Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSoto Sedano, Johana Carolina
dc.contributor.advisorChaparro Giraldo, Alejandro
dc.contributor.authorRodriguez Abril, Edna Yadira
dc.date.accessioned2021-10-16T15:24:25Z
dc.date.available2021-10-16T15:24:25Z
dc.date.issued2021-11-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80567
dc.descriptionilustraciones, diagramas
dc.description.abstractEn esta investigación se estudiaron cuatro genotipos de soya colombiana (Brasilera 1, Brasilera 2, FNS01 y Soy SK-7), bajo un sistema de transformación genética mediada por Agrobacterium tumefaciens cepa AGL0, induciendo organogénesis directa a partir de nodo cotiledonar y realizando selección con el herbicida glifosato. Los genotipos fueron evaluados durante las fases in vitro de inducción de brote (IB), elongación de brote (EB) y enraizamiento. Además, se evaluó la etapa de endurecimiento y se determinó la eficiencia de transformación. No se encontraron diferencias significativas entre las cuatro variedades durante la fase in vitro ni durante el endurecimiento. Se obtuvieron transformantes de las cuatro variedades y la variedad Brasilera 1 presentó la mayor eficiencia de transformación con 3.7%. (Texto tomado de la fuente)
dc.description.abstractIn this research, four Colombian soybean genotypes (Brasilera 1, Brasilera 2, FNS01 y Soy SK-7) were studied under a system of genetic transformation mediated by Agrobacterium tumefaciens, strain AGL0, inducing direct organogenesis from the cotyledonary node and performing selection with the herbicide glyphosate. Genotypes were evaluated during the in vitro sprout induction (IB), sprout elongation (BE) and rooting phases. In addition, the hardening stage was evaluated, and transformation efficiency was determined. No significant differences were found between the four varieties during the in vitro phases or during hardening. Transformants of the four varieties were obtained, and Brasilera 1 presented the highest transformation efficiency at 3.7%.
dc.format.extentxviii, 55 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.titleEvaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupIngeniería Genética de Plantas
dc.description.degreelevelMaestría
dc.description.degreenameMagister en ciencias agrarias
dc.description.researchareaGenética y fitomejoramiento
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronómicas
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAnami, S., Njuguna, E., Coussens, G., Aesaert, S., & Van Lijsebettens, M. (2013). Higher plant transformation: Principles and molecular tools. International Journal of Developmental Biology, 57(6–8), 483–494. https://doi.org/10.1387/ijdb.130232mv
dc.relation.referencesBarfoot, P., & Brookes, G. (2014). Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops & Food, 5(2), 149–160. https://doi.org/10.4161/gmcr.28449
dc.relation.referencesBarry, G., Kishore, G., Padgette, S., & Talling, W. (1997). Patente no US 6248876 B1. USA.
dc.relation.referencesCaicedo Guerrero, S., Tibocha Ardila, Y., Campuzano Duque, L. F., Flórez Gómez, D. L., & Arguelles Cardenas, J. (2020). Productive performance of seven soybeans genotypes in acid soils of the Colombian Orinoquía. Agronomy Mesoamerican, 31(1), 59–68. https://doi.org/10.15517/AM.V31I1.34440
dc.relation.referencesChristianson, M. L., Warnick, D. A., & Carlson, P. S. (1983). A Morphogenetically Competent Soybean Suspension Culture Abstract. SCIENCE, 222(7), 632–634.
dc.relation.referencesClemente, T. E., Lavallee, B. J., Howe, A. R., Conner-ward, D., Rozman, R. J., Hunter, P. E., … Hinchee, M. A. (2000). Progeny Analysis of Glyphosate Selected Transgenic Soybeans Derived from Agrobacterium-Mediated Transformation. CROP SCIENCE, 40, 797–803
dc.relation.referencesDonaldson, P. A., & Simmonds, D. H. (2000). Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports, 19(5), 478–484. https://doi.org/10.1007/s002990050759
dc.relation.referencesDroste, A., Pasquali, G., & Bodanese-Zanettini, M. H. (2002). Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica, 127(3), 367–376. https://doi.org/10.1023/A:1020370913140
dc.relation.referencesGalindo, L. (2019). Establecimiento de una curva de selección in vitro con glifosato en un sistema de regeneración de tres variedades colombianas de soya (Glycine Max (L).Merrill). Universidad INCCA de Colombia.
dc.relation.referencesGelvin, S. B. (2003). Agrobacterium-Mediated Plant Transformation: the Biology behind the " Gene-Jockeying " Tool. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 67(1), 16–37. https://doi.org/10.1128/MMBR.67.1.16–37.2003
dc.relation.referencesGelvin, S. B. (2012). Traversing the cell : Agrobacterium T-DNA ’ s journey to the host genome, 3(March), 1–11. https://doi.org/10.3389/fpls.2012.00052
dc.relation.referencesHeringer, A. S., Santa-Catarina, C., & Silveira, V. (2018). Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics, 18(5–6), 1–25. https://doi.org/10.1002/pmic.201700265
dc.relation.referencesHinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., … Horsch, R. B. (1988). Production of transgenic soybean plants using agrobacterium-mediated DNA transfer. Bio/Technology, 6(8), 915–922. https://doi.org/10.1038/nbt0888-915
dc.relation.referencesISAAA. (2019). ISAAA Brief 55-2019: Executive Summary Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Retrieved from https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp
dc.relation.referencesJefferson, D. J., Graff, G. D., Chi-Ham, C. L., & Bennett, A. B. (2015). The emergence of agbiogenerics. Nature biotechnology, 33(8), 819.
dc.relation.referencesJimenez, J. (2014). Diseño de genes semi-sintéticos que confieran tolerancia a herbicidas en soya. Universidad Nacional de Colombia.
dc.relation.referencesLee, T., Tran, A., & Hansen, A. (2016). Major factors affecting global soybean and products trade projections.
dc.relation.referencesLi, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., … Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246
dc.relation.referencesLi, W., Ning, H., Lv, W., & Li, W. (2008). Optimization of the agrobacterium_mediated transformation systems of soybean cotyledonary node. Science Agriculture, 41, 971–977.
dc.relation.referencesLi, Y. H., Li, W., Zhang, C., Yang, L., Chang, R. Z., Gaut, B. S., & Qiu, L. J. (2010). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytologist, 188(1), 242–253. https://doi.org/10.1111/j.1469-8137.2010.03344.x
dc.relation.referencesMa, X. H., & Wu, T. L. (2008). Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiologiae Plantarum, 30(2), 209–216. https://doi.org/10.1007/s11738-007-0109-3
dc.relation.referencesMiki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. Journal of Biotechnology, 107(3), 193–232. https://doi.org/10.1016/j.jbiotec.2003.10.011
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2019). Soya. Direccion de cadenas agricolas y forestales. Nutrition & Food Science. https://doi.org/10.1108/nfs.2012.01742eaa.013
dc.relation.referencesOlhoft, P. M., & Somers, D. A. (2001). L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 20(8), 706–711. https://doi.org/10.1007/s002990100379
dc.relation.referencesPaes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., … Grossi-de-Sa, M. F. (2020). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01228
dc.relation.referencesPareddy, D., Chennareddy, S., Anthony, G., Sardesai, N., Mall, T., Minnicks, T., … Sarria, R. (2020). Improved soybean transformation for efficient and high throughput transgenic production. Transgenic Research, 29(3), 267–281. https://doi.org/10.1007/s11248-020-00198-8
dc.relation.referencesParrott, W. A., Hoffman, L. M., Hildebrand, D. F., Williams, E. G., & Collins, G. B. (1989). Recovery of primary transformants of soybean. Plant Cell Reports, 7, 615–617.
dc.relation.referencesPaz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213.
dc.relation.referencesPaz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting. Transformation, 167–179.
dc.relation.referencesQiu, L. J., Xing, L. L., Guo, Y., Wang, J., Jackson, S. A., & Chang, R. Z. (2013). A platform for soybean molecular breeding: The utilization of core collections for food security. Plant Molecular Biology, 83(1–2), 41–50. https://doi.org/10.1007/s11103-013-0076-6
dc.relation.referencesRaza, G., Singh, M. B., & Bhalla, P. L. (2017). In Vitro Plant Regeneration from Commercial Cultivars of Soybean. BioMed Research International, 2017. https://doi.org/10.1155/2017/7379693
dc.relation.referencesRaza, G., Singh, M. B., & Bhalla, P. L. (2020). Somatic embryogenesis and plant regeneration from commercial soybean cultivars. Plants, 9(1). https://doi.org/10.3390/plants9010038
dc.relation.referencesReddy, M. S. S., Dinkins, R. D., & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Reports, 21(7), 676–683. https://doi.org/10.1007/s00299-002-0567-4
dc.relation.referencesReichert, N. A., Young, M. M., & Woods, A. (2003). Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell, Tissue and Organ Culture, 75, 273–277.
dc.relation.referencesRibichich Karina F. Mariana Chiozza, Selva Ávalos-Britez, Julieta V. Cabello, Augustin L. Arce, Geronimo Watson, Claudia Arias , Margarita Portapila , Federico Trucco , Maria E. Otegui and Raquel L. Chan. Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. Journal of Experimental Botany, Vol. 71, No. 10 pp. 3142–3156, 2020 doi:10.1093/jxb/eraa064.
dc.relation.referencesRidner, E. (2006). Soja, propiedades nutricionales y su impacto en la salud. Chemistry & ….
dc.relation.referencesRojas, A., Lopez Pazos, S., & Chaparro Giraldo, A. (2018). Screening of colombian soybean genotypes for agrobacterium mediated genetic transformation conferring tolerance to glyphosate. Agronomia Colombiana, 36(1), 24–34. https://doi.org/10.15446/agron.colomb.v36n1.67440
dc.relation.referencesRose, R. J. (2019). Somatic embryogenesis in the Medicago truncatula model: Cellular and molecular mechanisms. Frontiers in Plant Science, 10(March). https://doi.org/10.3389/fpls.2019.00267
dc.relation.referencesRüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture. Frontiers in bioengineering and biotechnology, 6, 71. https://doi.org/10.3389/fbioe.2018.00071
dc.relation.referencesSalammal, T., Ramesh, V., Jiang, S.-Y., Ganapathi, A., & Ramachandr, S. (2013). In vitro Regeneration and Genetic Transformation of Soybean: Current Status and Future Prospects. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. https://doi.org/10.5772/54268
dc.relation.referencesSiehl Daniel L, Yumin Tao , Henrik Albert , Yuxia Dong , Matthew Heckert , Alfredo Madrigal , Brishette Lincoln-Cabatu , Jian Lu , Tamara Fenwick , Ericka Bermudez , Marian Sandoval , Caroline Horn , Jerry M Green , Theresa Hale , Peggy Pagano , Jenna Clark , Ingrid A Udranszky , Nancy Rizzo , Timothy Bourett , Richard J Howard , David H Johnson , Mark Vogt , Goke Akinsola , Linda Castle. Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol. 2014 Nov;166(3):1162-76. doi: 10.1104/pp.114.247205
dc.relation.referencesShou, H., Frame, B. R., Whitham, S. A., & Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 13(2), 201–208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53
dc.relation.referencesSomers, D. A., Samac, D. A., & Olhoft, P. M. (2003). Recent advances in legume transformation. Plant Physiology, 131(3), 892–899. https://doi.org/10.1104/pp.102.017681
dc.relation.referencesSong, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., … Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278
dc.relation.referencesSoto, N., Delgado, C., Hernández, Y., Rosabal, Y., Ferreira, A., Pujol, M., … Enríquez, G. A. (2017). Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell, Tissue and Organ Culture, 128(1), 187–196. https://doi.org/10.1007/s11240-016-1099-x
dc.relation.referencesSoto, N., Ferreira, A., Delgado, C., & Enríquez, G. a. (2016). In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnologia Aplicada, 30(1), 34–38.
dc.relation.referencesSteward, F. C., Mapes, M. O., & Mears, K. (1958). GROWTH AND ORGANIZED DEVELOPMENT OF CULTURED CELLS. II. Organization in Cultures Grown from Freely Suspended Cell. American Journal of Botany, 45(10), 705–708. https://doi.org/10.1002/j.1537-2197.1958.tb10599.x
dc.relation.referencesSundar, I. K., & Sakthivel, N. (2008). Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 165(16), 1698–1716. https://doi.org/10.1016/j.jplph.2008.08.002
dc.relation.referencesTravella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W., & Harwood, W. A. (2005). A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 23(12), 780–789. https://doi.org/10.1007/s00299-004-0892-x
dc.relation.referencesValencia R., R., Carmen C, H., Vargas, H., & Arrieta, G. (2006). Variedades mejoradas de soya para zonas productoras actuales y potenciales de Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 4(2–3), 7–15.
dc.relation.referencesValencia R., R., & Ligarreto M., G. (2010). Soybean breeding (Glycine max [L.] Merril) for the Colombian Altillanura: a prospective and conceptual view. Agronomía Colombiana, 28(2), 155–163.
dc.relation.referencesVon Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249. https://doi.org/10.1023/A:1015673200621
dc.relation.referencesYang, S., Hu, Y., Cheng, Z., Rice, J. H., Miao, L., Ma, J., … Gai, J. (2019). An efficient Agrobacterium-mediated soybean transformation method using green fluorescent protein as a selectable marker. Plant Signaling and Behavior, 14(7), 1–7. https://doi.org/10.1080/15592324.2019.1612682
dc.relation.referencesZeng, P., Vadnais, D. A., Zhang, Z., & Polacco, J. C. (2004). Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Reports. https://doi.org/10.1007/s00299-003-0712-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSoybean
dc.subject.lembSoya
dc.subject.lembIn vitro culture
dc.subject.lembCiltivo in vitro
dc.subject.lembRegeneración in vitro
dc.subject.proposalGenotipos
dc.subject.proposalRegeneración
dc.subject.proposalTransformación
dc.subject.proposalGlifosato
dc.subject.proposalGenotype
dc.subject.proposalRegeneration
dc.subject.proposalTransformation
dc.subject.proposalGlyphosate
dc.title.translatedEvaluation of the in vitro behavior of soybean genotypes during genetic transformation mediated by Agrobacterium tumefaciens.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameFENALCE


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito