Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorChejne Jana, Farid
dc.contributor.advisorAmell Arrieta, Andrés
dc.contributor.authorOrdoñez Loza, Javier Alonso
dc.date.accessioned2021-10-14T19:33:00Z
dc.date.available2021-10-14T19:33:00Z
dc.date.issued2021-06-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80555
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractSugarcane bagasse bio-oil is a low calorific fuel produced by pyrolysis of cane bagasse in a nitrogen atmosphere and can be considered as a future alternative fuel. In this doctoral thesis, a detailed characterization of the bio-oil was developed, and the effect of carbon dioxide on char formation during thermal decomposition was evaluated. The kinetics was also analyzed, and decomposition stages were proposed. Likewise, bio-oil droplet evaporation experiments were carried out and allowed to identify the nature of the phenomenon of micro-explosions and its relationship with the formation of microbubbles, to complement the work, a novel model to predict micro-explosions were developed offering the possibility of understanding the phenomenon of micro-explosion formation from a collection of physicochemical events that begin with the nucleation, coalescence, and explosion of microbubbles within the drop.
dc.description.abstractEl bio-aceite de bagazo de caña es un combustible de bajo poder calorífico producido por la pirólisis de bagazo de caña en atmósfera de nitrógeno, y puede considerarse como un futuro combustible alternativo. En esta tesis una caracterización detallada del bio-aceite fue desarrollada, y se evaluó el efecto del dióxido de carbono en la formación de carbonizado durante la descomposición térmica. También se analizó la cinética y etapas de descomposición fueron propuestas. Así mismo experimentos de evaporación de gotas de bio-aceite fueron realizados y permitieron identificar la naturaleza del fenómeno de las micro-explosiones y su relación con la formación de microburbujas, para complementar el trabajo un novedoso modelo para predecir las micro-explosiones fue desarrollado ofreciendo la posibilidad de entender el fenómeno de formación de micro-explosiones a partir de una colección de eventos fisicoquímicos que comienzan con la nucleación, coalescencia y explosione de microburbujas dentro de la gota. (Texto tomado de la fuente)
dc.format.extentxix, 120 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.otherAceite de bagazo de caña
dc.titleUnderstanding bio-oil droplets microexplosions in oxyfuel combustion.
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativas
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaSistemas Energéticos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] R. Calabria, F. Chiariello, P. Massoli, Combustion fundamentals of pyrolysis oil based fuels, Exp. Therm. Fluid Sci. 31 (2007) 413–420. https://doi.org/10.1016/j.expthermflusci.2006.04.010.
dc.relation.references[2] M. Garcia-Perez, P. Lappas, P. Hughes, L. Dell, A. Chaala, D. Kretschmer, C. Roy, Evaporation and combustion characteristics of biomass vacuum pyrolysis oils, IFRF Combust. J. 200601 (2006) 1–27.
dc.relation.references[3] Á. Muelas, M.S. Callén, R. Murillo, J. Ballester, Production and droplet combustion characteristics of waste tire pyrolysis oil, Fuel Process. Technol. 196 (2019). https://doi.org/10.1016/j.fuproc.2019.106149.
dc.relation.references[4] C. Branca, C. Di Blasi, Combustion kinetics of secondary biomass chars in the kinetic regime, Energy and Fuels. 24 (2010) 5741–5750. https://doi.org/10.1021/ef100952x.
dc.relation.references[5] Z. Xiong, S.S.A. Syed-hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil : Characterization of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019) 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253.
dc.relation.references[6] P. Eng, D. Scarpete, Diesel-water emulsion, an alternative fuel to reduce diesel engine emissions. A review, Mach. Technol. Mater. (2013) 7–10.
dc.relation.references[7] C.Y. Hsuan, S.S. Hou, Y.L. Wang, T.H. Lin, Water-In-Oil emulsion as boiler fuel for Reduced NOx emissions and improved energy saving, Energies. 12 (2019) 1–14. https://doi.org/10.3390/en12061002.
dc.relation.references[8] M.L. Botero, Y. Huang, D.L. Zhu, A. Molina, C.K. Law, Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures, Fuel. 94 (2012) 342–347. https://doi.org/10.1016/j.fuel.2011.10.049.
dc.relation.references[9] C.K. Law, C.H. Lee, N. Srinivasan, Combustion characteristics of water-in-oil emulsion droplets, Combust. Flame. 37 (1980) 125–143. https://doi.org/10.1016/0010-2180(80)90080-2.
dc.relation.references[10] R.H. C. R. Shaddix, D, Combustion Properties of Biomass Flash Pyrolysis Oils : Final Project Report, 1999. https://doi.org/10.2172/5983.
dc.relation.references[11] C.R. Shaddix, S.P. Huey, Combustion characteristics of fast pyrolysis oils derived from hybrid poplar, Dev. Thermochem. Biomass Convers. (1997) 1630.
dc.relation.references[12] M.J. Wornat, B.G. Porter, N.Y.C. Yang, Single Droplet Combustion of Biomass Pyrolysis Oils, Energy & Fuels. 8 (1994) 1131–1142. https://doi.org/10.1021/Ef00047a018.
dc.relation.references[13] C. Branca, C. Di Blasi, Multistep mechanism for the devolatilization of biomass fast pyrolysis oils, Ind. Eng. Chem. Res. 45 (2006) 5891–5899. https://doi.org/10.1021/ie060161x.
dc.relation.references[14] F. Stankovikj, A.G. McDonald, G.L. Helms, M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, Energy and Fuels. 30 (2016) 6505–6524. https://doi.org/10.1021/acs.energyfuels.6b01242.
dc.relation.references[15] D.C.K. Rao, S. Syam, S. Karmakar, R. Joarder, Experimental investigations on nucleation , bubble growth , and micro- explosion characteristics during the combustion of ethanol / Jet A-1 fuel droplets, Exp. Therm. Fluid Sci. 89 (2017) 284–294. https://doi.org/10.1016/j.expthermflusci.2017.08.025.
dc.relation.references[16] A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Aerosol generation by reactive boiling ejection of molten cellulose, Energy Environ. Sci. 4 (2011) 4306–4321. https://doi.org/10.1039/c1ee01876k.
dc.relation.references[17] J.H. Han, C.D.A.E. Han, Bubble Nucleation in Polymeric Liquids . 11 . Theoretical Considerations, J. Polym. Sci. B Polym. Phys. 28 (1990) 743–761. https://doi.org/10.1002/polb.1990.090280510.
dc.relation.references[18] J.L. Katz, Bubble Nucleation in Liquids, AIChE J. 21 (1975) 833–848. https://doi.org/10.1002/aic.690210502.
dc.relation.references[19] D.C. Venerus, N. Yala, B. Bernstein, Analysis of diffusion-induced bubble growth in viscoelastic liquids, J. Non-Newtonian Fluid Mech. 75 (1998) 55–75. https://doi.org/10.1016/S0377-0257(97)00076-1.
dc.relation.references[20] H. Schulz, Short history and present trends of Fischer – Tropsch synthesis, 186 (1999) 3–12. [21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300.
dc.relation.references[21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300.
dc.relation.references[22] Y. Cheng, Y. Shen, D. Liu, J. Xu, Y. Sui, Numerical analysis of bubble bursting at the liquid surface by wave propagation, Int. J. Therm. Sci. 152 (2020) 106341. https://doi.org/10.1016/j.ijthermalsci.2020.106341.
dc.relation.references[23] B.Y. Ni, A.M. Zhang, G.X. Wu, Simulation of a fully submerged bubble bursting through a free surface, Eur. J. Mech. B/Fluids. 55 (2016) 1–14. https://doi.org/10.1016/j.euromechflu.2015.08.001.
dc.relation.references[24] K.M. Butler, A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, 2002. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861181.
dc.relation.references[25] H.-Y. Kwak, Y.W. Kim, Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions, Int. J. Heat Mass Transf. 41 (1998) 757–767. https://doi.org/10.1016/S0017-9310(97)00182-8.
dc.relation.references[26] L. Hao, Analysis of bubble growth and motion dynamics in superheated liquid during flash evaporation, Int. J. Heat Mass Transf. 151 (2020) 119356. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119356.
dc.relation.references[27] S. Hoon, C. Park, J. Lee, B. Lee, A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool, Nucl. Eng. Technol. 49 (2017) 692–699. https://doi.org/10.1016/j.net.2016.12.006.
dc.relation.references[28] F. Stankovikj, M. Garcia-perez, TG-FTIR Method for the Characterization of Bio-oils in Chemical Families, Energy & Fuels. 30 (2017) 1689–1701. https://doi.org/10.1021/acs.energyfuels.6b03132.
dc.relation.references[29] F. Stankovikj, C.-C. Tran, S. Kaliaguine, M. V. Olarte, M. Garcia-Perez, Evolution of Functional Groups during Pyrolysis Oil Upgrading, Energy & Fuels. (2017) acs.energyfuels.7b01251. https://doi.org/10.1021/acs.energyfuels.7b01251.
dc.relation.references[30] A.R. Teixeira, R.J. Hermann, J.S. Kruger, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Microexplosions in the upgrading of biomass-derived pyrolysis oils and the effects of simple fuel processing, ACS Sustain. Chem. Eng. 1 (2013) 341–348. https://doi.org/10.1021/sc300148b.
dc.relation.references[31] G. Lu, X. Wang, W. Yan, International Journal of Heat and Mass Transfer Nucleate boiling inside small evaporating droplets : An experimental and numerical study, Int. J. Heat Mass Transf. 108 (2017) 2253–2261. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.081.
dc.relation.references[32] D. Yepes, F. Chejne, Gasificación de biomasa residual en el sector floricultor , caso : Oriente Antioqueño Gasification of waste biomass in the flower industry , case : Eastern Antioquia, ION. 25 (2012) 49–55.
dc.relation.references[33] G. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665.
dc.relation.references[34] Z. Xiong, Y. Wang, S.S.A. Syed-Hassan, X. Hu, H. Han, S. Su, K. Xu, L. Jiang, J. Guo, E.E.S. Berthold, S. Hu, J. Xiang, Effects of heating rate on the evolution of bio-oil during its pyrolysis, Energy Convers. Manag. 163 (2018) 420–427. https://doi.org/10.1016/j.enconman.2018.02.078.
dc.relation.references[35] S.I. Yang, M.S. Wu, T.C. Hsu, Spray combustion characteristics of kerosene/bio-oil part I: Experimental study, Energy. 119 (2017) 26–36. https://doi.org/10.1016/j.energy.2016.12.062.
dc.relation.references[36] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Fuel oil quality and combustion of fast pyrolysis bio-oils, VTT Publ. (2013) 79. https://doi.org/10.1016/j.apenergy.2013.11.040.
dc.relation.references[37] W.L.H. Hallett, N.A. Clark, A model for the evaporation of biomass pyrolysis oil droplets, 85 (2006) 532–544. https://doi.org/10.1016/j.fuel.2005.08.006.
dc.relation.references[38] D.E. Spiel, The number and size of jet drops produced by air bubbles bursting on Understanding bio-oil droplets microexplosions in oxyfuel combustion a fresh water surface, J. Geophys. Res. 99 (1994) 10289–10296. https://doi.org/10.1029/94JC00382.
dc.relation.references[39] R.P.B. Ramachandran, G. Van Rossum, W.P.M. Van Swaaij, S.R.A. Kersten, Evaporation of biomass fast pyrolysis oil: Evaluation of char formation, Environ. Prog. Sustain. Energy. (2009). https://doi.org/10.1002/ep.10388.
dc.relation.references[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.
dc.relation.references[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.
dc.relation.references[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b.
dc.relation.references[41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006.
dc.relation.references[42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCombustibles
dc.subject.lembTransformation of waste
dc.subject.lembTransformación de residuos
dc.subject.proposalPyrolysis
dc.subject.proposalCO2
dc.subject.proposalChar reactivity
dc.subject.proposalDroplet evaporation
dc.subject.proposalBio-oil
dc.subject.proposalChar
dc.subject.proposalBio-aceite
dc.subject.proposalPirólisis
dc.subject.proposalCarbón
dc.subject.proposalReactividad del carbón
dc.subject.proposalEvaporación de gotas
dc.title.translatedComprensiónde las micro explosiones de gotas de bio-aceite en condiciones de oxicombustión.
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinciencias
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito