Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGordillo Guzmán, Gerardo
dc.contributor.authorPeña Bermúdez , Julián Camilo
dc.date.accessioned2021-10-25T13:58:26Z
dc.date.available2021-10-25T13:58:26Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80605
dc.descriptionilustraciones, fotografías, gráficas
dc.description.abstractEn este trabajo se reportan los principales aportes realizados para cumplir los objetivos de esta propuesta de tesis, donde se hizo especial énfasis en el desarrollo y evaluación de un sistema automatizado para la deposición de películas delgadas de ZnO con propiedades adecuadas para uso en celdas solares, usando el método de Evaporación Reactiva Asistida por Plasma (PARE). Se incluye una descripción del equipo implementado para depositar películas delgadas de ZnO por el método PARE, mencionando los avances y mejoras realizadas en este trabajo en relación con el equipo usado previamente por nuestro Grupo, describiendo en detalle los nuevos componentes del hardware y el software desarrollado, así como del diseño novedoso que se hizo a la fuente de evaporación de Zn, basado en el concepto de celda de efusión tipo celda Knudsen. De esta forma se logró mejorar significativamente tanto la baja reproducibilidad de las propiedades optoeléctricas de las películas delgadas de ZnO como la inhomogeneidad en el espesor que presentaban las películas de ZnO depositadas usando la versión anterior de reactor desarrollado por nuestro Grupo. El trabajo de tesis incluye también resultados de caracterización realizada a las películas de ZnO depositadas, usando diferentes técnicas para evaluar las propiedades ópticas, eléctricas y morfológicas; además, se presenta un estudio de la influencia de la configuración de la tapa de la celda Knudsen sobre la homogeneidad en espesor y las pruebas de verificación del funcionamiento del sensor que indica la presencia de Zn en el reactor. A través de un estudio de parámetros de deposición se logró encontrar condiciones para la preparación de películas delgadas de ZnO con propiedades optoeléctricas adecuadas para su uso como ventana óptica en celdas basadas en compuestos con estructura chalcopirita (CIGS) y estructura kesterita (CZTS) y como capa ETL en celdas solares basadas en compuestos con estructura perovskita. (Texto tomado de la fuente).
dc.description.abstractThis paper reports the main contributions made to meet the objectives of this thesis proposal, where special emphasis was placed on the development and evaluation of an automated system for the deposition of thin ZnO films with properties suitable for use in solar cells, using the Plasma Assisted Reactive Evaporation (PARE) method. A description of the equipment implemented to deposit ZnO thin films by the PARE method is included, mentioning the advances and improvements made in this work in relation to the equipment previously used by our Group, describing in detail the new hardware components and the software developed. as well as the novel design that was made to the Zn evaporation source, based on the concept of a Knudsen cell-type effusion cell. In this way, it was possible to significantly improve both the low reproducibility of the optoelectric properties of the thin ZnO films and the inhomogeneity in the thickness presented by the ZnO films deposited using the previous version of the reactor developed by our Group. The thesis work also includes the results of the characterization carried out on the deposited ZnO films, using different techniques to evaluate the optical, electrical and morphological properties; In addition, a study of the influence of the configuration of the lid of the Knudsen cell on the homogeneity in thickness and the verification tests of the operation of the sensor that indicates the presence of Zn in the reactor is presented. Through a study of deposition parameters it was possible to find conditions for the preparation of thin ZnO films with optoelectric properties suitable for use as an optical window in cells based on compounds with chalcopyrite structure (CIGS) and kesterite structure (CZTS) and as ETL layer in solar cells based on compounds with perovskite structure.
dc.description.sponsorshipFundación para la promoción de la investigación y la tecnología
dc.format.extentxviii, 71 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDesarrollo y evaluación de planta piloto automatizada para la fabricación de películas delgadas de óxido de zinc para uso en celdas solares
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de materiales semiconductores y energía solar
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaIngeniería de superficies
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] M. K. H. Rabaia et al., “Environmental impacts of solar energy systems: A review,” Sci. Total Environ., vol. 754, p. 141989, 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.141989.
dc.relation.references[2] C.-N. Wang, T.-T. Dang, H. Tibo, and D.-H. Duong, “Assessing Renewable Energy Production Capabilities Using DEA Window and Fuzzy TOPSIS Model,” Symmetry , vol. 13, no. 2. 2021, doi: 10.3390/sym13020334
dc.relation.references[3] W. S. de Amorim et al., “The nexus between water, energy, and food in the context of the global risks: An analysis of the interactions between food, water, and energy security,” Environ. Impact Assess. Rev., vol. 72, pp. 1–11, 2018, doi: https://doi.org/10.1016/j.eiar.2018.05.002.
dc.relation.references[4] N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev., vol. 62, pp. 1092–1105, 2016, doi: https://doi.org/10.1016/j.rser.2016.05.022.
dc.relation.references[5] J. C. Pena and G. Gordillo, “Photovoltaic energy in the Dominican Republic: current status, policies, currently implemented projects, and plans for the future.,” Int. J. Energy, Environ. Econ., vol. 26, no. 4, pp. 270–284, 2020.
dc.relation.references[6] N. M. Haegel et al., “Terawatt-scale photovoltaics: Transform global energy,” Science (80-. )., vol. 364, no. 6443, pp. 836 LP – 838, May 2019, doi: 10.1126/science.aaw1845.
dc.relation.references[7] Global Atlas Carbon, “Fossil Fuels Emissions,” 2019. http://www.globalcarbonatlas.org/en/CO2-emissions (accessed Apr. 26, 2021).
dc.relation.references[8] Fraunhofer-Institut für Solare Energiesysteme ISE, “Photovoltaics report,” Freiburg, 2019
dc.relation.references[9] N. AL-Rousan, N. A. M. Isa, and M. K. M. Desa, “Advances in solar photovoltaic tracking systems: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 2548–2569, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.077.
dc.relation.references[10] G. H. Bauer, Photovoltaic Solar Energy Conversion. Springer Berlin Heidelberg, 2015.
dc.relation.references[11] J. Bisquert, The Physics of Solar Energy Conversion: Perovskites, Organics, and Photovoltaic Fundamentals. CRC Press, 2020.
dc.relation.references[12] Y. Xu, J. Li, Q. Tan, A. L. Peters, and C. Yang, “Global status of recycling waste solar panels: A review,” Waste Manag., vol. 75, pp. 450–458, 2018, doi: https://doi.org/10.1016/j.wasman.2018.01.036.
dc.relation.references[13] VDMA, “International Technology Roadmap for Photovoltaic (ITRPV) 2020 Results,” 2021.
dc.relation.references[14] V. Bheemreddy, J. J. B. Liu, A. Wills, and C. P. Murcia, “Life Prediction Model Development for Flexible Photovoltaic Modules using Accelerated Damp Heat Testing,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018, pp. 1249–1251, doi: 10.1109/PVSC.2018.8547610.
dc.relation.references[15] C. Brabec, V. Dyakonov, J. Parisi, and N. Sariciftci, Organic Photovoltaics: Concepts and Realization. 2003.
dc.relation.references[16] A. Cherouana and R. Labbani, “Study of CZTS and CZTSSe solar cells for buffer layers selection,” Appl. Surf. Sci., vol. 424, pp. 251–255, 2017, doi: https://doi.org/10.1016/j.apsusc.2017.05.027.
dc.relation.references[17] C. Brabec, V. Dyakonov, J. Parisi, and N. Sariciftci, Organic Photovoltaics: Concepts and Realization. 2003.
dc.relation.references[18] Q. Liu et al., “18% Efficiency organic solar cells,” Sci. Bull., Jan. 2020, doi: 10.1016/j.scib.2020.01.001.
dc.relation.references[19] W. Wang et al., “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Adv. Energy Mater., vol. 4, no. 7, p. 1301465, May 2014, doi: https://doi.org/10.1002/aenm.201301465.
dc.relation.references[20] NREL, “Best Research-Cell Efficiencies,” 2021.
dc.relation.references[21] Y. Liang, “Chemical vapor deposition synthesis of Ge doped ZnO nanowires and the optical property investigation,” Phys. Lett. A, vol. 383, no. 24, pp. 2928–2932, 2019, doi: https://doi.org/10.1016/j.physleta.2019.06.024.
dc.relation.references[22] L. Montoya and P. ARANGO, “Structural and morphological characterization of zno films deposited on glass supports,” DYNA, vol. 74, pp. 37–45, Mar. 2007.
dc.relation.references[23] M. R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, and L. M. Torres-Martínez, “ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 22, pp. 10301–10310, 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.04.054.
dc.relation.references[24] N. Kumari, S. R. Patel, and J. V Gohel, “Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application,” Opt. Quantum Electron., vol. 50, no. 4, p. 180, 2018, doi: 10.1007/s11082-018-1376-5.
dc.relation.references[25] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954, doi: 10.1063/1.1721711.
dc.relation.references[26] A. Gueddim, N. Bouarissa, A. Naas, F. Daoudi, and N. Messikine, “Characteristics and optimization of ZnO/CdS/CZTS photovoltaic solar cell,” Appl. Phys. A, vol. 124, p. 199, Feb. 2018, doi: 10.1007/s00339-018-1626-1.
dc.relation.references[27] A. Manor, E. A. Katz, T. Tromholt, and F. C. Krebs, “Enhancing functionality of ZnO hole blocking layer in organic photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 98, pp. 491–493, 2012, doi: https://doi.org/10.1016/j.solmat.2011.11.026.
dc.relation.references[28] J. Luo, Y. Wang, and Q. Zhang, “Progress in perovskite solar cells based on ZnO nanostructures,” Sol. Energy, vol. 163, pp. 289–306, 2018, doi: https://doi.org/10.1016/j.solener.2018.01.035.
dc.relation.references[29] S. Cornelius, “Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering,” Tesis doctoral (Technische Universität Dresden, Dresden), 2013.
dc.relation.references[30] J. I. Clavijo Penagos, “Síntesis y caracterización de películas delgadas de CuIn1-xGaxSe2 e In2Se,” Tesis doctoral (Universidad Nacional de Colombia), 2011.
dc.relation.references[31] B. Chen, H. Hu, T. Salim, and Y. M. Lam, “A facile method to evaluate the influence of trap densities on perovskite solar cell performance,” J. Mater. Chem. C, vol. 7, no. 19, pp. 5646–5651, 2019, doi: 10.1039/C9TC00816K.
dc.relation.references[32] F. Mesa, A. Dussan, and G. Gordillo, “Evidence of trapping levels and photoelectric properties of Cu3BiS3 thin films,” Phys. B Condens. Matter, vol. 404, no. 23, pp. 5227–5230, 2009, doi: https://doi.org/10.1016/j.physb.2009.08.302.
dc.relation.references[33] A. Wibowo et al., “ZnO nanostructured materials for emerging solar cell applications,” RSC Adv., vol. 10, pp. 42838–42859, Nov. 2020, doi: 10.1039/D0RA07689A.
dc.relation.references[34] K. Wang, C. Liu, T. Meng, C. Yi, and X. Gong, “Inverted organic photovoltaic cells,” Chem. Soc. Rev., vol. 45, no. 10, pp. 2937–2975, 2016, doi: 10.1039/C5CS00831J.
dc.relation.references[35] J. S. Jang et al., “Comparison study of ZnO-based quaternary TCO materials for photovoltaic application,” J. Alloys Compd., vol. 793, pp. 499–504, 2019, doi: https://doi.org/10.1016/j.jallcom.2019.04.042
dc.relation.references[36] G. Gordillo, A. A. Ramirez Botero, and E. A. Ramirez, “Development of novel control system to grow ZnO thin films by reactive evaporation,” J. Mater. Res. Technol., vol. 5, no. 3, pp. 219–225, 2016, doi: https://doi.org/10.1016/j.jmrt.2015.11.004.
dc.relation.references[37] S. Chen et al., “Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells,” Mater. Lett., vol. 217, pp. 251–254, 2018, doi: https://doi.org/10.1016/j.matlet.2018.01.090.
dc.relation.references[38] K. Rakstys, “Molecularly Engineered Hole Transporting Materials for High Performance Perovskite Solar Cells,” Tesis doctoral (École Polytechnique Fédérale de Lausanne), 2018.
dc.relation.references[39] M. F. Mohamad Noh et al., “The architecture of the electron transport layer for a perovskite solar cell,” J. Mater. Chem. C, vol. 6, no. 4, pp. 682–712, 2018, doi: 10.1039/C7TC04649A.
dc.relation.references[40] A. A. R. Botero, “Diseño y desarrolllo de un sistema automático para la síntesis de películas delgadas de ZnO utilizadas para la fabricación de celdas solares por el método de evaporación reactiva,” Tesis de Maestría (Universidad Nacional de Colombia, Bogotá), 2015.
dc.relation.references[41] A. Fridman, Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
dc.relation.references[42] K. J. Åström and T. Hägglund, Control PID avanzado. España: Pearson, 2009.
dc.relation.references[43] Norman S. Nise, Sistemas de control para ingenería, Tercera ed. México: Compañia editorial continental, 2004.
dc.relation.references[44] C. Suryanarayana and M. Grant Norton, X-Ray Diffraction: A Practical Approach. New York: Springer, 1988.
dc.relation.references[45} S. Nandi, S. A. Mishra, R. N. Sahoo, R. Swain, and S. Mallick, “Influence of TiO2 on Mucosal Permeation of Aceclofenac: Analysis of Crystal Strain and Dislocation Density,” Acta Chim. Slov. Vol 67, No 4 (2020)DO - 10.17344/acsi.2020.6129 , Dec. 2020.
dc.relation.references[46] R. García, “Dynamic Atomic Force Microscopy Methods,” Surf. Sci. Rep., vol. 47, pp. 197–301, Sep. 2002, doi: 10.1016/S0167-5729(02)00077-8.
dc.relation.references[47] F. Ruske, M. Wimmer, G. Köppel, A. Pflug, and B. Rech, “Optical characterization of high mobility polycrystalline ZnO:Al films,” in Proc.SPIE, Feb. 2012, vol. 8263, [Online]. Available: https://doi.org/10.1117/12.908969
dc.relation.references[48] Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express, vol. 5, no. 11, pp. 2415–2430, 2015, doi: 10.1364/OME.5.002415.
dc.relation.references[49] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E., vol. 16, no. 12, pp. 1214–1222, 1983, doi: 10.1088/0022-3735/16/12/023
dc.relation.references[50] J. Estrella, “Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltaico,” Tesis de maestría (Instituro Politécnico Nacional), 2016.
dc.relation.references[51] P.N. Paraskevopoulos, Modern Control Engineering. CRC Press, 2002.
dc.relation.references[52] M. S. Fadali and A. Visioli, Digital Control Engineering 2nd Edition. Academic Press, 2012.
dc.relation.references[53] R. Popov, N. Paunkov, V. Rangelova, and A. Georgiev, “Study of hybrid thermal system with photovoltaic panels using virtual instruments,” Renew. Energy, vol. 154, pp. 1053–1064, 2020, doi: https://doi.org/10.1016/j.renene.2020.03.024.
dc.relation.references[54] A. A. Ramirez, I. Gil, G. Gordillo, and A. M. Latifi, “Analysis of a plasma-assisted reactive evaporation process for preparation of ZnO thin films: Modeling and experimentation,” Thin Solid Films, vol. 698, p. 137846, 2020, doi: https://doi.org/10.1016/j.tsf.2020.137846.
dc.relation.references[55] G. Hanket, S. Fields, and J. Elliott, Design and testing of pilot-scale Cu and mixed-vapor Ga-In evaporation sources. 2014.
dc.relation.references[56] C. Wang and C. Yu, “Detection of chemical pollutants in water using gold nanoparticles as sensors: a review,” Rev. Anal. Chem., vol. 32, no. 1, pp. 1–14, 2013, doi: https://doi.org/10.1515/revac-2012-0023.
dc.relation.references[57] A. Ramírez, J. S. Oyola, C. L. Calderón, and G. Gordillo, “OPTO-ELECTRICAL CHARACTERIZATION OF n+-ZnO/i-ZnO BILAYERS GROWN IN SITU BY REACTIVE EVAPORATION WITHOUT USING EXTRINSIC DOPING,” Momento, pp. 25–42, 2016, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-44702016000100003&nrm=iso.
dc.relation.references[58] J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells, vol. 102, pp. 137–141, 2012, doi: https://doi.org/10.1016/j.solmat.2012.03.011.
dc.relation.references[59] R. Aisuwarya and Y. Hidayati, “Implementation of Ziegler-Nichols PID Tuning Method on Stabilizing Temperature of Hot-water Dispenser,” in 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 2019, pp. 1–5, doi: 10.1109/QIR.2019.8898259.
dc.relation.references[60] O. Gupta, “New Techniques of PID Controller Tuning of a DC Motor—Development of a Toolbox,” MIT Int. J. Electr. Instrum. Eng., vol. 2, pp. 65–69, Aug. 2012.
dc.relation.references[61] A. B. Corripio, Tuning of Industrial Control Systems, Second Edi. ISA—The Instrumentation, Systems, and Automation Society, 2001.
dc.relation.references[62] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, Second edi. Imperial College Press, 2006.
dc.relation.references[63] A. Barrios, “Análisis de métodos de sintonización para controladores PI industriales,” Tesis (Universidad tTecnologica de Bolivar), 2007.
dc.relation.references[64] J.-H. Song, Y. Her, J. Park, K.-D. Lee, and M.-S. Kang, “Simulink Implementation of a Hydrologic Model: A Tank Model Case Study,” Water , vol. 9, no. 9. 2017, doi: 10.3390/w9090639.
dc.relation.references[65] J. Kodosky, “LabVIEW,” Proc. ACM Program. Lang., vol. 4, no. HOPL, 2020, doi: 10.1145/3386328.
dc.relation.references[66] G. Zhang, X. Xie, and Y. You, “Multi-Channel Eddy Current Detector Based on Virtual Instrument Technology and Self-Balancing Technology,” Sens. Imaging, vol. 22, no. 1, p. 12, 2021, doi: 10.1007/s11220-021-00333-7.
dc.relation.references[67] L. Wang, PID Control system design and automatic tuning using MATLAB/Simulink. Wiley, 2020.
dc.relation.references[68] G.-C. Wang and T.-M. Lu, “Crystal Lattices and Reciprocal Lattices BT - RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis,” G.-C. Wang and T.-M. Lu, Eds. New York, NY: Springer New York, 2014, pp. 7–22.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMetallic films
dc.subject.lembPelículas metálicas
dc.subject.lembSolar cells
dc.subject.lembCélulas solares
dc.subject.lembFactory automation
dc.subject.lembFábricas - Automatización
dc.subject.proposalLabVIEW
dc.subject.proposalCeldas solares
dc.subject.proposalPelículas delgadas
dc.subject.proposalÓxido de zinc
dc.subject.proposalEvaporación reactiva
dc.subject.proposalSolar cells
dc.subject.proposalThin films
dc.subject.proposalZinc oxide
dc.subject.proposalReactive evaporation
dc.title.translatedDevelopment and evaluation of an automated pilot plant for the fabrication of zinc oxide thin films for use in solar cells
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaDepartamento de Ingeniería Mecánica y Mecatrónica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito