reverse osmosis desalination energy demand by osmotic dilution / osmotic energy recovery – a realistic modelling approach,” Desalin. Environ. Clean Water Energy, pp. 23–24, 2014.
dc.relation.referencesD. I. Kim, J. Kim, H. K. Shon, and S. Hong, “Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling,” J. Memb. Sci., vol. 483, pp. 34–41, 2015.
dc.relation.referencesW. Li, W. B. Krantz, E. R. Cornelissen, J. W. Post, A. R. D. Verliefde, and C. Y. Tang, “A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management,” Appl. Energy, vol. 104, pp. 592–602, 2013.
dc.relation.referencesY. Mei and C. Y. Tang, “Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications,” J. Memb. Sci., vol. 539, no. May, pp. 305–312, 2017.
dc.relation.referencesP. J. Fierro and E. K. Nyer, Eds., “Section 13A - Physical Properties of Water,” in The Water Encyclopedia, Third Edit., Boca Ratón: Taylor & Francis Group, 2006, pp. 13–2.
dc.relation.referencesM. El Guendouzi, A. Dinane, and A. Mounir, “Water activities, osmotic and activity coefficients in aqueous chloride solutions at T = 298.15 K by the hygrometric method,” J. Chem. Thermodyn., vol. 33, no. 9, pp. 1059–1072, 2001.
dc.relation.referencesS. Glasstone, Termodinámica para químicos, Quinta Ed. Madrid: Aguilar, 1970.
dc.relation.referencesM. Micari et al., “Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications,” J. Memb. Sci., vol. 551, no. January, pp. 315–325, Apr. 2018.
dc.relation.referencesS. S. Islam, R. L. Gupta, and K. Ismail, “Extension of the Falkenhagen-Leist–Kelbg Equation to the Electrical Conductance of Concentrated Aqueous Electrolytes,” J. Chem. Eng. Data, vol. 36, no. 1, pp. 102–104, 1991.
dc.relation.referencesJ. Kestin, H. E. Khalifa, and R. J. Correia, “Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 °C and the pressure range 0.1–35 MPa,” J. Phys. Chem. Ref. Data, vol. 10, no. 1, pp. 71–88, Jan. 1981.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSaline water conversion - Electrodialysis process
dc.subject.lembConversión de aguas salinas - Proceso por electrodiálisis
dc.subject.proposalEnergía del Gradiente Salino
dc.subject.proposalElectrodiálisis Inversa
dc.subject.proposalDesalinización
dc.subject.proposalIntegración de procesos
dc.subject.proposalSalinity Gradient Energy
dc.subject.proposalReverse Electrodialysis
dc.subject.proposalDesalination
dc.subject.proposalProcess Integration
dc.title.translatedDesign of a reverse electrodialysis stack for its application on hybrid schemes of seawater desalination.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito