Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.advisorJiménez Builes, Jovani Alberto
dc.contributor.authorZapata Medina, Daniel
dc.date.accessioned2021-10-26T15:06:45Z
dc.date.available2021-10-26T15:06:45Z
dc.date.issued2021-10-22
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80615
dc.descriptionilustraciones, diagramas
dc.description.abstractLa deserción escolar es una problemática social de alto impacto para el sistema educativo, dificultando la movilidad social y la construcción de la equidad en un país. En la última década, con el auge de los datos estudiantiles, las investigaciones de este fenómeno en la educación ha sido abordado desde la minería de datos educativos y una de las principales problemáticas es su detección temprana, sobre todo en países emergentes y subdesarrollados donde el abandono escolar es cada vez más frecuente. Las instituciones educativas requieren detectar oportunamente el riesgo de deserción de estudiantes y así apoyar al estudiantado en su permanencia dentro del sistema educativo. Lo anterior, propició una revisión sistemática de literatura en el área computacional, demostrando que en los últimos cinco años se han desarrollado varios métodos para la detección temprana del riesgo de deserción escolar, y a su vez ha generado nuevos desafíos en la identificación de los factores mayormente influyentes, el planteamiento de nuevos métodos eficientes e interpretables que puedan ser implementados y la necesidad de representación y selección adecuada de características. Además, con este tipo de datos, es necesario una profunda tarea de preprocesamiento debido a la heterogeneidad de las variables. Sin embargo, no se trata sólo de encontrar las causas de la deserción, sino también reunir otras características que permitan generar estrategias para persuadir al estudiantado en su interés y decisión de permanecer en el sistema educativo. El propósito de esta tesis fue desarrollar un método basado en métricas para transformar las características iniciales, aportando al preprocesamiento y entendimiento profundo de los datos (análisis estadístico), de esta forma, apoyar una selección y representación óptima y adecuada de características, para luego llevarlas como entradas de clasificadores expertos en un tipo específico de características. Seguidamente, se utilizó la fusión a nivel de clasificador para obtener una respuesta más generalizada, ya que distintos clasificadores se equivocarán en muestras diferentes. Con esto, mejorar el rendimiento del clasificador y fácil interpretación de los resultados de los algoritmos de aprendizaje automático. La validación en términos de precisión, sensibilidad e interpretabilidad del método propuesto en la presente tesis se realizó en comparación con una técnica de minería de datos y las características iniciales, lo que permitió comprobar la capacidad de detección de la deserción escolar utilizando la transformación de características a partir de métricas, logrando un 82% de precisión y 64% de recall, estos resultados demuestran el aumento significativo con respecto al 71% de precisión y 57% de recall alcanzado con las características iniciales sin el uso de métricas. Por lo anterior, se recomienda su potencial aplicación en la analítica de datos educativos, que permita la predicción temprana del riesgo de deserción y la generación de estrategias que posibiliten persuadir al estudiantado de permanecer en la institución educativa. (Texto tomado de la fuente)
dc.description.abstractSchool dropout is a social problem with a high impact on the education system, hindering social mobility and the construction of equity in a country. In the last decade, with the rise of student data, research on this phenomenon in education has been approached from educational data mining and one of the main problems is its early detection, especially in emerging and underdeveloped countries where school dropout is increasingly frequent. Educational institutions need to detect students at risk of dropping out of school in a timely and thus support students in their permanence within the educational system. This led to a systematic literature review in the computational area, showing that in the last five years several methods have been developed for the early detection of dropout risk, and in turn has generated new challenges in the identification of the most influential factors, the approach of new efficient and interpretable methods that can be implemented and the need for adequate representation and selection of fatures. In addition, with this type of data, a deep preprocessing task is necessary due to the heterogeneity of the variables. However, it is not only a matter of finding the causes of dropout, but also of gathering other features that allow us to generate strategies to persuade students in their interest and decision to remain in the educational system. The purpose of this thesis was to develop a metric-based method for transform the initial features, contributing to the preprocessing and deep understanding of the data (statistical analysis), thus supporting an optimal and adequate selection and representation of features, and then taking them as inputs to expert classifiers on a specific type of features. Next, classifier-level fusion was used to obtain a more generalized answer, since different classifiers will be wrong on different samples. With this, improving the classifier performance and easy interpretation of the results of the machine learning algorithms. The validation in terms of accuracy, sensitivity and interpretability of the method proposed in this thesis was performed in comparison with a data mining technique and the initial features, which allowed testing the ability to detect school dropout using the reworking of features from metrics, achieving 82% precision and 64% recall, these results demonstrate the significant increase with respect to 71% precision and 57% recall achieved with the initial features without the use of metrics. Therefore, its potential application in educational data analytics is recommended to allow early prediction of the risk of dropout and the generation of strategies that make it possible to persuade students to remain in the educational institution.
dc.format.extentxviii, 105 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.ddc370 - Educación::379 - Asuntos de política pública en educación
dc.titleMétodo para la detección de estudiantes en riesgo de deserción, basado en un diseño de métricas y una técnica de minería de datos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.contributor.researchgroupGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas
dc.description.researchareaInteligencia artificial
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de la Computación y la Decisión
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAcero, A ;Achury, J C. ;Morales, J C.: University dropout: A prediction model for an engineering program in bogota, Colombia. En:B., Kloot (Ed.):Proceedings of the 8th Research in Engineering Education Symposium, REES 2019 - Making Connections, Research in Engineering Education Network, 2019. – ISBN 9780799226003, p.483–490
dc.relation.referencesAgrusti, F ;Mezzini, M ;Bonavolontá, G: Deep learning approach for predicting university dropout: A case study at roma Tre university. En:Journal of E-Learning and Knowledge Society16 (2020), Nr. 1, p. 44–54
dc.relation.referencesAguilar-Gonzalez, S ;Palafox, L: Prediction of Student Attrition Using MachineLearning. En:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)11835 LNAI (2019), p.212–222
dc.relation.referencesAhmad Tarmizi, S S. ;Mutalib, S ;Abdul Hamid, N H. ;Abdul-Rahman, S ;Md Ab Malik, A: A Case Study on Student Attrition Prediction in Higher EducationUsing Data Mining Techniques. En:Communications in Computer and InformationScience1100 (2019), p. 181–192
dc.relation.referencesAhmed, S A. ;Khan, S I.: A machine learning approach to Predict the Engineering Students at risk of dropout and factors behind: Bangladesh Perspective. En:2019 10th International Conference on Computing, Communication and NetworkingTechnologies, ICCCNT 2019, 2019
dc.relation.referencesAjit, Kumar J. ;C., K. J.: Dropout Classification through Discriminant FunctionAnalysis: A Statistical Approach. En:International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN :2456-33072 (2017), Nr. 4, p. 572–577
dc.relation.referencesAlban, M ;Mauricio, D: Neural networks to predict dropout at the universities.En:International Journal of Machine Learning and Computing9 (2019), Nr. 2, p.149–153. – ISSN 20103700
dc.relation.referencesAlban, Mayra ;David, Mauricio: Factors to predict dropout at the universities:A case of study in Ecuador. En:IEEE Global Engineering Education Conference,EDUCON2018-April (2018), p. 1238–1242. – ISBN 9781538629574
dc.relation.referencesAlban Taipe, M S. ;Mauricio Sánchez, D: Prediction of university dropout through technological factors: A case study in Ecuador. En:Espacios39 (2018), Nr.52
dc.relation.referencesAlejandro Gonzalez-Campos, Jose ;Manuel Carvajal-Muquillaza, Cristian;Elias Aspee-Chacon, Juan: Modeling of university dropout using Markov chains.En:UNICIENCIA34 (2020), Nr. 1, p. 129–146. – ISSN 1011–0275
dc.relation.referencesAlyahyan, E ;D ̈us ̧teg ̈or, D: Predicting academic success in higher education: literature review and best practices. En:International Journal of Educational Technology in Higher Education17 (2020), Nr. 1. – ISSN 23659440
dc.relation.referencesAmeri, S ;Fard, M J. ;Chinnam, R B. ;Reddy, C K.: Survival analysis based framework for early prediction of student dropouts. En:International Conference onInformation and Knowledge Management, ProceedingsVol. 24-28-Octo, 2016, p. 903–912
dc.relation.referencesAstin, Alexander: What matters in college: four critical years revisited. En:LiberalEducation4 (1993), p. 4
dc.relation.referencesBarros, T M. ;Silva, I ;Guedes, L A.: Determination of dropout student profilebased on correspondence analysis technique. En:IEEE Latin America Transactions17 (2019), Nr. 9, p. 1517–1523
dc.relation.referencesBean, John P.: Dropouts and turnover: The synthesis and test of a causal model of student attrition. En:Research in Higher Education12 (1980), Nr. 2, p. 155–187. –ISSN 1573–188X
dc.relation.referencesBean, John P. ;Metzner, Barbara S.: A Conceptual Model of Nontraditional Undergraduate Student Attrition. En:Review of Educational Research55 (1985), Nr. 4,p. 485–540
dc.relation.referencesBedregal-Alpaca, N ;Aruquipa-Velazco, D ;Cornejo-Aparicio, V: Data mining techniques to extract academic behavior profiles and predict university desertion[Técnicas de data mining para extraer perfiles comportamiento académico y predecirla deserción universitaria]. En:RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020 (2020), Nr. E27, p. 592–604
dc.relation.referencesBedregal-Alpaca, N ;Cornejo-Aparicio, V ;Zarate-Valderrama, J ;Yanque-Churo, P: Classification models for determining types of academic risk and predicting dropout in university students. En:International Journal of AdvancedComputer Science and Applications11 (2020), Nr. 1, p. 266–272
dc.relation.referencesBeemer, Joshua ;Spoon, Kelly ;He, Lingjun ;Fan, Juan juan ;Levine, Richard A.:Ensemble learning for estimating individualized treatment effects in student success studies. En:International Journal of Artificial Intelligence in Education28 (2018),Nr. 3, p. 315–335
dc.relation.referencesBlaser, R ;Fryzlewicz, P: Random rotation ensembles. En:Journal of MachineLearning Research17 (2016)
dc.relation.referencesBreiman, Leo: Random forests. En:Machine learning45 (2001), Nr. 1, p. 5–32
dc.relation.referencesBrown, I ;Mues, C: An experimental comparison of classification algorithms for imbalanced credit scoring data sets. En:Expert Systems with Applications39 (2012),Nr. 3, p. 3446–3453
dc.relation.referencesCabus, S J. ;De Witte, K: The effectiveness of active school attendance interventions to tackle dropout in secondary schools: a Dutch pilot case. En:EmpiricalEconomics49 (2015), Nr. 1, p. 65–80
dc.relation.referencesCabus, S J. ;De Witte, K: Why Do Students Leave Education Early? Theory andEvidence on High School Dropout Rates. En:Journal of Forecasting35 (2016), Nr. 8,p. 690–702
dc.relation.referencesCano, Alberto ;Zafra, Amelia ;Ventura, Sebastián: An interpretable classification rule mining algorithm. En:Information Sciences240 (2013), p. 1–20
dc.relation.referencesCastellanos, M C R. ;Alvarado, L D N. ;Villamil, J E P.: University student desertion analysis using agent-based modeling approach. En: COMPLEXIS 2018 -Proceedings of the 3rd International Conference on Complexity, Future InformationSystems and RiskVol. 2018-March, 2018, p. 128–135
dc.relation.referencesCastillo-Sanchez, Mario ;Gamboa-Araya, Ronny ;Hidalgo-Mora, Randall:Factors that influence student dropout and failing grades in a university mathematics course. En: UNICIENCIA 34 (2020), Nr. 1, p. 219–245. – ISSN 1011–0275
dc.relation.referencesCastro R., L F. ;Espitia P., E ;Montilla, A F.: Applying CRISP-DM in a KDD process for the analysis of student attrition. En:Communications in Computer andInformation Science885 (2018), p. 386–401[29]Chai, K E K. ;Gibson, D: Predicting the risk of attrition for undergraduate students with time based modelling. En:Proceedings of the 12th International Conference onCognition and Exploratory Learning in the Digital Age, CELDA 2015, 2015, p. 109–116
dc.relation.referencesChung, Jae Y. ;Lee, Sunbok: Dropout early warning systems for high school students using machine learning. En:Children and Youth Services Review96 (2019), Nr.November 2018, p. 346–353. – ISSN 01907409
dc.relation.referencesCosta, E B. ;Fonseca, B ;Santana, M A. ;de Ara ́ujo, F F. ;Rego, J: Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. En:Computers in HumanBehavior73 (2017), p. 247–256
dc.relation.referencesCover, T. M.: The Best Two Independent Measurements Are Not the Two Best.En:IEEE Transactions on Systems, Man, and CyberneticsSMC-4 (1974), Nr. 1, p.116–117
dc.relation.referencesCuji Chacha, B R. ;Gavilanes López, W L. ;Vicente Guerrero, V X. ;Villacis Villacis, W G.: Student Dropout Model Based on Logistic Regression.En:Communications in Computer and Information Science1194 CCIS (2020), p.321–333
dc.relation.referencesda Cunha, J A. ;Moura, E ;Analide, C: Data mining in academic databases to detect behaviors of students related to school dropout and disapproval. En: Advances in Intelligent Systems and Computing445 (2016), p. 189–198
dc.relation.referencesDa Fonseca Silveira, R ;Holanda, M ;De Carvalho Victorino, M ;Ladeira, M: Educational data mining: Analysis of drop out of engineering majors at the UnB - Brazil. En:Proceedings - 18th IEEE International Conference on MachineLearning and Applications, ICMLA 2019, 2019, p. 259–262
dc.relation.referencesDa Silva, Paulo M. ;Lima, Marilia N. ;Soares, Wedson L. ;Silva, Iago R. ;De Fagundes, Roberta A. ;De Souza, Fernado F.: Ensemble regression models applied to dropout in higher education. En:Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019(2019), p. 120–125. ISBN 9781728142531
dc.relation.referencesDe Santos, K J O. ;Menezes, A G. ;De Carvalho, A B. ;Montesco, C A E.:Supervised learning in the context of educational data mining to avoid university students dropout. En:Proceedings - IEEE 19th International Conference on AdvancedLearning Technologies, ICALT 2019, 2019, p. 207–208
dc.relation.referencesDelen, D ;Topuz, K ;Eryarsoy, E: Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition. En:EuropeanJournal of Operational Research281 (2020), Nr. 3, p. 575–587. – ISSN 03772217
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE).Boletín Técnico de la Investigación de Educación Formal 2018. 2019
dc.relation.referencesDharmawan, T ;Ginardi, H ;Munif, A: Dropout Detection Using Non-AcademicData. En:Proceedings - 2018 4th International Conference on Science and Technology,ICST 2018, 2018
dc.relation.referencesDing, C. ;Peng, H.Minimum redundancy feature selection from microarray gene expression data. 2003
dc.relation.referencesDurkheim E. (1951):Suicide: A study in sociology. (J.A. Spaulding G. Simpson,Trans.)Glencoe IL Free Press., 1897
dc.relation.referencesDwork, C ;Roth, A: The algorithmic foundations of differential privacy. En:Foundations and Trends in Theoretical Computer Science9 (2013), Nr. 3-4, p. 211–487
dc.relation.referencesEckert, K B. ;Suénaga, R: Analysis of attrition-retention of college students using classification technique in data mining [Análisis de deserción-permanencia de estudiantes universitarios utilizando técnica de clasificación minería de datos]. En: Formación Universitaria8 (2015), Nr. 5, p. 3–12
dc.relation.referencesElbir, A ;G ̈und ̈uz, E ;Diri, B: Estimating the School Dropout Trend by Using DataMining Methods [Veri Madenciliˇgi Y ̈ontemleri Kullanarak Okul Birakma EˇgilimininTahmin Edilmesi]. En:Proceedings - 2018 Innovations in Intelligent Systems andApplications Conference, ASYU 2018, 2018
dc.relation.referencesFenton, Norman ;Bieman, James:Software metrics: a rigorous and practical approach. 3. CRC press, 2014. – 618 p.
dc.relation.referencesFernández, J ;Rojas, A ;Daza, G ;Gómez, D ; ́Alvarez, A ;Orozco, ́A: Student desertion prediction using kernel relevance analysis. En:Lecture Notes in ComputerScience (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)11047 LNCS (2018), p. 263–270
dc.relation.referencesFonseca, M T. ;Gazo, P F.: Longitudinal study of the dropout and reentry process in students of social sciences: The case of Business Administration and Management[Estudio longitudinal del proceso de abandono y reingreso de estudiantes de CienciasSociales. El caso de Administraci. En:Educar55 (2019), Nr. 2, p. 401–417
dc.relation.referencesGamao, A O. ;Gerardo, B D.: Prediction-based model for student dropouts using modified mutated firefly algorithm. En:International Journal of Advanced Trends inComputer Science and Engineering8 (2019), Nr. 6, p. 3461–3469[
dc.relation.referencesGaviria, Alejandro: Los que suben y los que bajan. En: Educación y Movilidad Social en Colombia. Bogotá: Ediciones Alfa omega y Fedesarrollo(2002)
dc.relation.referencesGu, Q ;Cai, Z ;Zhu, L ;Huang, B: Data Mining on Imbalanced Data Sets. En:2008 International Conference on Advanced Computer Theory and Engineering, 2008.– ISSN 2154–7505, p. 1020–1024
dc.relation.referencesGuyon, Isabelle ;Elisseeff, André: An Introduction to Variable and Feature Selection. En:J. Mach. Learn. Res.3 (2003), mar, Nr. null, p. 1157–1182. – ISSN1532–4435
dc.relation.referencesHackeling, Gavin:Mastering Machine Learning with scikit-learn. Packt PublishingLtd, 2014
dc.relation.referencesHan, Jiawei ;Kamber, Micheline ;Pei, Jian:Data mining concepts and techniques third edition. 2011. – 83–124 p.
dc.relation.referencesHanchuan Peng;Fuhui Long;Ding, C.: Feature selection based on mutual in-formation criteria of max-dependency, max-relevance, and min-redundancy. En:IEEETransactions on Pattern Analysis and Machine Intelligence27 (2005), Nr. 8, p. 1226–1238
dc.relation.referencesHasan, M N.: A Comparison of Logistic Regression and Linear Discriminant Analysis in Predicting of Female Students Attrition from School in Bangladesh. En:2019 4th International Conference on Electrical Information and Communication Technology,EICT 2019, 2019
dc.relation.referencesHegde, V: Dimensionality reduction technique for developing undergraduate student dropout model using principal component analysis through R package. En:2016 IEEEInternational Conference on Computational Intelligence and Computing Research, IC-CIC 2016, 2017
dc.relation.referencesHegde, V ;Prageeth, P P.: Higher education student dropout prediction and analysis through educational data mining. En:Proceedings of the 2nd InternationalConference on Inventive Systems and Control, ICISC 2018, 2018, p. 694–699
dc.relation.referencesHeredia, D ;Amaya, Y ;Barrientos, E: Student Dropout Predictive Model UsingData Mining Techniques. En:IEEE Latin America Transactions13 (2015), Nr. 9, p.3127–3134 Networks, Computational Intelligence and Machine Learning, ESANN2015 - Proceedings, 2015, p. 319–324
dc.relation.referencesHernández-Blanco, Antonio ;Herrera-Flores, Boris ;Tomás, David ;Navarro-Colorado, Borja: A Systematic Review of Deep Learning Approaches to Educational Data Mining. En:Complexity2019 (2019), p. 22. – ISSN 10990526
dc.relation.referencesHernandez Gonzalez, A G. ;Melendez Armenta, R A. ;Morales Rosa-les, L A. ;Garcia Barrientos, A ;Tecpanecatl Xihuitl, J L. ;Algredo,I: Comparative Study of Algorithms to Predict the Desertion in the Students at the Bibliograf ́ıa97ITSM-Mexico. En:IEEE Latin America Transactions14 (2016), Nr. 11, p. 4573–4578.– ISSN 15480992
dc.relation.referencesHernández-Leal, E J. ;Quintero-Lorza, D P. ;Escobar-Naranjo, J C. ;Ramírez- Gómez, J S. ;Duque-Méndez, N D.: Educational data mining for the analysis of student desertion. En:CEUR Workshop ProceedingsVol. 2231, 2018
dc.relation.referencesHillmert, S ;Groß, M ;Schmidt-Hertha, B ;Weber, H:Informational environments and college student dropout. 2017. – 27–52 p.
dc.relation.referencesHori, G: Identifying Factors Contributing to University Dropout with Sparse LogisticRegression. En:Proceedings - 2018 7th International Congress on Advanced AppliedInformatics, IIAI-AAI 2018, 2018, p. 430–433
dc.relation.referencesHutagaol, N ;Suharjito: Predictive modelling of student dropout using ensemble classifier method in higher education. En:Advances in Science, Technology andEngineering Systems4 (2019), Nr. 4, p. 206–211
dc.relation.referencesIam-On, N ;Boongoen, T: Generating descriptive model for student dropout: a re-view of clustering approach. En:Human-centric Computing and Information Sciences7 (2017), Nr. 1
dc.relation.referencesIam-On, N ;Boongoen, T: Improved student dropout prediction in Thai University using ensemble of mixed-type data clusterings. En:International Journal of MachineLearning and Cybernetics8 (2017), Nr. 2, p. 497–510
dc.relation.referencesJames, John T. ;Tichy, Karen L. ;Collins, Alan ;Schwob, John: Developing a predictive metric to assess school viability. En:Journal of Catholic Education11(2008), Nr. 4, p. 5
dc.relation.referencesJiménez, Fernando ;Paoletti, Alessia ;Sánchez, Gracia ;Sciavicco, Guido: Predicting the Risk of Academic Dropout with Temporal Multi-Objective Optimization.En:IEEE Transactions on Learning Technologies12 (2019), Nr. 2, p. 225–236. – ISSN19391382
dc.relation.referencesKing, B.M. ;Minium, E.W.:Statistical Reasoning in Psychology and Education.Wiley, 2003. – ISBN 9780471211877
dc.relation.referencesKiss, B ;Nagy, M ;Molontay, R ;Csabay, B: Predicting dropout using high school and first-semester academic achievement measures. En:ICETA 2019 - 17th IEEE International Conference on Emerging eLearning Technologies and Applications,Proceedings, 2019, p. 383–389
dc.relation.referencesKitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. 2007.
dc.relation.referencesKori, K ;Pedaste, M ;T ̃onisson, E ;Palts, T ;Altin, H ;Rantsus, R ;Sell, R;Murtazin, K ;R ̈u ̈utmann, T: First-year dropout in ICT studies. En:IEEE GlobalEngineering Education Conference, EDUCONVol. 2015-April, 2015, p. 437–445
dc.relation.referencesKuhn, Max ;Johnson, Kjell: Feature engineering and selection: A practical approach for predictive models. CRC Press, 2019
dc.relation.referencesKumar, Mukesh ;Singh, Arjun J. ;Handa, Disha: Literature Survey on EducationalDropout Prediction, 2017
dc.relation.referencesKuncheva, Ludmila I.:Combining Pattern Classifiers: Methods and Algorithms, Second Edition.c©2014 John Wiley Sons, Inc., Published 2014
dc.relation.referencesKuo, J Y. ;Pan, C W. ;Lei, B: Using Stacked Denoising Autoencoder for theStudent Dropout Prediction. En:Proceedings - 2017 IEEE International Symposium on Multimedia, ISM 2017Vol. 2017-Janua, 2017, p. 483–488
dc.relation.referencesLacher, F ;Staudacher, A P.: Reducing dropouts from Higher Education Institutions through Lean Six Sigma: An exploratory study. En:Proceedings of the SummerSchool Francesco TurcoVol. 13-15-Sept, 2016, p. 59–64
dc.relation.referencesLima, J ;Alves, P ;Pereira, M ;Almeida, S: Using academic analytics to predict dropout risk in engineering courses. En:Proceedings of the European Conference one-Learning, ECELVol. 2018-Novem, 2018, p. 316–321
dc.relation.referencesLimsathitwong, K ;Tiwatthanont, K ;Yatsungnoen, T: Dropout prediction system to reduce discontinue study rate of information technology students. En:Proceedings of 2018 5th International Conference on Business and Industrial Research:Smart Technology for Next Generation of Information, Engineering, Business and Social Science, ICBIR 2018, 2018, p. 110–114
dc.relation.referencesLix, Lisa M. ;Keselman, Joanne C. ;Keselman, H J.: Consequences of AssumptionViolations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test. En:Review of Educational Research66 (1996), Nr. 4, p. 579–619
dc.relation.referencesLópez G, Camilo E. ;Guzmán, Elizabeth L. ;González, Fabio A.: Data mining model to predict academic performance at the Universidad Nacional de Colombia.(2013), p. 86
dc.relation.referencesMaheshwari, E ;Roy, C ;Pandey, M ;Rautray, S S.: Prediction of FactorsAssociated with the Dropout Rates of Primary to High School Students in India UsingData Mining Tools. En:Advances in Intelligent Systems and Computing1013 (2020),p. 242–251
dc.relation.referencesMaldonado, S ;Miranda, J ;Olaya, D ;V ́asquez, J ;Verbeke, W: Redefining profit metrics for boosting student retention in higher education. En:Decision SupportSystems143 (2021)
dc.relation.referencesManingba Augustine, L ;Jeyaseelan, M ;Stephen, A: Factors associated with school dropout: A sociological study among the Maram Naga primitive Tribe, Manipur.En:International Journal of Scientific and Technology Research9 (2020), Nr. 1, p.2215–2219. – ISSN 22778616
dc.relation.referencesManning, Christopher D. ;Raghavan, Prabhakar ;Sch ̈utze, Hinrich: Introduction to Information Retrieval. USA : Cambridge University Press, 2008. – ISBN 0521865719
dc.relation.referencesMárquez-Vera, C ;Cano, A ;Romero, C ;Noaman, A Y M. ;Mousa Fardoun,H ;Ventura, S: Early dropout prediction using data mining: A case study with high school students. En:Expert Systems33 (2016), Nr. 1, p. 107–124
dc.relation.referencesMárquez-Vera, Carlos ;Romero Morales, Cristóbal ;Ventura Soto, Sebastián: Predicting school failure and dropout by using data mining techniques. En:Revista Iberoamericana de Tecnologías del Aprendizaje8 (2013), Nr. 1, p. 7–14. –ISSN 19328540
dc.relation.referencesMartelo, R J. ;Jiménez-Pitre, I ;Villabona-Gómez, N: Determination of reasons for desertion of undergraduate students through the brainstorming and MIC-MAC techniques [Determinación de factores para deserción de estudiantes en pregrado a través de las técnicas lluvia de ideas y MICMAC]. En:Espacios38 (2017), Nr. 20
dc.relation.referencesMartins, L C B. ;Carvalho, R N. ;Carvalho, R S. ;Victorino, M C. ;Holan-da, M: Early prediction of college attrition using data mining. En:Chen X. Luo B.,Luo F Palade V Wani M A. (Ed.):Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017Vol. 2017-Decem, Institute ofElectrical and Electronics Engineers Inc., 2017. – ISBN 9781538614174, p. 1075–1078
dc.relation.referencesMartins, M P G. ;Migueis, V L. ;Fonseca, D S B. ;Gouveia, P D F.: Prediction of academic dropout in a higher education institution using data mining [Previs ̃ao do abandono académico numa institui ̧c ̃ao de ensino superior com recurso a data mining].En:RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020 (2020), Nr.E28, p. 188–203
dc.relation.referencesMeedech, Phanupong ;Iam-On, Natthakan ;Boongoen, Tossapon: Prediction ofStudent Dropout Using Personal Profile and Data Mining Approach. En:Lavangna-nanda, Kittichai (Ed.) ;Phon-Amnuaisuk, Somnuk (Ed.) ;Engchuan, Worrawat(Ed.) ;Chan, Jonathan H. (Ed.):Intelligent and Evolutionary Systems. Cham : Springer International Publishing, 2016. – ISBN 978–3–319–27000–5, p. 143–155
dc.relation.referencesMinisterio de Educación Nacional de Colombia MEN.Sistema Nacional deIndicadores Educativos para los Niveles de Preescolar, Básica y Media en Colombia.2014
dc.relation.referencesMinisterio de Educación Nacional de Colombia MEN: Plan Estratégico Institucional 2019-2022 Educación de calidad para un futuro con oportunidades para todos Versión 1.0. 2019. – Informe de Investigación. – 41 p.
dc.relation.referencesMinisterio de Hacienda y Crédito Público: Presupuesto General de la Nación2020- Decreto No. 2411 de Diciembre 30 de 2019. 2019. – Informe de Investigación. –7 p.
dc.relation.referencesMurakami, K ;Takamatsu, K ;Kozaki, Y ;Kishida, A ;Kenya, B ;Noda, I ;Jyunichiro, A ;Takao, K ;Mitsunari, K ;Nakamura, T ;Nakata, Y: Predicting the Probability of Student Dropout through EMIR Using Data from Current andGraduate Students. En:Proceedings - 2018 7th International Congress on AdvancedApplied Informatics, IIAI-AAI 2018, 2018, p. 478–481
dc.relation.referencesMutrofin, S ;Ginardi, R V H. ;Fatichah, C ;Kurniawardhani, A: A critical assessment of balanced class distribution problems: The case of predict student dropout. En:Test Engineering and Management81 (2019), Nr. 11-12, p. 1764–1770
dc.relation.referencesNagy, M ;Molontay, R: Predicting Dropout in Higher Education Based on Secondary School Performance. En:INES 2018 - IEEE 22nd International Conference onIntelligent Engineering Systems, Proceedings, 2018, p. 389–394
dc.relation.referencesdo Nascimento, R L S. ;das Neves Junior, R B. ;de Almeida Neto, M A. ;deAraújo Fagundes, R A.: Educational data mining: An application of regressors in predicting school dropout. En:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)10935LNAI (2018), p. 246–257
dc.relation.referencesNavarrete, D M. ;Quina, L M. ;Pedraza, L F. ;Gomez, E Z.: Proposal to diagnose the factors that affect academic desertion of the politécnico empresarial colombiano through the lean six sigma methodology. En:Proceedings - 2019 7th InternationalEngineering, Sciences and Technology Conference, IESTEC 2019, 2019, p. 300–305
dc.relation.referencesNeves, J ;Figueiredo, M ;Vicente, L ;Vicente, H: A case based reasoning view of school dropout screening. En:Lecture Notes in Electrical Engineering376 (2016),p. 953–964
dc.relation.referencesNuankaew, P: Dropout situation of business computer students, University of Pha-yao. En:International Journal of Emerging Technologies in Learning14 (2019), Nr.19, p. 117–131
dc.relation.referencesNuankaew, P ;Nuankaew, W ;Phanniphong, K ;Fooprateepsiri, R ;Bussaman, S: Analysis dropout situation of business computer students at University of Phayao. En:Advances in Intelligent Systems and Computing1134 AISC (2020), p.419–432
dc.relation.referencesOneto, L ;Siri, A ;Luria, G ;Anguita, D: Dropout prediction at university of genoa: A privacy preserving data driven approach. En:ESANN 2017 - Proceedings,25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2017, p. 135–140
dc.relation.referencesOrganización para la Cooperación y el Desarrollo Económicos (OC-DE);Brunner, Jos ́e J. (Ed.) ;Gomes, Candido A. (Ed.) ;Fordham, Elizabeth(Ed.) ;Phair, Rowena (Ed.) ;Pons, Anna (Ed.) ;Zapata, Juliana (Ed.):Revision de politicas nacionales de educacion: La educación en Colombia 2016.c©2016 Ministerio de Educación Nacional para esta version en español, 2016. – 336 p.. – ISBN9789264250598
dc.relation.referencesOrong, M Y. ;Caroro, R A. ;Durias, G D. ;Cabrera, J A. ;Lonzon, H ;Ricalde, G T.: A predictive analytics approach in determining the predictors of student attrition in the higher education institutions in the Philippines. En:ACMInternational Conference Proceeding Series, 2020, p. 222–225
dc.relation.referencesOrong, M Y. ;Sison, A M. ;Medina, R P.: A new crossover mechanism for genetic algorithm with rank-based selection method. En:Proceedings of 2018 5th InternationalConference on Business and Industrial Research: Smart Technology for Next Generation of Information, Engineering, Business and Social Science, ICBIR 2018, 2018, p.83–88
dc.relation.referencesOrooji, M ;Chen, J: Predicting louisiana public high school dropout through imbalanced learning techniques. En:Proceedings - 18th IEEE International Conference onMachine Learning and Applications, ICMLA 2019, 2019, p. 456–461
dc.relation.referencesPalacios-Pacheco, X ;Villegas-Ch, W ;Luján-Mora, S: Application of data mining for the detection of variables that cause university desertion. En:Communications in Computer and Information Science895 (2019), p. 510–520. – ISBN9783030055318
dc.relation.referencesPaura, L ;Arhipova, I: Student dropout rate in engineering education study pro-gram. En:Engineering for Rural DevelopmentVol. 2016-Janua, 2016, p. 641–646
dc.relation.referencesPeguero, A A. ;Hong, J S.: Are violence and disorder at school placing adolescents within immigrant families at higher risk of dropping out? En:Journal of SchoolViolence18 (2019), Nr. 2, p. 241–258
dc.relation.referencesPeralta, B ;Poblete, T ;Caro, L: Automatic feature selection for desertion and graduation prediction: A chilean case. En:Proceedings - International Conference of the Chilean Computer Science Society, SCCC, 2017
dc.relation.referencesPérez, A ;Grand ́on, E E. ;Caniupán, M ;Vargas, G: Comparative Analysis ofPrediction Techniques to Determine Student Dropout: Logistic Regression vs DecisionTrees. En:Proceedings - International Conference of the Chilean Computer ScienceSociety, SCCCVol. 2018-Novem, 2018
dc.relation.referencesPerez, B ;Castellanos, C ;Correal, D: Applying Data Mining Techniques toPredict Student Dropout: A Case Study. En:2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence, ColCACI 2018 - Proceedings, 2018
dc.relation.referencesPradeep, A ;Das, S ;Kizhekkethottam, J J.: Students dropout factor prediction using EDM techniques. En:Proceedings of the IEEE International Conference onSoft-Computing and Network Security, ICSNS 2015, 2015
dc.relation.referencesRana, S ;Gupta, S K. ;Venkatesh, S: Differentially private random forest with high utility. En:Proceedings - IEEE International Conference on Data Mining, ICDMVol. 2016-Janua, 2016, p. 955–960
dc.relation.referencesRea, Louis M. ;Parker, Richard A.:Designing and conducting survey research: A comprehensive guide. John Wiley & Sons, 2014
dc.relation.referencesReason, Robert D.: Student variables that predict retention: Recent research and new developments. En:NASPA journal46 (2009), Nr. 3, p. 482–501
dc.relation.referencesRestrepo, E G Y. ;Ferreira, F ;Boticario, J G. ;Marcelino-Jesus, E ;Sarraipa, J ;Jardim-Goncalves, R: Enhanced affective factors management forHEI students dropout prevention. En:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9753 (2016), p. 675–684
dc.relation.referencesRodriguez Maya, N E. ;Jimenez Alfaro, A J. ;Reyes Hernandez, L A. ;Suarez Carranza, B A. ;Ruiz Garduno, J K.: Data mining: a scholar dropout predictive model. En:2017 IEEE Mexican Humanitarian Technology Conference(MHTC), 2017, p. 89–93
dc.relation.referencesRodríguez-Mu ̃niz, L J. ;Bernardo, A B. ;Esteban, M ;Díaz, I: Dropout and transfer paths: What are the risky profiles when analyzing university persistence with machine learning techniques? En:PLoS ONE14 (2019), Nr. 6
dc.relation.referencesRokach, Lior ;Maimon, Oded:Data mining with decision trees: theory and applications. Vol. 81. World scientific, 2014
dc.relation.referencesRovira, S ;Puertas, E ;Igual, L: Data-driven system to predict academic gradesand dropout. En:PLoS ONE12 (2017), Nr. 2
dc.relation.referencesSajjadi, S ;Shapiro, B ;Mckinlay, C ;Sarkisyan, A ;Shubin, C ;Osoba, E:Finding bottlenecks: Predicting student attrition with unsupervised classifier. En:2017Intelligent Systems Conference, IntelliSys 2017Vol. 2018-Janua, 2018, p. 1166–1172
dc.relation.referencesSalazar-Fernandez, J P. ;Sepúlveda, M ;Munoz-Gama, J: Influence of student diversity on educational trajectories in engineering high-failure rate courses that lead to late dropout. En:IEEE Global Engineering Education Conference, EDUCONVol.April-2019, 2019, p. 607–616
dc.relation.referencesSangodiah, A ;Beleya, P ;Muniandy, M ;Heng, L E. ;Ramendran Spr, C:Minimizing student attrition in higher learning institutions in Malaysia using support vector machine. En:Journal of Theoretical and Applied Information Technology71(2015), Nr. 3, p. 377–385
dc.relation.referencesSansone, D: Beyond Early Warning Indicators: High School Dropout and MachineLearning. En:Oxford Bulletin of Economics and Statistics81 (2019), Nr. 2, p. 456–485
dc.relation.referencesSari, E Y. ;Kusrini;Sunyoto, A: Optimization of weight backpropagation with particle swarm optimization for student dropout prediction. En:2019 4th InternationalConference on Information Technology, Information Systems and Electrical Enginee-ing, ICITISEE 2019, 2019, p. 423–428
dc.relation.referencesSelvan, M P. ;Navadurga, N ;Prasanna, N L.: An efficient model for predicting student dropout using data mining and machine learning techniques. En:InternationalJournal of Innovative Technology and Exploring Engineering8 (2019), Nr. 9 SpecialIssue 2, p. 750–752
dc.relation.referencesSerra, A ;Perchinunno, P ;Bilancia, M: Predicting student dropouts in higher education using supervised classification algorithms. En:Lecture Notes in ComputerScience (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)10962 LNCS (2018), p. 18–33
dc.relation.referencesShiratori, N: Modeling Dropout Behavior Patterns Using Bayesian Networks inSmall-Scale Private University. En:Proceedings - 2017 6th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2017, 2017, p. 170–173
dc.relation.referencesShiratori, N: Derivation of Student Patterns in a Preliminary Dropout State andIdentification of Measures for Reducing Student Dropouts. En:Proceedings - 20187th International Congress on Advanced Applied Informatics, IIAI-AAI 2018, 2018, p.497–500
dc.relation.referencesSilva, J ;Castro Sarmiento, A ;Mar ́ıa Santo domingo, N ;M ́arquez Blanco, N ;Cadavid Basto, W ;Hernández P, H ;Navarro Beltr ́an, J ;de laHoz Hernández, J ;Romero, L: Data mining to identify risk factors associated with university students dropout. En:Communications in Computer and InformationScience1071 (2019), p. 44–52
dc.relation.referencesSimon, D ;Fonseca, D ;Necchi, S ;Vanesa-Sánchez, M ;Campanyá, C: Architecture and Building Engineering Educational Data Mining. Learning Analytics for detecting academic dropout [Miner ́ıa de datos educativos en los grados de Arquitectura y Arquitectura Técnica. Uso de anal ́ıtica de aprendizaje para la detección del abandono. En:Iberian Conference on Information Systems and Technologies, CISTIVol. 2019-June, 2019
dc.relation.referencesSolis, M ;Moreira, T ;Gonzalez, R ;Fernandez, T ;Hernandez, M: Perspectives to Predict Dropout in University Students with Machine Learning. En:2018IEEE International Work Conference on Bio inspired Intelligence, IWOBI 2018 - Proceedings, 2018
dc.relation.referencesSong, Yan-Yan ;Ying, L U.: Decision tree methods: applications for classification and prediction. En:Shanghai archives of psychiatry27 (2015), Nr. 2, p. 130–135
dc.relation.referencesSpady, William G.: Dropouts from higher education: An interdisciplinary review and synthesis. En:Interchange1 (1970), Nr. 1, p. 64–85. – ISSN 1573–1790
dc.relation.referencesSultana, Jabeen ;Usha Rani, M. ;Farquad, M. A.: Student’s performance pre-diction using deep learning and data mining methods. En:International Journal ofRecent Technology and Engineering8 (2019), Nr. 1 Special Issue 4, p. 1018–1021. –ISSN 22773878
dc.relation.referencesSultana, S ;Khan, S ;Abbas, M A.: Predicting performance of electrical engineering students using cognitive and non-cognitive features for identification of potential dropouts. En:International Journal of Electrical Engineering Education54 (2017),Nr. 2, p. 105–118
dc.relation.referencesTimaran Pereira, R ;Caicedo Zambrano, J: Application of decision trees for detection of student dropout profiles. En:Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017Vol. 2017-Decem, 2017,p. 528–531
dc.relation.referencesTimbal, M A.: Analysis of Student-at-Risk of Dropping out (SARDO) Using deci-sion tree: An Intelligent predictive model for reduction. En:International Journal ofMachine Learning and Computing9 (2019), Nr. 3, p. 273–278
dc.relation.referencesTinto, Vincent: Dropout from higher education: A theoretical synthesis of recent research. En:Review of educational research45 (1975), Nr. 1, p. 89–125
dc.relation.referencesTinto, Vincent:Leaving college: Rethinking the causes and cures of student attrition.Chicago : University of Chicago Press, 5801 S. Ellis Avenue, Chicago, IL 60637, 1987.– 246 p.. – ISBN 0–226–80446–1
dc.relation.referencesTinto, Vincent ;Cullen, John: Dropout in Higher Education: A Review and Theoretical Synthesis of Recent Research. (1973)
dc.relation.referencesTomczak, Maciej ;Tomczak, Ewa: The need to report effect size estimates revisited.An overview of some recommended measures of effect size. En:Trends in sport sciences1 (2014), Nr. 21, p. 19–25
dc.relation.referencesUribe Mallarino, Consuelo ;Ramirez Moreno, Jaime: Clase media y movilidad social en Colombia. En:Revista colombiana de sociología42 (2019), Nr. 2, p. 10
dc.relation.referencesUrrutia Montoya, Miguel: La educación como factor de movilidad social. En:Cuadernos de Economía12 (1975), Nr. 37, p. 21–32
dc.relation.referencesValveny Ernest, González Sabaté Jordi, Baldrich Caselles R.Clasificación de imágenes: cómo reconocer el contenido de una imagen. 2010
dc.relation.referencesVásquez, Jonathan ;Miranda, Jaime: Student Desertion: What Is and How CanIt Be Detected on Time? En:Data Science and Digital Business. Springer, 2019, p.263–283
dc.relation.referencesVelásquez, Leonardo ;Hitpass, Bernhard: El nivel de Actividad en el ProcesoEducativo como Indicador de Riesgo de Deserción Estudiantil medido en tiempo real con apoyo de tecnología BAM, 2014
dc.relation.referencesVila, D ;Cisneros, S ;Granda, P ;Ortega, C ;Posso-Yépez, M ;García-Santillán, I: Detection of desertion patterns in university students using data mining techniques: A case study. En:Communications in Computer and Information Science895 (2019), p. 420–429. – ISBN 9783030055318
dc.relation.referencesViloria, A ;García Guliany, J ;Niebles N ́uz, W ;Hernández Palma, H ;Niebles Núz, L: Data Mining Applied in School Dropout Prediction. En:Journal ofPhysics: Conference SeriesVol. 1432, 2020
dc.relation.referencesViloria, A ;Lezama, O B P.: Mixture structural equation models for classifying university student dropout in Latin america. En:Procedia Computer ScienceVol. 160,2019, p. 629–634
dc.relation.referencesViloria, A ;Padilla, J G. ;Vargas-Mercado, C ;Hernández-Palma, H ;Llinas, N O. ;David, M A.: Integration of data technology for analyzing university dropout. En: Procedia Computer ScienceVol. 155, 2019, p. 569–574
dc.relation.referencesWan Yaacob, W F. ;Mohd Sobri, N ;Nasir, S A M. ;Wan Yaacob, W F.;Norshahidi, N D. ;Wan Husin, W Z.: Predicting Student Drop-Out in HigherInstitution Using Data Mining Techniques. En:Journal of Physics: Conference SeriesVol. 1496, 2020
dc.relation.referencesWardono;Mariani, S ;Afifa, N N.: Application of decomposition methods for forecasting the percentage of students who drop out of school to predict the amount of scholarship needed in central java indonesia. En:Journal of Theoretical and AppliedInformation Technology98 (2020), Nr. 2, p. 327–337
dc.relation.referencesWitten, Ian H. ;Frank, Eibe ;Hall, Mark A.:Data Mining: Practical machine learning tools and techniques. 3. Morgan Kaufmann, 2011. – 665 p.
dc.relation.referencesXu, L. ;Krzyzak, A. ;Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. En:IEEE Transactions on Systems,Man, and Cybernetics22 (1992), Nr. 3, p. 418–435
dc.relation.referencesZea, L D F. ;Reina, Y F P. ;Molano, J I R.: Machine Learning for the Identification of Students at Risk of Academic Desertion. En:Communications in Computer andInformation Science1011 (2019), p. 462–473. – ISBN 9783030207977
dc.relation.referencesZhao, Z. ;Anand, R. ;Wang, M.: Maximum Relevance and Minimum RedundancyFeature Selection Methods for a Marketing Machine Learning Platform. (2019), p.442–452
dc.relation.referencesS ̧ara, N.-B. ;Halland, R ;Igel, C ;Alstrup, S: High-school dropout prediction using machine learning: A Danish large-scale study. En:23rd European Symposium onArtificial Neural
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMinería de datos
dc.subject.lembData mining
dc.subject.lembDropouts
dc.subject.proposalDeserción escolar
dc.subject.proposalPreprocesamiento de datos educativos
dc.subject.proposalMétricas
dc.subject.proposalTécnicas de minería de datos
dc.subject.proposalFusión a nivel de clasificador
dc.subject.proposalSchool dropout
dc.subject.proposalEducational data preprocessing
dc.subject.proposalMetrics
dc.subject.proposalData mining techniques
dc.subject.proposalLate fusion
dc.title.translatedMetric-driven and a data mining technique method to support detection of students at risk of school dropout
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito