Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorLópez González, David Alejandro
dc.date.accessioned2021-10-27T14:11:50Z
dc.date.available2021-10-27T14:11:50Z
dc.date.issued2021-07-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80620
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractEl proceso de implantación placentaria depende de una minuciosa regulación de la invasión de la decidua materna por parte del subtipo celular denominado trofoblasto extravelloso, la evasión del sistema inmune de la madre y la remodelación de la vasculatura local. Estos y otros procesos hacen que la implantación placentaria sea notablemente similar a la invasión tumoral. Las células de cáncer deben su origen a una pérdida de la identidad celular somática acompañada del desarrollo de un fenotipo aberrante que se alcanza como consecuencia de la reactivación de programas de desarrollo embrionario. Se cree que la pérdida de la identidad celular, así como la reactivación de los programas de desarrollo se deben en gran medida a una pérdida de la estabilidad genómica, que a su vez depende del panorama de metilación a nivel genómico. Se sabe que diversos estímulos extracelulares son capaces de promover una remodelación del panorama de metilación de células somáticas tal que contribuye a una transición maligna hacia un fenotipo altamente proliferativo e invasivo, que se debe tanto a la activación estocástica de oncogenes, como a un silenciamiento de genes supresores de tumores. Utilizando la línea celular derivada de trofoblasto, HTR-8/SVneo, por su fenotipo pseudomaligno y como modelo para el estudio de la biología placentaria y de la progresión tumoral, el propósito de este trabajo fue analizar la respuesta funcional de la línea ante un estímulo mitogénico con el péptido IGF2, y determinar cómo esta respuesta se relaciona con la variación en el panorama de metilación genómico y la expresión de RNA mensajero. A través de la interrogación del panorama de metilación genómico y la actividad transcripcional de la línea celular se identificaron variaciones que aparecen por efecto del estímulo y que ocurren de manera simultánea con un aumento de la actividad proliferativa, migratoria e invasiva de la línea celular. Muchos de los genes comprometidos en estas variaciones han sido descritos previamente en cáncer y más aún, hacen parte de vías de señalización a través de las cuales podría estar procediendo el estímulo con IGF2 y que además, son importantes para la adquisición de un fenotipo maligno en diversos tipos de cáncer. En conclusión, el péptido IGF2 tiene la capacidad de aumentar la actividad proliferativa, migratoria e invasiva de la línea celular, y estos cambios ocurren de manera paralela, y probablemente como consecuencia de alteraciones a nivel epigenético y transcripcional. (Texto tomado de la fuente)
dc.description.abstractThe process of placental implantation depends on a thorough regulation of the invasion of the maternal decidua by the cellular subtype known as extravillous trophoblast, invasion of the maternal immune system and remodeling of the local vasculature. These and other processes make the placental implantation remarkably similar to tumor invasion. Cancer cells owe their origin to a loss of somatic cellular identity, accompanied by the development of an aberrant phenotype achieved as a consequence of the stochastic reactivation of embryonic development programs. It is believed that this loss of cellular identity, as well as the reactivation of these programs is owed to a great extent to a loss of genomic stability, which in turn depends on the DNA methylation landscape at the genomic level. It has been observed that extracellular stimuli of diverse kinds are capable of promoting a remodeling of the DNA methylation landscape in somatic cell such that it contributes to a malignant transformation to a highly proliferative, migratory and invasive phenotype, which is owed both to a stochastic activation of oncogenes and a silencing of tumor-repressor genes. Using trophoblast-derived HTR-8/SVneo cell line because its pseudo malignant phenotype and as model for the study of placental biology and tumor progression, the purpose of this work was to analyze the functional response of the cell line as a response to a mitogenic stimulus with IGF2, and to determine how this response is related to the variation of the methylation landscape and the transcriptional activity of the cell line. Through interrogation of the genomic methylation landscape and the transcriptional activity of the cell line, some alterations were identified that appear as a consequence of the stimulus and that occur simultaneously with an increase of the proliferative, migratory and invasive activity of the cell line. Many of the genes compromised in these alterations have been previously described in cancer and moreover, take part in signaling pathways through which the IGF2 stimulus could be proceeding and that are important for the acquisition of a malignant phenotype in several types of cancer. In conclusion, IGF2 peptide has the capacity of promoting the proliferative, migratory and invasive capacities of the cell line and these changes happen simultaneously, and probably as a consequence of alterations at epigenetic and transcriptional levels.
dc.format.extentviii, 62 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleEfecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.contributor.researchgroupGrupo de Investigación en Hormonas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Bioquímica
dc.description.researchareaFactores de crecimiento, diferenciación y cáncer
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBurrows, T. D., King, A., and Loke, Y. W. (1996) Trophoblast migration during human placental implantation
dc.relation.referencesJauniaux, E., Moffett, A., and Burton, G. J. (2020) Placental Implantation Disorders. Obstet. Gynecol. Clin. North Am. 47, 117–132
dc.relation.referencesFerretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., and Bellet, D. (2007) Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update. 13, 121–141
dc.relation.referencesDe La Chapelle, A. (2004) Genetic predisposition to colorectal cancer. Nat. Rev. Cancer. 4, 769–780
dc.relation.referencesDruker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996) Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells. Nat. Med. 2, 561–566
dc.relation.referencesLynch, J. P., and Hoops, T. C. (2002) The genetic pathogenesis of colorectal cancer. Hematol. Oncol. Clin. North Am. 16, 775–810
dc.relation.referencesFearon, E. R., and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell. 61, 759–767
dc.relation.referencesJung, G., Hernández-Illán, E., Moreira, L., Balaguer, F., and Goel, A. (2020) Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130
dc.relation.referencesTubiana, M. (2009) To cite this article: Maurice Tubiana (1989) Tumor Cell Proliferation Kinetics and Tumor Growth Rate. Acta Oncol. (Madr). 28, 113–121
dc.relation.referencesMoore, L. D., Le, T., and Fan, G. (2013) DNA Methylation and Its Basic Function. Neuropsychopharmacology. 38, 23–38
dc.relation.referencesSmith, Z. D., and Meissner, A. (2013) DNA methylation : roles in mammalian development. Nat. Rev. Genet. 14, 204–220
dc.relation.referencesLewis, J., and Bird, A. (1991) DNA methylation and chromatin structure. FEBS Lett. 285, 155–159
dc.relation.referencesNg, H.-H., and Adrian, B. (1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163
dc.relation.referencesFeinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer. 4, 143–153
dc.relation.referencesEden, A. (2003) Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science (80-. ). 300, 455–455
dc.relation.referencesEhrlich, M. (2009) DNA hypomethylation in cancer cells. Epigenomics. 1, 239–259
dc.relation.referencesWilson, A. S., Power, B. E., and Molloy, P. L. (2007) DNA hypomethylation and human diseases. Biochim. Biophys. Acta - Rev. Cancer. 1775, 138–162
dc.relation.referencesRainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. (1993) Relaxation of imprinted genes in human cancer. Nature. 362, 747–749
dc.relation.referencesPaksa, A., and Rajagopal, J. (2017) The epigenetic basis of cellular plasticity. Curr. Opin. Cell Biol. 49, 116–122
dc.relation.referencesSmith, Z. D., Shi, J., Gu, H., Donaghey, J., Clement, K., Cacchiarelli, D., Gnirke, A., Michor, F., and Meissner, A. (2017) Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature. 549, 543–547
dc.relation.referencesWitsch, E., Sela, M., and Yarden, Y. (2010) Roles for Growth Factors in Cancer Progression. Physiology. 25, 85–101
dc.relation.referencesGuzeloglu-Kayisli, O., Kayisli, U., and Taylor, H. (2009) The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions. Semin. Reprod. Med. 27, 062–079
dc.relation.referencesWeroha, S. J., and Haluska, P. (2012) The Insulin-Like Growth Factor System in Cancer. Endocrinol. Metab. Clin. North Am. 41, 335–350
dc.relation.referencesBowman, C. J., Streck, R. D., and Chapin, R. E. (2010) Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development. Birth Defects Res. Part B - Dev. Reprod. Toxicol. 89, 339–349
dc.relation.referencesConstância, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith, A., Fundele, R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., and Reik, W. (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 417, 945–948
dc.relation.referencesChao, W., and D’Amore, P. A. (2008) IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19, 111–120
dc.relation.referencesOgawa, O., Eccles, M. R., Szeto, J., McNoe, L. A., Yun, K., Maw, M. A., Smith, P. J., and Reeve, A. E. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 362, 749–751
dc.relation.referencesXu, W., Fan, H., He, X., Zhang, J., and Xie, W. (2006) LOI of IGF2 is associated with esophageal cancer and linked to methylation status of IGF2 DMR. J. Exp. Clin. Cancer Res. 25, 543—547
dc.relation.referencesMurphy, S. K. (2006) Frequent IGF2/H19 Domain Epigenetic Alterations and Elevated IGF2 Expression in Epithelial Ovarian Cancer. Mol. Cancer Res. 4, 283–292
dc.relation.referencesByun, H.-M., Wong, H.-L., Birnstein, E. A., Wolff, E. M., Liang, G., and Yang, A. S. (2007) Examination of IGF2 and H19 Loss of Imprinting in Bladder Cancer. Cancer Res. 67, 10753–10758
dc.relation.referencesCui, H. (2003) Loss of IGF2 Imprinting: A Potential Marker of Colorectal Cancer Risk. Science (80-. ). 299, 1753–1755
dc.relation.referencesLala, P. K., Lee, B. P., Xu, G., and Chakraborty, C. (2002) Human placental trophoblast as an in vitro model for tumor progression. Can. J. Physiol. Pharmacol. 80, 142–149
dc.relation.referencesHannan, N. J., Paiva, P., Dimitriadis, E., and Salamonsen, L. A. (2010) Models for Study of Human Embryo Implantation: Choice of Cell Lines? Biol. Reprod. 82, 235–245
dc.relation.referencesGraham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211
dc.relation.referencesZhang, W., Klinkebiel, D., Barger, C. J., Pandey, S., Guda, C., Miller, A., Akers, S. N., Odunsi, K., and Karpf, A. R. (2020) Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel). 12, 764
dc.relation.referencesSheaffer, K. L., Elliott, E. N., and Kaestner, K. H. (2016) DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev. Res. 9, 534–546
dc.relation.referencesGaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. (2003) Induction of tumors in mice by genomic hypomethylation. Science (80-. ). 300, 489–492
dc.relation.referencesNishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., Yoshida, T., and Sasaki, H. (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 65, 2115–2124
dc.relation.referencesSato, N., and Goggins, M. (2006) The role of epigenetic alterations in pancreatic cancer. J. Hepatobiliary. Pancreat. Surg. 13, 286–295
dc.relation.referencesPogribny, I. P., and Beland, F. A. (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell. Mol. Life Sci. 66, 2249–2261
dc.relation.referencesGuo, S. X., Taki, T., Ohnishi, H., Piao, H. Y., Tabuchi, K., Bessho, F., Hanada, R., Yanagisawa, M., and Hayashi, Y. (2000) Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk. Res. 24, 39–46
dc.relation.referencesZhang, J. C., Gao, B., Yu, Z. T., Liu, X. B., Lu, J., Xie, F., Luo, H. J., and Li, H. P. (2014) Promoter hypermethylation of p14 ARF, RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection. Tumor Biol. 35, 2795–2802
dc.relation.referencesYeh, K. T., Chang, J. G., Lin, T. H., Wang, Y. F., Tien, N., Chang, J. Y., Chen, J. C., and Shih, M. C. (2003) Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol. Rep. 10, 659–663
dc.relation.referencesSilva, A. L., Dawson, S. N., Arends, M. J., Guttula, K., Hall, N., Cameron, E. A., Huang, T. H. M., Brenton, J. D., Tavaré, S., Bienz, M., and Ibrahim, A. E. K. (2014) Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer. 14, 891
dc.relation.referencesHou, Y., Chen, K., Liao, R., Li, Y., Yang, H., and Gong, J. (2021) LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. Lab. Investig. 10.1038/s41374-021-00539-z
dc.relation.referencesJu, J., Chen, A., Deng, Y., Liu, M., Wang, Y., Wang, Y., Nie, M., Wang, C., Ding, H., Yao, B., Gui, T., Li, X., Xu, Z., Ma, C., Song, Y., Kvansakul, M., Zen, K., Zhang, C.-Y., Luo, C., Fang, M., Huang, D. C. S., Allis, C. D., Tan, R., Zeng, C. K., Wei, J., and Zhao, Q. (2017) NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat. Commun. 8, 928
dc.relation.referencesYusufova, N., Kloetgen, A., Teater, M., Osunsade, A., Camarillo, J. M., Chin, C. R., Doane, A. S., Venters, B. J., Portillo-Ledesma, S., Conway, J., Phillip, J. M., Elemento, O., Scott, D. W., Béguelin, W., Licht, J. D., Kelleher, N. L., Staudt, L. M., Skoultchi, A. I., Keogh, M.-C., Apostolou, E., Mason, C. E., Imielinski, M., Schlick, T., David, Y., Tsirigos, A., Allis, C. D., Soshnev, A. A., Cesarman, E., and Melnick, A. M. (2021) Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature. 589, 299–305
dc.relation.referencesLi, J., Galbo, P. M., Gong, W., Storey, A. J., Tsai, Y.-H., Yu, X., Ahn, J. H., Guo, Y., Mackintosh, S. G., Edmondson, R. D., Byrum, S. D., Farrar, J. E., He, S., Cai, L., Jin, J., Tackett, A. J., Zheng, D., and Wang, G. G. (2021) ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat. Commun. 12, 1045
dc.relation.referencesSilva-Fisher, J. M., Dang, H. X., White, N. M., Strand, M. S., Krasnick, B. A., Rozycki, E. B., Jeffers, G. G. L., Grossman, J. G., Highkin, M. K., Tang, C., Cabanski, C. R., Eteleeb, A., Mudd, J., Goedegebuure, S. P., Luo, J., Mardis, E. R., Wilson, R. K., Ley, T. J., Lockhart, A. C., Fields, R. C., and Maher, C. A. (2020) Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat. Commun. 11, 2156
dc.relation.referencesKlutstein, M., Nejman, D., Greenfield, R., and Cedar, H. (2016) DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450
dc.relation.referencesSaghafinia, S., Mina, M., Riggi, N., Hanahan, D., and Ciriello, G. (2018) Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep. 25, 1066-1080.e8
dc.relation.referencesAhmed, M., Soares, F., Xia, J.-H., Yang, Y., Li, J., Guo, H., Su, P., Tian, Y., Lee, H. J., Wang, M., Akhtar, N., Houlahan, K. E., Bosch, A., Zhou, S., Mazrooei, P., Hua, J. T., Chen, S., Petricca, J., Zeng, Y., Davies, A., Fraser, M., Quigley, D. A., Feng, F. Y., Boutros, P. C., Lupien, M., Zoubeidi, A., Wang, L., Walsh, M. J., Wang, T., Ren, S., Wei, G.-H., and He, H. H. (2021) CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat. Commun. 12, 19
dc.relation.referencesAndo, M., Saito, Y., Xu, G., Bui, N. Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D. A., Guo, T., Favorov, A. V., Yegnasubramanian, S., Fertig, E. J., Ha, P., Tamayo, P., Yamasoba, T., Ideker, T., Messer, K., and Califano, J. A. (2019) Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun. 10, 2188
dc.relation.referencesUlrey, C. L., Liu, L., Andrews, L. G., and Tollefsbol, T. O. (2005) The impact of metabolism on DNA methylation. Hum. Mol. Genet. 14, R139–R147
dc.relation.referencesMehrmohamadi, M., Mentch, L. K., Clark, A. G., and Locasale, J. W. (2016) Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat. Commun. 7, 1–13
dc.relation.referencesCuyàs, E., Fernández-Arroyo, S., Verdura, S., García, R. Á. F., Stursa, J., Werner, L., Blanco-González, E., Montes-Bayón, M., Joven, J., Viollet, B., Neuzil, J., and Menendez, J. A. (2018) Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene. 37, 963–970
dc.relation.referencesAli, A., Sina, I., Carrascosa, L. G., Liang, Z., Grewal, Y. S., Wardiana, A., Shiddiky, M. J. A., Gardiner, R. A., Samaratunga, H., Gandhi, M. K., Scott, R. J., Korbie, D., and Trau, M. (2018) Epigenetically reprogrammed methylation serves as a universal cancer biomarker. Nat. Commun. 10.1038/s41467-018-07214-w
dc.relation.referencesBates, S. E. (2020) Epigenetic Therapies for Cancer. N. Engl. J. Med. 383, 650–663
dc.relation.referencesCheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., Han, J., and Wei, X. (2019) Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 1–39
dc.relation.referencesJones, P. A., Ohtani, H., Chakravarthy, A., and De Carvalho, D. D. (2019) Epigenetic therapy in immune-oncology. Nat. Rev. Cancer. 19, 151–161
dc.relation.referencesBronchud, M. H., Tresserra, F., and Zantop, B. S. (2018) Epigenetic changes found in uterine decidual and placental tissues can also be found in the breast cancer microenvironment of the same unique patient: description and potential interpretations. Oncotarget. 9, 6028–6041
dc.relation.referencesTai, B.-J., Yao, M., Zheng, W.-J., Shen, Y.-C., Wang, L., Sun, J.-Y., Wu, M.-N., Dong, Z.-Z., and Yao, D.-F. (2019) Alteration of oncogenic IGF-II gene methylation status associates with hepatocyte malignant transformation. Hepatobiliary Pancreat. Dis. Int. 18, 158–163
dc.relation.referencesMalik, A., Pal, R., and Gupta, S. K. (2020) EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci. Rep. 10, 12274
dc.relation.referencesMalik, A., Pal, R., and Gupta, S. K. (2017) Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS One. 12, e0178269
dc.relation.referencesNormanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., and Salomon, D. S. (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 366, 2–16
dc.relation.referencesWen, Z., Chen, Y., Long, Y., Yu, J., and Li, M. (2018) Tumor necrosis factor-alpha suppresses the invasion of HTR-8/SVneo trophoblast cells through microRNA-145-5p-mediated downregulation of Cyr61. Life Sci. 209, 132–139
dc.relation.referencesCabezas-Perez, R., Vallejo-Pulido, A., Freyre-Bernal, S., Umaña-Perez, A., and Sanchez-Gomez, M. (2011) IGF-II y la Gonadotropina Coriónica regulan la proliferación, migración e invasión de células de trofoblasto humano. Acta Biol. Colomb. 16, 143–152
dc.relation.referencesSánchez-gómez, M. (2014) Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc. 38(Supl.), 118–28
dc.relation.referencesEspelund, U., Cold, S., Frystyk, J., Ørskov, H., and Flyvbjerg, A. (2008) Elevated free IGF2 levels in localized, early-stage breast cancer in women. Eur. J. Endocrinol. 159, 595–601
dc.relation.referencesWu, L.-P., Wang, N.-C., Chang, Y.-H., Tian, X.-Y., Na, D.-Y., Zhang, L.-Y., Zheng, L., Lan, T., Wang, L.-F., and Liang, G.-D. (2007) Duration of Antibody Responses after Severe Acute Respiratory Syndrome. Emerg. Infect. Dis. 13, 1562–1564
dc.relation.referencesTian, D., Mitchell, I., and Kreeger, P. K. (2015) Quantitative analysis of insulin-like growth factor 2 receptor and insulin-like growth factor binding proteins to identify control mechanisms for insulin-like growth factor 1 receptor phosphorylation. BMC Syst. Biol. 10, 15
dc.relation.referencesKushlinskii, N. E., Gershtein, E. S., Nikolaev, A. A., Delektorskaya, V. V., Korotkova, E. A., Dvorova, E. K., and Kostyleva, O. I. (2014) Insulin-like growth factors (IGF), IGF-binding proteins (IGFBP), and vascular endothelial growth factor (VEGF) in blood serum of patients with colorectal cancer. Bull. Exp. Biol. Med. 156, 684–688
dc.relation.referencesNovoa-herrán, S. S., and Sánchez de Gómez, M. (2011) El IGF-II estimula la actividad de MMP-9 y MMP-2 en un modelo de trofoblasto humano. Acta Biológica Colomb. 16, 121–131
dc.relation.referencesFreyre Bernal, S. I. (2010) Papel del Sistema de Factores de Crecimiento Similares a la Insulina (IGF) en la Regulacion y Diferenciación Trofoblastica. Ph.D. thesis, Universidad Nacional de Colombia
dc.relation.referencesCabezas Pérez, R. J. (2010) Implicaciones del factor de crecimiento similar a la insulina tipo II (IGF-II) en el desarrollo de la enfermedad trofoblástica gestacional. Ph.D. thesis, Universidad Nacional de Colombia
dc.relation.referencesHarris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., and Westwood, M. (2011) IGF2 Actions on Trophoblast in Human Placenta Are Regulated by the Insulin-Like Growth Factor 2 Receptor, Which Can Function as Both a Signaling and Clearance Receptor1. Biol. Reprod. 84, 440–446
dc.relation.referencesMcKinnon, T., Chakraborty, C., Gleeson, L. M., Chidiac, P., and Lala, P. K. (2001) Stimulation of Human Extravillous Trophoblast Involving Inhibitory G Protein ( s ) and Phosphorylation. J. Clin. Endocrinol. Metab. 86, 3665–3674
dc.relation.referencesSchroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. (2006) The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 1–14
dc.relation.referencesZhang, X., and Jonassen, I. (2020) RASflow: An RNA-Seq analysis workflow with Snakemake. BMC Bioinformatics. 21, 110
dc.relation.referencesAndrews, S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]
dc.relation.referencesPatro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419
dc.relation.referencesLove, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 10.1186/s13059-014-0550-8
dc.relation.referencesMoran, S., Arribas, C., and Esteller, M. (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 8, 389–399
dc.relation.referencesPidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C., and Clark, S. J. (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208
dc.relation.referencesMüller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and Bock, C. (2019) RnBeads 2.0: Comprehensive analysis of DNA methylation data. Genome Biol. 20, 55
dc.relation.referencesPerrier, F., Novoloaca, A., Ambatipudi, S., Baglietto, L., Ghantous, A., Perduca, V., Barrdahl, M., Harlid, S., Ong, K. K., Cardona, A., Polidoro, S., Nøst, T. H., Overvad, K., Omichessan, H., Dollé, M., Bamia, C., Huerta, J. M., Vineis, P., Herceg, Z., Romieu, I., and Ferrari, P. (2018) Identifying and correcting epigenetics measurements for systematic sources of variation. Clin. Epigenetics. 10, 38
dc.relation.referencesMcCartney, D. L., Walker, R. M., Morris, S. W., McIntosh, A. M., Porteous, D. J., and Evans, K. L. (2016) Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genomics Data. 9, 22–24
dc.relation.referencesAE, T., F, M., M, L., T, B., J, T., D, G.-C., and S, B. (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 29, 189–196
dc.relation.referencesDu, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., and Lin, S. M. (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 11, 587
dc.relation.referencesRitchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47
dc.relation.referencesIllumina Illumina MethylationEPIC Manifiest file
dc.relation.referencesKuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., and Ma’ayan, A. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97
dc.relation.referencesGebäck, T., Schulz, M. M. P., Koumoutsakos, P., and Detmar, M. (2018) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. https://doi.org/10.2144/000113083. 46, 265–274
dc.relation.referencesForbes, K., Westwood, M., Baker, P. N., and Aplin, J. D. (2008) Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am. J. Physiol. Physiol. 294, C1313–C1322
dc.relation.referencesUmana-Perez, A., Novoa-Herran, S., Castro, J., Correa-Sanchez, A., Guevara, V., Lopez-Gonzalez, D., and Sanchez-Gomez, M. (2020) Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med. Res. Arch. 10.18103/mra.v8i10.2247
dc.relation.referencesLi, E., and Zhang, Y. (2014) DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a019133
dc.relation.referencesLowdon, R. F., Jang, H. S., and Wang, T. (2016) Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet. 32, 269–283
dc.relation.referencesZhang, X., and Ho, S. M. (2011) Epigenetics meets endocrinology. J. Mol. Endocrinol. 46, R11
dc.relation.referencesHoushdaran, S., Oke, A. B., Fung, J. C., Vo, K. C., Nezhat, C., and Giudice, L. C. (2020) Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 16, e1008601
dc.relation.referencesLi, J.-Y., Pu, M.-T., Hirasawa, R., Li, B.-Z., Huang, Y.-N., Zeng, R., Jing, N.-H., Chen, T., Li, E., Sasaki, H., and Xu, G.-L. (2007) Synergistic Function of DNA Methyltransferases Dnmt3a and Dnmt3b in the Methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759
dc.relation.referencesWang, G., Weng, R., Lan, Y., Guo, X., Liu, Q., Liu, X., Lu, C., and Kang, J. (2017) Synergetic effects of DNA methylation and histone modification during mouse induced pluripotent stem cell generation. Sci. Rep. 7, 1–12
dc.relation.referencesRountree, M. R., Bachman, K. E., Herman, J. G., and Baylin, S. B. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene. 20, 3156–3165
dc.relation.referencesVarley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., Cross, M. K., Williams, B. A., Stamatoyannopoulos, J. A., Crawford, G. E., Absher, D. M., Wold, B. J., and Myers, R. M. (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567
dc.relation.referencesBlake, L. E., Roux, J., Hernando-Herraez, I., Banovich, N. E., Perez, R. G., Hsiao, C. J., Eres, I., Cuevas, C., Marques-Bonet, T., and Gilad, Y. (2020) A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res. 30, 250–262
dc.relation.referencesNordor, A. V., Nehar-Belaid, D., Richon, S., Klatzmann, D., Bellet, D., Dangles-Marie, V., Fournier, T., and Aryee, M. J. (2017) The early pregnancy placenta foreshadows DNA methylation alterations of solid tumors. Epigenetics. 12, 793–803
dc.relation.referencesSchmit, K., and Michiels, C. (2018) TMEM Proteins in Cancer: A Review. Front. Pharmacol. 9, 1345
dc.relation.referencesAbu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T. H., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., Kim, P. M., and Aqeilan, R. I. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J. Biol. Chem. 289, 8865–8880
dc.relation.referencesLudes-Meyers, J. H., Kil, H., Bednarek, A. K., Drake, J., Bedford, M. T., and Aldaz, C. M. (2004) WWOX binds the specific proline-rich ligand PPXY: Identification of candidate interacting proteins. Oncogene. 23, 5049–5055
dc.relation.referencesZhou, J. G., Zhao, H. T., Jin, S. H., Tian, X., and Ma, H. (2019) Identification of a RNA-seq-based signature to improve prognostics for uterine sarcoma. Gynecol. Oncol. 155, 499–507
dc.relation.referencesZhang, X., Liu, B., Zhang, J., Yang, X., Zhang, G., Yang, S., Wang, J., Shi, J., Hu, K., Wang, J., Jing, H., Ke, X., and Fu, L. (2019) Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients. Cancer Biomarkers. 26, 441–449
dc.relation.referencesFeng, H., and Liu, X. (2020) Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med. J. 61, 471–481
dc.relation.referencesNatunen, T., Helisalmi, S., Vepsäläinen, S., Sarajärvi, T., Antikainen, L., Mäkinen, P., Herukka, S. K., Koivisto, A. M., Haapasalo, A., Soininen, H., and Hiltunen, M. (2012) Genetic analysis of genes involved in amyloid-β degradation and clearance in Alzheimer’s disease. J. Alzheimer’s Dis. 28, 553–559
dc.relation.referencesPinto, F. M., Ravina, C. G., Subiran, N., Cejudo-Román, A., Fernández-Sánchez, M., Irazusta, J., Garrido, N., and Candenas, L. (2010) Autocrine regulation of human sperm motility by tachykinins. Reprod. Biol. Endocrinol. 8, 104
dc.relation.referencesRen, J., Niu, G., Wang, X., Song, T., Hu, Z., and Ke, C. (2018) Overexpression of FNDC1 in gastric cancer and its prognostic significance. J. Cancer. 9, 4586–4595
dc.relation.referencesYumrutas, O., Oztuzcu, S., Büyükhatipoglu, H., Bozgeyik, I., Bozgeyik, E., Igci, Y. Z., Bagis, H., Cevik, M. O., Kalender, M. E., Eslik, Z., and Arslan, A. (2015) The role of the UTS2 gene polymorphisms and plasma Urotensin-II levels in breast cancer. Tumor Biol. 36, 4427–4432
dc.relation.referencesFang, C., Jiang, B., Shi, X., and Fan, C. (2019) Hes3 enhances the malignant phenotype of lung cancer through upregulating cyclin D1, cyclin D3 and MMP7 expression. Int. J. Med. Sci. 16, 470–476
dc.relation.referencesVelasco, G., Pendás, A. M., Fueyo, A., Knäuper, V., Murphy, G., and López-Otín, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576
dc.relation.referencesAllione, A., Pardini, B., Viberti, C., Giribaldi, G., Turini, S., Di Gaetano, C., Guarrera, S., Cordero, F., Oderda, M., Allasia, M., Gontero, P., Sacerdote, C., Vineis, P., and Matullo, G. (2018) MMP23B expression and protein levels in blood and urine are associated with bladder cancer. Carcinogenesis. 39, 1254–1263
dc.relation.referencesBarron, C. C., Bilan, P. J., Tsakiridis, T., and Tsiani, E. (2016) Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism. 65, 124–139
dc.relation.referencesChai, Y. J., Yi, J. W., Oh, S. W., Kim, Y. A., Yi, K. H., Kim, J. H., and Lee, K. E. (2017) Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: Analysis of data from The Cancer Genome Atlas. in Surgery (United States), pp. 188–194, Mosby Inc., 161, 188–194
dc.relation.referencesIdriss, H. T., and Naismith, J. H. (2000) TNFα and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 50, 184–195
dc.relation.referencesYu-Di, Z., and Ming-Yue, L. (2018) Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol. Med. Rep. 18, 3403–3410
dc.relation.referencesKotsiou, E., Okosun, J., Besley, C., Iqbal, S., Matthews, J., Fitzgibbon, J., Gribben, J. G., and Davies, J. K. (2016) TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. Blood. 128, 72–81
dc.relation.referencesChai, P., Yu, J., Ge, S., Jia, R., and Fan, X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. 10.1186/s13045-020-00883-5
dc.relation.referencesRazin, A., and Kantor, B. (2005) DNA methylation in epigenetic control of gene expression. Prog. Mol. Subcell. Biol. 38, 151–167
dc.relation.referencesLindner, M., Verhagen, I., Viitaniemi, H. M., Laine, V. N., Visser, M. E., Husby, A., and van Oers, K. (2021) Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics. 22, 36
dc.relation.referencesMotwani, J., Rodger, E. J., Stockwell, P. A., Baguley, B. C., Macaulay, E. C., and Eccles, M. R. (2021) Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics. 10.2217/epi-2020-0440
dc.relation.referencesSiegfried, Z., and Simon, I. (2010) DNA methylation and gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 362–371
dc.relation.referencesWang, Z. Q., Sun, X. L., Wang, Y. L., and Miao, Y. L. (2020) Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J. Recept. Signal Transduct. 10.1080/10799893.2020.1811325
dc.relation.referencesHenrich, K. O., Bauer, T., Schulte, J., Ehemann, V., Deubzer, H., Gogolin, S., Muth, D., Fischer, M., Benner, A., König, R., Schwab, M., and Westermann, F. (2011) CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Res. 71, 3142–3151
dc.relation.referencesHabbig, S., Bartram, M. P., Müller, R. U., Schwarz, R., Andriopoulos, N., Chen, S., Sägmüller, J. G., Hoehne, M., Burst, V., Liebau, M. C., Reinhardt, H. C., Benzing, T., and Schermer, B. (2011) NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell Biol. 193, 633–642
dc.relation.referencesJin, W. (2020) Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J. Clin. Med. 9, 1256
dc.relation.referencesHolm, M., Joenväärä, S., Saraswat, M., Tohmola, T., Ristimäki, A., Renkonen, R., and Haglund, C. (2020) Plasma protein expression differs between colorectal cancer patients depending on primary tumor location. Cancer Med. 9, 5221–5234
dc.relation.referencesChen, S., Tan, Y., Deng, H., Shen, Z., Liu, Y., Wu, P., Tan, C., and Jiang, Y. (2017) UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget. 8, 71736–71749
dc.relation.referencesOo, A. K. K., Calle, A. S., Nair, N., Mahmud, H., Vaidyanath, A., Yamauchi, J., Khayrani, A. C., Du, J., Alam, M. J., Seno, A., Mizutani, A., Murakami, H., Iwasaki, Y., Chen, L., Kasai, T., and Seno, M. (2018) Up-Regulation of PI 3-Kinases and the Activation of PI3K-Akt Signaling Pathway in Cancer Stem-Like Cells Through DNA Hypomethylation Mediated by the Cancer Microenvironment. Transl. Oncol. 11, 653–663
dc.relation.referencesJones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 10.1038/nrg3230
dc.relation.referencesBorodinova, A. A., Kuznetsova, M. A., Alekseeva, V. S., and Balaban, P. M. (2019) Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci. Rep. 9, 1–12
dc.relation.referencesRymen, B., Kawamura, A., Lambolez, A., Inagaki, S., Takebayashi, A., Iwase, A., Sakamoto, Y., Sako, K., Favero, D. S., Ikeuchi, M., Suzuki, T., Seki, M., Kakutani, T., Roudier, F., and Sugimoto, K. (2019) Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun. Biol. 2, 1–15
dc.relation.referencesGlasow, A., Barrett, A., Petrie, K., Gupta, R., Boix-Chornet, M., Zhou, D. C., Grimwade, D., Gallagher, R., Von Lindern, M., Waxman, S., Enver, T., Hildebrandt, G., and Zelent, A. (2008) DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood. 111, 2374–2377
dc.relation.referencesZhou, J.-D., Zhang, T.-J., Li, X.-X., Ma, J.-C., Guo, H., Wen, X.-M., Yao, D.-M., Zhang, W., Lin, J., and Qian, J. (2018) Methylation-independent CHFR expression is a potential biomarker affecting prognosis in acute myeloid leukemia. J. Cell. Physiol. 233, 4707–4714
dc.relation.referencesNavasa, N., Martin-Ruiz, I., Atondo, E., Sutherland, J. D., Angel Pascual-Itoiz, M., Carreras-González, A., Izadi, H., Tomás-Cortázar, J., Ayaz, F., Martin-Martin, N., Torres, I. M., Barrio, R., Carracedo, A., Olivera, E. R., Rincón, M., and Anguita, J. (2015) Ikaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Sci. Rep. 5, 14692
dc.relation.referencesKim, J., Lee, Y., Lu, X., Song, B., Fong, K. W., Cao, Q., Licht, J. D., Zhao, J. C., and Yu, J. (2018) Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 25, 2808-2820.e4
dc.relation.referencesMumtaz Taqi, M., Bazov, I., Watanabe, H., Sheedy, D., Harper, C., Alkass, K., Druid, H., Wentzel, P., Nyberg, F., Yakovleva, T., and Bakalkin, G. (2011) Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Wiley Online Libr. 16, 499–509
dc.relation.referencesSamy, M. D., Yavorski, J. M., Mauro, J. A., and Blanck, G. (2016) Impact of SNPs on CpG Islands in the MYC and HRAS oncogenes and in a wide variety of tumor suppressor genes: A multi-cancer approach. Cell Cycle. 15, 1572–1578
dc.relation.referencesSchoenfelder, S., and Fraser, P. (2019) Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455
dc.relation.referencesZheng, H., and Xie, W. (2019) The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550
dc.relation.referencesde Moraes Salgado, C., da Silva Miyaguti, N. A., de Oliveira, S. C. P., Favero-Santos, B. C., Viana, L. R., de Moraes Santos Oliveira, M., and Gomes-Marcondes, M. C. C. (2021) Cancer during pregnancy. Maternal, placenta, and fetal damage. Nutrition, antioxidant defenses, and adult offspring tumor-bearing. in Cancer, pp. 121–129, Elsevier, 10.1016/b978-0-12-819547-5.00012-2
dc.relation.referencesMaghbooli, Z., Hossein-nezhad, A., Adabi, E., Asadollah-pour, E., Sadeghi, M., Mohammad-nabi, S., Zakeri Rad, L., Malek Hosseini, A., Radmehr, M., Faghihi, F., Aghaei, A., Omidifar, A., Aghababei, Y., and Behzadi, H. (2018) Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 13, e0199772
dc.relation.referencesSantos, H. P., Bhattacharya, A., Martin, E. M., Addo, K., Psioda, M., Smeester, L., Joseph, R. M., Hooper, S. R., Frazier, J. A., Kuban, K. C., O’Shea, T. M., and Fry, R. C. (2019) Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 14, 751–765
dc.relation.referencesTekola-Ayele, F., Zeng, X., Ouidir, M., Workalemahu, T., Zhang, C., Delahaye, F., and Wapner, R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. 10.1186/s13148-020-00873-x
dc.relation.referencesRousseaux, S., Seyve, E., Chuffart, F., Bourova-Flin, E., Benmerad, M., Charles, M. A., Forhan, A., Heude, B., Siroux, V., Slama, R., Tost, J., Vaiman, D., Khochbin, S., and Lepeule, J. (2020) Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 18, 306
dc.relation.referencesRadhakrishna, U., Vishweswaraiah, S., Uppala, L. V., Szymanska, M., Macknis, J., Kumar, S., Saleem-Rasheed, F., Aydas, B., Forray, A., Muvvala, S. B., Mishra, N. K., Guda, C., Carey, D. J., Metpally, R. P., Crist, R. C., Berrettini, W. H., and Bahado-Singh, R. O. (2021) Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics. 113, 1127–1135
dc.relation.referencesKinnon, T. M. C., Chakraborty, C., Gleeson, L. M., Chidiac, P., Lala, P. K., Anatomy, D., M, C. B. T., and Pathology, C. C. (2001) Stimulation of Human Extravillous Trophoblast Migration by IGF-II Is Mediated by IGF Type 2 Receptor Involving Inhibitory G Protein ( s ) and Phosphorylation of MAPK. 86, 3665–3674
dc.relation.referencesCrosley, E. J., Dunk, C. E., Beristain, A. G., and Christians, J. K. (2014) IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod. Biol. Endocrinol. 12, 1–7
dc.relation.referencesAnnunziata, M., Granata, R., and Ghigo, E. (2011) The IGF system. Acta Diabetol. 48, 1–9
dc.relation.referencesWeroha, S. J., and Haluska, P. (2013) IGF System in Cancer. Endocinol Metab Clin North Am. 41, 1–15
dc.relation.referencesNakamura, H., Dan, S., Akashi, T., Okui, M., Egawa, S., Ishikawa, Y., Unno, M., and Yamori, T. (2007) Ectopic expression of PIK3CD in human cancer cell lines and human lung carcinoma. Cancer Res.
dc.relation.referencesChen, J. S., Huang, J. Q., Luo, B., Dong, S. H., Wang, R. C., Jiang, Z. kun, Xie, Y. K., Yi, W., Wen, G. M., and Zhong, J. F. (2019) PIK3CD induces cell growth and invasion by activating AKT/GSK-3β/β-catenin signaling in colorectal cancer. Cancer Sci. 110, 997–1011
dc.relation.referencesYao, Z., Di Poto, C., Mavodza, G., Oliver, E., Ressom, H. W., and Sherif, Z. A. (2019) DNA Methylation Activates TP73 Expression in Hepatocellular Carcinoma and Gastrointestinal Cancer. Sci. Rep. 9, 1–10
dc.relation.referencesCostanzo, A., Pediconi, N., Narcisi, A., Guerrieri, F., Belloni, L., Fausti, F., Botti, E., and Levrero, M. (2014) TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy. FEBS Lett. 588, 2590–2599
dc.relation.referencesFranke, T. F. PI3K/Akt: getting it right matters. 10.1038/onc.2008.313
dc.relation.referencesJiang, N., Dai, Q., Su, X., Fu, J., Feng, X., and Peng, J. (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep. 47, 4587–4629
dc.relation.referencesDavies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W. C., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Wooster, R., Stratton, M. R., and Futreal, P. A. (2002) Mutations of the BRAF gene in human cancer. Nature. 417, 949–954
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsOncogenes
dc.subject.decsOncogenes
dc.subject.decsMetilación de ADN
dc.subject.decsDNA Methylation
dc.subject.decsReceptor IGF Tipo 2
dc.subject.decsReceptor, IGF Type 2
dc.subject.proposalCáncer
dc.subject.proposalMetilación del DNA
dc.subject.proposalPlacenta
dc.subject.proposalFactor de crecimiento
dc.subject.proposalEpigenética
dc.subject.proposalCancer
dc.subject.proposalIGF signaling system
dc.subject.proposalEpigenetics
dc.subject.proposalGenomic instability
dc.subject.proposalGenic expression
dc.subject.proposalMalignant transformation
dc.title.translatedEffect of IGF2 on the DNA methylation landscape and associated mRNA expression in HTR-8/SVneo cell line
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito