Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPatiño Ladino, Oscar Javier
dc.contributor.authorNagles Galeano, Leidy Johana
dc.date.accessioned2021-10-28T18:04:40Z
dc.date.available2021-10-28T18:04:40Z
dc.date.issued2021-09-22
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80633
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractSitophilus zeamais es una plaga cosmopolita que ocasiona pérdidas del 15 al 50% en granos almacenados, productos indispensables para la seguridad alimentaria. El método más utilizado para su control son los insecticidas sintéticos, que tienen desventajas como elevado costo, alta toxicidad y la generación de resistencia. Por lo tanto, se hace necesario el desarrollo de agentes fitosanitarios que permitan el control eficiente y seguro de esta plaga. En este aspecto, las plantas son una fuente prometedora de metabolitos secundarios bioactivos, con una amplia diversidad estructural, que pueden ser utilizados como bioinsecticidas. Una manera de obtener este tipo de sustancias es mediante la extracción de aceites esenciales (AEs), que se caracterizan por ser mezclas lipofílicas de compuestos volátiles, lo cual les permiten afectar de diferentes modos las funciones metabólicas, fisiológicas y el comportamiento de los insectos. En esta heurística de agentes fitosanitarios, nuestro equipo de investigación durante los últimos 14 años ha evaluado más de 100 AEs contra S. zeamais, provenientes de plantas nativas e introducidas en Colombia, contribuyendo a la caracterización química de especies vegetales. Estudios que permitieron determinar 26 aceites con acción repelente e insecticida por contacto y/o fumigante frente a S. zeamais. Si bien se avanzado mucho en la investigación de la actividad insecticida de AEs con resultados prometedores frente a S. zeamais, no se ha hecho gran énfasis en establecer cuáles de sus constituyentes son los responsables de la bioactividad frente al insecto, las posibles interacciones sinérgicas, aditivas y/o antagónicas entre sus componentes, ni tampoco los posibles mecanismos de acción frente a enzimas involucradas en procesos de neurotransmisión y desintoxicación celular. En este sentido, la presente investigación determinó la acción insecticida de constituyentes químicos (CQs) de AEs bioactivos, seleccionando los compuestos con mayor efecto tóxico fumigante y/o por contacto sobre S. zeamais. Posteriormente, se llevó a cabo un estudio de potencialización de la actividad insecticida, mediante el diseño de mezclas con los compuestos volátiles seleccionados. Finalmente, se estableció el efecto de las mezclas potencialmente tóxicas por inhalación y/o contacto y el de sus componentes, sobre enzimas desintoxicantes y de función motora extraídas del insecto. El objetivo 1 inicio con la determinación de la acción insecticida por contacto y fumigante de 51 CQs sobre S. zeamais. En el cual se establecieron 11 compuestos volátiles con actividad fumigante (compuestos de tipo hidrocarburo), 13 con toxicidad por contacto (fenilpropanoides, monoterpenoides oxigenados y cetonas alifáticas) y 13 con las dos vías de acceso insecticida (monoterpenoides con función orgánica cetona, éter y alcohol). Dentro de los cuales se resaltan a los enantiómeros de pulegona (CL50 < 0.1 mg/L y DL50 < 7.5 µg/adulto), como los compuestos con mayor efecto tóxico. Posteriormente, con los compuestos bioactivos se realizó un análisis cluster a partir de la efectividad insecticida, armando un perfil de características fisicoquímicas y estructurales para cada grupo. En el cual se logró establecer que los compuestos monoterpenoides monocíclicos con función orgánica cetona o alcohol e insaturación exocíclica son potenciales insecticidas de doble vía de acceso frente a S. zeamais. En el mismo sentido se describen las actividades realizadas en el objetivo 2, en el cual se hizo un prediseño de 29 mezclas ternarias con los compuestos volátiles tóxicos fumigantes y por contacto. Las combinaciones se sometieron a un análisis de superficie de respuesta, para establecer la influencia de la proporcionalidad, elaborando un total de 15 mezclas. Posteriormente, a estas mezclas se les estableció el potencial insecticida fumigante y/o por contacto y la interacción aditiva, sinérgica o antagónica de sus componentes, mediante el índice de combinación. De las cuales se determinaron 10 mezclas con acción insecticida promisoria, 8 que presentaron toxicidad por las dos rutas de acceso evaluadas y 5 que evidenciaron interacción sinérgica fumigante. De los resultados se resaltan la combinación M2 - CL50 0.48 mg/L (R-pulegona + S-pulegona + S-carvona), como la mezcla con mayor acción fumigante y a M20 - CL50 2.06 mg/L (isopulegona + δ-3-careno), como la combinación con mayor interacción sinérgica (IC = 0.26). Finalmente, en el objetivo 3 se estableció el efecto de las mezclas y sus componentes sobre la inhibición de acetilcolinesterasa (AChE), catalasa (CAT) y glutatión-S-transferasa (GST). Los resultados indicaron que algunas mezclas bioactivas y sus componentes inhiben en un nivel moderado a bajo la desintoxicación metabólica de GST y CAT, pero 7 mezclas y 8 de sus constituyentes inhiben en gran medida la AChE, en la cual 5 de las combinaciones presentan interacción sinérgica. En los resultados neurotóxicos se destacan las mezclas M20 (CI50 0.61 mg/L), M12 (CI50 0.81 mg/L) y su componente δ-3-careno (CI50 0.19 mg/L), como las sustancias que ejercen mayor efecto inhibitorio sobre la actividad de AChE, sugirieron que la acción insecticida de estas mezclas involucra más de un mecanismo de acción, al mostrar una reducción de dosis desfavorable para δ-3-careno. De esta manera el presente trabajo contribuye a la caracterización del efecto insecticida por dos vías de acceso de CQs de AEs, elabora algunas mezclas de metabolitos volátiles bioactivos potencializando el efecto insecticida y hace una aproximación a sus posibles mecanismos de acción, presentado nuevas sustancias que podrían usarse como principios activos de bioinsecticidas para el control de S. zeamais. (Texto tomado de la fuente).
dc.description.abstractSitophilus zeamais is a cosmopolitan pest, causing losses of 15 to 50% in stored grains, essential products for food security. The most used method for its control is synthetic insecticides, which have disadvantages such as their high cost, high toxicity, and the generation of resistance. Therefore, it is necessary to develop phytosanitary agents that allow the efficient and safe control of this pest. In this regard, plants are a promising source of bioactive secondary metabolites, with a wide structural diversity, which can be used as safe and effective bioinsecticides. One way to obtain this type of substance is by extracting essential oils (EOs), which are characterized by being lipophilic mixtures of volatile compounds, which allow them to affect the metabolic and physiological functions and the behavior of insects in different ways. In this heuristic of phytosanitary agents, our research team during the last 14 years has evaluated more than 100 EOs against S. zeamais, coming from native plants and introduced in Colombia, contributing to the chemical characterization of plant species. Studies that allowed determining 26 oils with repellent and insecticidal action by contact and/or fumigant against S. zeamais. Although much progress has been made in the investigation of the insecticidal activity of EOs with promising results against S. zeamais, little emphasis has been placed on establishing which of its constituents are responsible for the bioactivity against the insect, the possible synergistic interactions, additive and/or antagonistic between its components, nor the possible mechanisms of action against enzymes involved in neurotransmission and cellular detoxification processes. In this sense, the present investigation determined the insecticidal action of chemical constituents (CQs) of bioactive EOs, selecting the compounds with the greatest fumigant and/or contact toxic effect on S. zeamais. Subsequently, a study of potentization of the insecticidal activity was carried out, by means of the design of mixtures with the selected volatile compounds. Finally, the effect of the potentially toxic mixtures by inhalation and/or contact and that of their components on detoxifying enzymes and motor function extracted from the insect was established. Objective 1 started with the determination of the insecticidal action by contact and fumigants of 51 CQs on S. zeamais. In which 11 volatile compounds with fumigant activity (hydrocarbon-type compounds) were established, 13 with contact toxicity (phenylpropanoids, oxygenated monoterpenoids, and aliphatic ketones), and 13 with a toxic effect on the two access routes of the insect (monoterpenoids with functional group ketone, ether, and alcohol). From the results obtained, it was found that the enantiomers of pulegone presented the highest insecticidal potential (LC50 < 0.1 mg/L and LD50 < 7.5 µg/adult), followed by carvacrol (LD50 = 8.71 µg/adult) and the enantiomers of carvone (LC50 < 2.9 mg/L y LD50 < 17.0 µg/adult). Subsequently, with the bioactive compounds, a cluster analysis was performed for each mode of action, based on the insecticidal effectiveness, assembling a profile of physicochemical and structural characteristics for each group. In which it was possible to establish that monocyclic monoterpenoid compounds with ketone or alcohol functional group and exocyclic unsaturation are potential insecticides with a double access route against S. zeamais. Thus, the activities carried out in objective 2 are described, in which a pre-design of 29 ternary mixtures was made with the volatile compounds with fumigant and contact toxic. The combinations were subjected to a response surface analysis, to establish the influence of proportionality, making a total of 15 mixtures. Subsequently, the fumigant and contact insecticidal potential of the 15 mixtures and the additive, synergistic or antagonistic interaction of their components, through the combination index, were established. 10 mixtures with promising insecticidal action were determined, of which 8 presented toxicity by the two access routes evaluated, and 5 showed synergistic interaction in the fumigant activity. The results highlight the combination M2 - CL50 0.48 mg/L (R-pulegone + S-pulegone + S-carvone), as the mixture with the greatest fumigant action, and M20 - CL50 2.06 mg/L (isopulegone + δ-3-carene), as the combination with the highest synergistic interaction (IC = 0.26). Finally, in objective 3, the effect of mixtures and their components on the inhibition of acetylcholinesterase (AChE), catalase (CAT), and glutathione-S-transferase (GST) was established. The results indicated that some bioactive mixtures and their components have a moderate to low effect on the metabolic detoxification of GST and CAT, but 7 mixtures and 8 of their constituents greatly inhibit AChE, in which 5 of the combinations show synergistic interaction. In the neurotoxic results, the mixtures M20 (IC50 0.61 mg/L), M12 (IC50 0.81 mg/L) and their component δ-3-careno (IC50 0.19 mg/L), as the substances that exert the greatest inhibitory effect on AChE activity. This suggested that the insecticidal action of these mixtures involves more than one mechanism of action, showing an unfavorable dose reduction for δ-3-careno. In this way, the present work contributes to the determination of the fumigant and contact toxicity of chemical constituents of EOs, such as those responsible for the activity of some oils. In addition, it makes some mixtures of volatile bioactive metabolites, potentiating the insecticidal effect and makes an approximation of its possible mechanisms of action. Therefore, this study presents new substances that could be used as active principles of bioinsecticides for the control of S. zeamais.
dc.format.extentxxv, 166 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.titleEstudio de la acción insecticida de constituyentes químicos presentes en aceites esenciales y su efecto sobre enzimas desintoxicantes y de función motora para Sitophilus zeamais
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.description.notesIncluye anexos
dc.contributor.educationalvalidatorHerrera Daza, Eddy
dc.contributor.projectleaderPrieto Rodríguez, Juliet Angélica
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaBioprospección en agentes fitosanitarios
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesIICA; CEPAL; FAO Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe2019-2020; San José, Costa Rica, 2019
dc.relation.referencesProsekov, A.Y.; Ivanova, S.A. Food security: The challenge of the present. Geoforum 2018, 91, 73–77, doi:10.1016/j.geoforum.2018.02.030.
dc.relation.referencesSarwar, M.; Sarwar, M.; Sarwar, M.; Qadri, A.; Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: A review. J. Cereal. Oilseeds 2013, 4, 32–35, doi:10.5897/JCO12.023.
dc.relation.referencesGil, A.; Sánchez, F. Cereales y Productos derivados. In Tratado de nutrición Composición y Calidad Nutritiva de los alimentos; Médica-Panamericana, 2010; pp. 97–138 ISBN 8498353475
dc.relation.referencesGarcía, S.; Bergvinson, D.J. Programa integral para reducir pérdidas poscosecha en maiz. Agric. Técnica en México 2007, 33, 181–189
dc.relation.referencesFAO El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos.; 2019; Vol. 32; ISBN 9789251318546
dc.relation.referencesGobernación de Antioquia Manual Técnico del Cultivo de Maíz bajo Buenas Prácticas Agrícolas; Ospina, J., Ed.; Fotomontajes S.A.S.: Medellín, Colombia, 2015; ISBN 9789588711737
dc.relation.referencesHerrera, J.M.; Goñi, M.L.; Gañan, N.A.; Zygadlo, J.A. An insecticide formulation of terpene ketones against Sitophilus zeamais and its incorporation into low density polyethylene films. Crop Prot. 2017, 98, 33–39, doi:10.1016/j.cropro.2017.03.008
dc.relation.referencesRees, D. Insects of stored products; CSIRO Pub: Australia, 2004; ISBN 9780643069039
dc.relation.referencesTrematerra, P.; Savoldelli, S. Pasta preference and ability to penetrate through packaging of Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae). J. Stored Prod. Res. 2014, 59, 126–132, doi:10.1016/j.jspr.2014.06.008
dc.relation.referencesSparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128, doi:10.1016/j.pestbp.2014.11.014
dc.relation.referencesZaka, S.M.; Iqbal, N.; Saeed, Q.; Akrem, A.; Batool, M.; Khan, A.A.; Anwar, A.; Bibi, M.; Azeem, S.; Rizvi, D. e. N.; et al. Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi J. Biol. Sci. 2019, 26, 1767–1771, doi:10.1016/j.sjbs.2018.05.012
dc.relation.referencesMeza, J.L.; Camacho, J.R.; Cortes, E.M. Manejo integrado de plagas en granos almacenados. In Tecnologías de Granos y Semillas. Libros técnicos: serie agricultura; García, C., Martínez, R., Rojo, G.E., Ramírez, B., Eds.; México, 2009; pp. 109–128 ISBN 963-734-412-7
dc.relation.referencesS.Gaviria, L.Mejia, M.Castro, E.Gómez, F.C. Pérdida y Desperdicio de alimentos en Colombia. Dep. Nac. Planeación 2016, 39, 116
dc.relation.referencesKhare, A.; Singh, A.; Singh, A. Use of Vegetable Oils as Biopesticide in Grain Protection -A Review. J. Biofertilizers Biopestic. 2012, 03, 1–9, doi:10.4172/2155-6202.1000114
dc.relation.referencesSoujanya, P.L.; Sekhar, J.C.; Kumar, P.; Sunil, N.; Prasad, C.V.; Mallavadhani, U. V. Potentiality of botanical agents for the management of post harvest insects of maize: a review. J. Food Sci. Technol. 2016, 53, 2169–2184, doi:10.1007/s13197-015-2161-0
dc.relation.referencesCantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242, doi:10.1021/np300024u
dc.relation.referencesPreedy, V. Essential Oils in Food Preservation, Flavor and Safety; 2015; ISBN 978-0-12-416641-7
dc.relation.referencesCox, P.D. Potential for using semiochemicals to protect stored products from insect infestation, Review. J. Stored Prod. Res. 2004, 40, 1–25, doi:10.1016 / S0022-474X (02) 00078-4
dc.relation.referencesRegnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2011, 57, 405–424, doi:10.1146/annurev-ento-120710-100554
dc.relation.referencesJankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—a review. Molecules 2018, 23, 1–20, doi:10.3390/molecules23010034
dc.relation.referencesTripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phyther. 2009, 1, 052–063
dc.relation.referencesPatiño, W. Aceites esenciales como potenciales agentes fitosanitarios para el control de Sitophilus zeamais, Tesis Maestría, Universidad Nacional de Colombia, 2018
dc.relation.referencesPrieto, J.A. Estudio fitoquímico de Compsoneura capitellata (Myristicaceae), Zanthoxylum rigidum (Rutaceae) y Ocotea longifolia (Lauraceae) y evaluación de su posible aplicación como biocontroladores de Sitophilus sp., Universidad Nacional de Colombia, 2012
dc.relation.referencesPrieto, J. a.; Pabón, L.C.; Patiño, Ó.J.; Delgado, W. a.; Cuca, L.E. Constituyentes químicos, actividad insecticida y antifúngica de los aceites esenciales de hojas de dos especies colombianas del género Ocotea (Lauraceae). Rev. Colomb. Química 2010, 39, 199–209
dc.relation.referencesCornell, J. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data; tercera.; Jhon Wiley & Sons: New York, 2002; ISBN 0471393673
dc.relation.referencesLazcano Díaz, E.; Padilla Camberos, E.; Castillo Herrera, G.A.; Estarrón Espinosa, M.; Espinosa Andrews, H.; Paniagua Buelnas, N.A.; Gutiérrez Ortega, A.; Martínez Velázquez, M. Development of essential oil-based phyto-formulations to control the cattle tick Rhipicephalus microplus using a mixture design approach. Exp. Parasitol. 2019, 201, 26–33, doi:10.1016/j.exppara.2019.04.008
dc.relation.referencesChou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681, doi:10.1124/pr.58.3.10
dc.relation.referencesMossa, A.T.H. Green Pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354–378, doi:10.3923/jest.2016.354.378
dc.relation.referencesRodríguez, R.; Herrera, F.J. Insectos y hongos en los granos almacenados en Yucatán. Rev. la Univ. Autónoma Yucatán 2003, 48–53
dc.relation.referencesBoyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229, doi:10.1017/S0007485311000654
dc.relation.referencesLangsi, J. Potentials of Fractionated Extracts of Ocimum canum (Lamiaceae) and Laggera pterodonta (Compositae) for the Protection of Maize against the Infestation of Sitophilus zeamais (Coleoptera: Curculionidae). 2014, 10–22, doi:10.13140/RG.2.2.15879.50083
dc.relation.referencesGarcía, D. Evaluación de insecticidas de cuatro grupos toxicológicos para el control de Sitophilus zeamais motschulsky, Universidad Autonma Agraia Antonio Narro, Tesis de pregrado, 2009
dc.relation.referencesRita Devi, S.; Thomas, A.; Rebijith, K.B.; Ramamurthy, V. V Biology , morphology and molecular characterization of Sitophilus oryzae and S . zeamais ( Coleoptera : Curculionidae ). J. Stored Prod. Res. 2017, 73, 135–141, doi:10.1016/j.jspr.2017.08.004
dc.relation.referencesBisset, J. Uso correcto de insecticidas: control de la resistencia. Rev Cbana Med Trop 2002, 54, 202–219
dc.relation.referencesJimenéz, E. Métodos de Control de Plagas; 1°.; Universidad Nacional Agraria: Managua, Nicaragua, 2009
dc.relation.referencesArchuleta-Torres, A.; García-Gutiérrez, C.; Ruelas, R.D.; Gaxiola-Castro, L.A.; López, M.Á. Aislamiento de Beauveria bassiana y Metarhizium anisopliae con medio selectivo y prueubas de roxicidad contra el gorgojo del maíz Sitophilus zeamais. Rev. Entomol. Mex. 2012, 11, 266–269
dc.relation.referencesPimentel, M.A.G.; Faroni, L.R.D.A.; Guedes, R.N.C.; Sousa, A.H.; Tótola, M.R. Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 2009, 45, 71–74, doi:10.1016/j.jspr.2008.09.001
dc.relation.referencesEnsley, S. Pesticides and Herbicides; 1st ed.; Elsevier Ltd., 2015; ISBN 9780123849533
dc.relation.referencesGómez, M.F.; Moreno, L.A.; Andrade, G.I. Biodiversidad 2018. Estado y tendencias de la biodiversidad continental de Colombia; Humboldt, . Instituto de Investigación de Recursos Biológicos Alexander von, Ed.; Panamericana Formas e Impresos S.A. Citación: Bogotá, D. C. Colombia, 2019; ISBN 9789585418639
dc.relation.referencesThakare, R.; Rathod, D.; Rai, M. Role of Medicinal Plants and their Metabolites for the Management of Plant Pathogens. In Sustainable Crop Disease Management using Natural Products; Sangeetha, G., Kurucheve, V., Jayaraj, J., Eds.; CAB International: Boston, 2015; Vol. 16, pp. 131–143 ISBN 9781780643236
dc.relation.referencesSangeetha, G.; Anandan, A.; Kurucheve, V. Natural Products and Elicitors of Natural Origin for the Postharvest Manage- ment of Diseases of Fruits and Vegetables G. In Sustainable Crop Disease Management using Natural Products; Sangeetha, G., Kurucheve, V., Jayaraj, J., Eds.; CAB International: Boston, 2015; pp. 49–73 ISBN 9781780643236
dc.relation.referencesHaddi, K.; Mendonça, L.P.; Dos Santos, M.F.; Guedes, R.N.C.; Oliveira, E.E. Metabolic and behavioral mechanisms of indoxacarb resistance in sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 2015, 108, 362–369, doi:10.1093/jee/tou049
dc.relation.referencesAlonso, O. Los insecticidas botánicos: una opción ecológica para el control de plagas. Pastos y Forrajes 1999, 22, 1–16
dc.relation.referencesEbadollahi, A.; Jalali Sendi, J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 2015, 34, 76–91, doi:10.3109/15569543.2015.1023956.
dc.relation.referencesZheljazkov, V.D.; Shiwakoti, S.; Jeliazkova, E.A.; Astatkie, T.; States, U. Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. ACS Symposium Series; American Chemical Society. 2016, pp. 145–166
dc.relation.referencesStashenko, E. Aceites Esenciales; UIS: Bucaramanga, Colombia, 2009; ISBN 9789584459442
dc.relation.referencesNerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378, doi:10.1016/j.biortech.2009.07.048
dc.relation.referencesFang, R.; Jiang, C.H.; Wang, X.Y.; Zhang, H.M.; Liu, Z.L.; Zhou, L.; Du, S.S.; Deng, Z.W. Insecticidal activity of essential oil of Carum Carvi fruits from china and its main components against two grain storage insects. Molecules 2010, 15, 9391–9402, doi:10.3390/molecules15129391
dc.relation.referencesBertoli, A.; Conti, B.; Mazzoni, V.; Meini, L.; Pistelli, L. Volatile chemical composition and bioactivity of six essential oils against the stored food insect Sitophilus zeamais Motsch. (Coleoptera Dryophthoridae). Nat. Prod. Res. 2012, 26, 2063–2071, doi:10.1080/14786419.2011.607453
dc.relation.referencesOliveira, A.P.; Santana, A.S.; Santana, E.D.R.; Lima, A.P.S.; Faro, R.R.N.; Nunes, R.S.; Lima, A.D.; Blank, A.F.; Araújo, A.P.A.; Cristaldo, P.F.; et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind. Crops Prod. 2017, 107, 198–205, doi:10.1016/j.indcrop.2017.05.046
dc.relation.referencesTanu, B.; Harpreet, K. Benefits of essential oil - Review. J. Chem. Pharm. Res. 2016, 8, 6, 143–149, doi:10.1017/S0952675714000244
dc.relation.referencesBustos, G. Acción insecticida conjunta de mezclas de los aceites esenciales de Peumus boldus Molina, Laurelia sempervirens (Ruiz & Pav.) Tul. y Laureliopsis philippiana (Looser) Schodde contra Sitophilus zeamais Motschulsky. 2016, 52
dc.relation.referencesHerrera, J.M.; Zunino, M.P.; Dambolena, J.S.; Pizzolitto, R.P.; Gañan, N.A.; Lucini, E.I.; Zygadlo, J.A. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind. Crops Prod. 2015, 70, 435–442, doi:10.1016/j.indcrop.2015.03.074
dc.relation.referencesQuan, M.; Liu, Q.Z.; Liu, Z.L. Identification of insecticidal constituents from the essential oil from the aerial parts stachys riederi var. Japonica. Molecules 2018, 23, doi:10.3390/molecules23051200
dc.relation.referencesHerrera, J.M.; Zunino, M.P.; Massuh, Y.; Pizzollito, R.P.; Dambolena, J.S.; Gañan, N.A.; Zygadlo, J.A. Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky). AgriScientia 2014, 31, 35–41, doi:10.31047/1668.298x.v31.n1.9839
dc.relation.referencesAsawalam E. F; Emosairue S. O.; Hassanali A. Contribution of different constituents to the toxicity of the essential oil constituents of Vernonia amygdalina (Compositae) and Xylopia aetiopica (Annonaceae) on maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). African J. Biotechnol. 2008, 7, 2957–2962, doi:10.5897/AJB08.121
dc.relation.referencesBekele, J.; Hassanali, A. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry 2001, 57, 385–391, doi:10.1016/S0031-9422(01)00067-X
dc.relation.referencesHuang, Y.; Ho, S.H. Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J. Stored Prod. Res. 1998, 34, 11–17, doi:10.1016/S0022-474X(97)00038-6
dc.relation.referencesHuang, Y.; Ho, S.H.; Lee, H.C.; Yap, Y.L. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412, doi:10.1016/S0022-474X(01)00042-X
dc.relation.referencesSuthisut, D.; Fields, P.G.; Chandrapatya, A. Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (zingiberaceae) and their major components against sitophilus zeamais and tribolium castaneum. J. Econ. Entomol. 2011, 104, 1445–1454, doi:10.1603/EC11050
dc.relation.referencesKim, S. Il; Lee, D.W. Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J. Asia. Pac. Entomol. 2014, 17, 13–17, doi:10.1016/j.aspen.2013.09.002
dc.relation.referencesLong Liu, Z.; Hua Jiang, G.; Zhou, L.; Zhi Liu, Q. Analysis of the essential oil of dipsacus japonicus flowering aerial parts and its insecticidal activity against sitophilus zeamais and tribolium castaneum. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 2013, 68, 13–18, doi:10.1515/znc-2013-1-203
dc.relation.referencesYildirim, E.; Emsen, B.; Kordali, S. Insecticidal Effects of Monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86, 198–204, doi:10.5073/JABFQ.2013.086.027
dc.relation.referencesHuang, Y.; Ho, S.H.; Kini, R.M. Bioactivities of Safrole and Isosafrole on Sitophilus zeamais(Coleoptera: Curculionidae) and Tribolium castaneum(Coleoptera: Tenebrionidae). J. Econ. Entomol. 1999, 92, 676–683, doi:10.1093/jee/92.3.676
dc.relation.referencesSuthisut, D.; Fields, P.G.; Chandrapatya, A. Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. J. Stored Prod. Res. 2011, 47, 222–230, doi:10.1016/j.jspr.2011.03.002.
dc.relation.referencesChu, S.S.; Feng Hu, J.; Liu, Z.L. Composition of essential oil of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil, Sitophilus zeamais. Pest Manag. Sci. 2011, 67, 714–718, doi:10.1002/ps.2112.
dc.relation.referencesPascual, M.J.; Ballesta, M.C.; Soler, A. Toxicidad y repelencia de aceites esenciales en plagas de almacén del arroz. Boletín Sanid. Veg. Plagas 2004, 30, 279–286
dc.relation.referencesHerrera, J.M.; Dambolena, S.; Pizzolitto, R.P.; Zunino, M.P.; Zygadlo, J.A. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. J. Stored Prod. Res. 2015, 62, 74–80, doi:10.1016/j.jspr.2015.04.006.
dc.relation.referencesChu, S.S.; Du, S.S.; Liu, L.Z. Fumigant compounds from the essential oils of Chinese Blumea bolsamifera leaves against maize weevil (Sitophilus zeamais). J. Chem. 2013, 2013, 1–7, doi:http://dx.doi.org/10.1155/2013/289874.
dc.relation.referencesChu, S.S.; Wang, C.F.; Du, S.S.; Liu, S.L.; Liu, Z.L. Toxicity of the essential oil of Illicium difengpi stem bark and its constituent compounds towards two grain storage insects. J. Insect Sci. 2011, 11, 1–10, doi:10.1673/031.011.15201.
dc.relation.referencesLiu, Z.L.; Chu, S.S.; Jiang, G.H. Toxicity of Schizonpeta multifida essential oil and its constituent compounds towards two grain storage insects. J. Sci. Food Agric. 2011, 91, 905–909, doi:10.1002/jsfa.4263.
dc.relation.referencesYang, K.; Zhou, Y.X.; Wang, C.F.; Du, S.S.; Deng, Z.W.; Liu, Q.Z.; Liu, Z.L. Toxicity of rhododendron anthopogonoides essential oil and its constituent compounds towards sitophilus zeamais. Molecules 2011, 16, 7320–7330, doi:10.3390/molecules16097320
dc.relation.referencesWang, C.F.; Yang, K.; Zhang, H.M.; Cao, J.; Fang, R.; Liu, Z.L.; Du, S.S.; Wang, Y.Y.; Deng, Z.W.; Zhou, L. Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 2011, 16, 3077–3088, doi:10.3390/molecules16043077
dc.relation.referencesKouninki, H.; Hance, T.; Noudjou, F.A.; Lognay, G.; Malaisse, F.; Ngassoum, M.B.; Mapongmetsem, P.M.; Ngamo, L.S.T.; Haubruge, E. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. J. Appl. Entomol. 2007, 131, 269–274, doi:10.1111/j.1439-0418.2007.01154.x
dc.relation.referencesOepp, B.; Bulletin, E. Insecticide co-formulated mixtures. EPPO Bull. 2012, 42, 353–357, doi:10.1111/epp.2608
dc.relation.referencesRajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135, doi:10.1016/j.jspr.2007.08.003
dc.relation.referencesUsha, P. Fumigant and contact toxic potential of essential oils from plant extracts against stored product pests. J. Biopest 2008, 5, 120–128
dc.relation.referencesWu, H.; Liu, X. ru; Yu, D. dong; Zhang, X.; Feng, J. tao Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais. Pestic. Biochem. Physiol. 2014, 109, 12–17, doi:10.1016/j.pestbp.2014.01.001
dc.relation.referencesKonuş, M. Malathion resistance mediated by detoxification enzymes in sitophilus zeamais (motschulsky) (Coleoptera: Curculionidae). Fresenius Environ. Bull. 2015, 24, 2146–2151
dc.relation.referencesEnayati, A.A.; Ranson, H.; Hemingway, J. Insect glutathione transferases and insecticide resistance. Review. Insect Mol. Biol. 2005, 14, 3–8, doi:10.1111/j.1365-2583.2004.00529.x
dc.relation.referencesFang, S.M. Insect glutathione S-transferase: A review of comparative genomic studies and response to xenobiotics. Bull. Insectology 2012, 65, 265–271
dc.relation.referencesKetterman, A.J.; Saisawang, C.; Wongsantichon, J. Insect glutathione transferases. Drug Metab. Rev. 2011, 43, 253–265, doi:10.3109/03602532.2011.552911
dc.relation.referencesKiran, S.; Prakash, B. Toxicity and biochemical efficacy of chemically characterized Rosmarinus officinalis essential oil against Sitophilus oryzae and Oryzaephilus surinamensis. Ind. Crops Prod. 2015, 74, 817–823, doi:10.1016/j.indcrop.2015.05.073
dc.relation.referencesHabig, S. Dosage de la Glutathion S-transfèrase ( GST ). 1974, 1974–1976, doi:10.1016/j.jneuroim.2003.12.019\rS0165572804000025 [pii]
dc.relation.referencesVontas, J.G.; Enayati, A.A.; Small, G.J.; Hemingway, J. A simple biochemical assay for glutathione S-transferase activity and its possible field application for screening glutathione S-transferase-based insecticide resistance. Pestic. Biochem. Physiol. 2000, 68, 184–192, doi:10.1006/pest.2000.2512
dc.relation.referencesLiao, M.; Xiao, J.-J.; Zhou, L.-J.; Liu, Y.; Wu, X.-W.; Hua, R.-M.; Wang, G.-R.; Cao, H.-Q. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation. PLoS One 2016, 11, 1–19
dc.relation.referencesScott, J.G.; Wen, Z. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 2001, 57, 958–967, doi:10.1002/ps.354
dc.relation.referencesZamora, H. Métodos selectos de bioquímica experimental; Bogotá, 2012; ISBN 9789587195354
dc.relation.referencesBolter, C.J.; Chefurka, W. The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granarius. Pestic. Biochem. Physiol. 1990, 36, 52–60, doi:10.1016/0048-3575(90)90020-3
dc.relation.referencesShahriari, M.; Zibaee, A.; Sahebzadeh, N.; Shamakhi, L. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2018, 150, 40–47, doi:10.1016/j.pestbp.2018.06.015
dc.relation.referencesClaiborne, A. Catalase Activity. In Handbook of Methods for Oxygen Radical Research; Greenwald, R., Ed.; CRC Press, 2018; pp. 283–284 ISBN 9781315893822
dc.relation.referencesHadwan, M.H. New method for assessment of serum catalase activity. Indian J. Sci. Technol. 2016, 9, 1–5, doi:10.17485/ijst/2016/v9i4/80499
dc.relation.referencesSinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394, doi:10.1016/0003-2697(72)90132-7
dc.relation.referencesIwase, T.; Tajima, A.; Sugimoto, S.; Okuda, K.I.; Hironaka, I.; Kamata, Y.; Takada, K.; Mizunoe, Y. A simple assay for measuring catalase activity: A visual approach. Sci. Rep. 2013, 3, 1–4, doi:10.1038/srep03081
dc.relation.referencesRajkumar, V.; Gunasekaran, C.; Christy, I.K.; Dharmaraj, J.; Chinnaraj, P.; Paul, C.A. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic. Biochem. Physiol. 2019, 156, 138–144, doi:10.1016/j.pestbp.2019.02.016
dc.relation.referencesRodriguez, A.M.; Zunino, M.P.; Dambolena, J.S. Optimización de ensayos de inhibición de acetilcolinesterasa en Sitophilus zeamais (Mots.). Rev. la Fac. Ciencias Exactas, Físicas y Nat. 2018, 5, 51
dc.relation.referencesSu, J.; Liu, H.; Gou, K.; Chen, L.; Yang, M.; Chen, Q. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review. Molecules 2017, 22, 1–24, doi:10.3390/molecules22010176
dc.relation.referencesSaad, M.M.G.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zool. 2018, 53, 173–181, doi:10.1007/s13355-017-0532-x
dc.relation.referencesAbdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and contact toxicities of monoterpenes to sitophilus oryzae (L.) and tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525, doi:10.1007/s10886-009-9635-3
dc.relation.referencesRibeiro, B.M.; Guedes, R.N.C.; Oliveira, E.E.; Santos, J.P. Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais ( Coleoptera : Curculionidae ). J. Stored Prod. Res. 2003, 39, 21–31
dc.relation.referencesTang, J.; Wennerberg, K.; Aittokallio, T. What is synergy? The Saariselkä agreement revisited. Front. Pharmacol. 2015, 6, 1–5, doi:10.3389/fphar.2015.00181
dc.relation.referencesLee, S. Il Drug interaction: Focusing on response surface models. Korean J. Anesthesiol. 2010, 58, 421–434, doi:10.4097/kjae.2010.58.5.421
dc.relation.referencesPatt, J.M.; Tarshis Moreno, A.M.; Niedz, R.P. Response surface methodology reveals proportionality effects of plant species in conservation plantings on occurrence of generalist predatory arthropods. PLoS One 2020, 15, 1–23, doi:10.1371/journal.pone.0231471
dc.relation.referencesChou, T. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70, 440–447, doi:10.1158/0008-5472.CAN-09-1947
dc.relation.referencesCedergreen, N.; Svendsen, C.; Backhaus, T. Chemical Mixtures : Concepts for Predicting Toxicity. Encycl. Environ. Manag. 2013, 2572–2581
dc.relation.referencesDambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health - A Structure-Activity Relationship Study. Psyche (Stuttg). 2016, 17, doi:10.1155/2016/4595823
dc.relation.referencesCharrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Nbclust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36, doi:10.18637/jss.v061.i06
dc.relation.referencesFraley, C.; Raftery, A. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. Comput. J. 1998, 41, 578–588, doi:10.1093/comjnl/41.8.578
dc.relation.referencesHolliday, J.D.; Rodgers, S.L.; Willett, P.; Chen, M.Y.; Mahfouf, M.; Lawson, K.; Mullier, G. Clustering files of chemical structures using the fuzzy k-means clustering method. J. Chem. Inf. Comput. Sci. 2004, 44, 894–902, doi:10.1021/ci0342674
dc.relation.referencesSakuma, M. Probit analysis of preference data. Appl. Entomol. Zool. 1998, 33, 339–347, doi:10.1303/aez.33.339
dc.relation.referencesMurtagh, F. Ward’s Hierarchical agllomerative Clustering Method: Which Algorithms Implement Ward’s Criterio? J. Classif. 2014, 31, 274–295, doi:10.1007/s00357
dc.relation.referencesBezerra, M.A.; Lemos, V.A.; Novaes, C.G.; de Jesus, R.M.; Filho, H.R.S.; Araújo, S.A.; Alves, J.P.S. Application of mixture design in analytical chemistry. Microchem. J. 2020, 152, doi:10.1016/j.microc.2019.104336
dc.relation.referencesZamora, H. Métodos selectos de bioquímica experimental; Universidad Nacional de Clombia: Bogotá, 2012; 20 -200 pp
dc.relation.referencesValipour Nouroozi, R.; Valipour Nouroozi, M.; Ahmadizadeh, M. Determination of Protein Concentration Using Bradford Microplate Protein Quantification Assay. Int. Electron. J. Med. 2015, 4, 11–17, doi:10.31661/iejm158
dc.relation.referencesHabig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139
dc.relation.referencesDowd, A.J.; Steven, A.; Morou, E.; Hemingway, J.; Vontas, J.; Paine, M.J.I. A simple glutathione transferase-based colorimetric endpoint assay for insecticide detection. Enzyme Microb. Technol. 2009, 45, 164–168, doi:10.1016/j.enzmictec.2009.05.008
dc.relation.referencesWang, J.L.; Li, Y.; Lei, C.L. Evaluation of monoterpenes for the control of Tribolium castaneum (Herbst) and Sitophilus zeamaise Motschulsky. Nat. Prod. Res. 2009, 23, 1080–1088, doi:10.1080/14786410802267759
dc.relation.referencesJang, Y.S.; Yang, Y.C.; Choi, D.S.; Ahn, Y.J. Vapor phase toxicity of marjoram oil compounds and their related monoterpenoids to Blattella germanica (Orthoptera: Blattellidae). J. Agric. Food Chem. 2005, 53, 7892–7898, doi:10.1021/jf051127g
dc.relation.referencesPatiño, Á. Control de insectos de granos almacenados mediante volátiles provenientes de bacterias marinas del caribe colombiano. 2019, 60–68
dc.relation.referencesCrespo, Y.A.; Bravo Sánchez, L.R.; Quintana, Y.G.; Cabrera, A.S.T.; Bermúdez del Sol, A.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 2019, 5, doi:10.1016/j.heliyon.2019.e01942
dc.relation.referencesHamza, T.; Hadwan, M.H. New Spectrophotometric Method for the Assessment of Catalase Enzyme Activity in Biological Tissues. Curr. Anal. Chem. 2020, 16, 1–16, doi:10.20944/preprints201910.0323.v1
dc.relation.referencesLópez, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288, doi:10.1016/j.indcrop.2009.11.005
dc.relation.referencesDvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010, 187, 10–22, doi:10.1016/j.cbi.2010.01.042
dc.relation.referencesZunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Rubinstein, H.R.; Zygadlo, J.A.; Dambolena, J.S. Effect of Selected Volatiles on Two Stored Pests: The Fungus Fusarium verticillioides and the Maize Weevil Sithophilus zeamais. J. Agric. Food Chem. 2015, 63, 7743–7749, doi:10.1021/acs.jafc.5b02315
dc.relation.referencesLwande, W.; Hassanali, P.; Mcdowell, P.G.; Moreka, L.; Nokoe, S.K.; Waterman, P.G. Constituents of Commiphora rostrata and some of their analogues as maize weevil , Sitophilus zeamais repellents. Int. J. Trop. Insect Sci. 1992, 13, 679–683, doi:https://doi.org/10.1017/S174275840000789X
dc.relation.referencesOviedo S, J.S. Efectos insecticidas y bioquímicos de aceites esenciales obtenidos de plantas colombianas sobre el gorgojo rojo de la harina, Tribolium castaneum (Coleoptera: Tenebrionidae), Pontificia Universidad Javeriana, 2019
dc.relation.referencesSeomoon, D.; Lee, K.; Kim, H.; Lee, P.H. Inter- and intramolecular palladium-catalyzed allyl cross-coupling reactions using allylindium generated in situ from allyl acetates, indium, and indium trichloride. Chem. - A Eur. J. 2007, 13, 5197–5206, doi:10.1002/chem.200601338
dc.relation.referencesMalosh, C.F.; Ready, J.M. Catalytic cross-coupling of alkylzinc halides with α-chloroketones. J. Am. Chem. Soc. 2004, 126, 10240–10241, doi:10.1021/ja0467768.
dc.relation.referencesCorey, E.J.; Ensley, H.E.; Suggs, J.W. A Convenient Synthesis of (8-( -)-Pulegone from (-)-Citronellol. J. Org. Chem 1976, 41, 39–40, doi:10.1021/jo00864a047
dc.relation.referencesCorey, E.J.; Ensley, H.E.; Suggs, J.W. A Convenient Synthesis of (8-( -)-Pulegone from (-)-Citronellol. J. Org. Chem 1976, 41, 39–40, doi:10.1021/jo00864a047
dc.relation.referencesHeather, E.; Shimmon, R.; McDonagh, A.M. Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol. Forensic Sci. Int. 2015, 248, 140–147, doi:10.1016/j.forsciint.2014.12.021
dc.relation.referencesFrench, L.G. Isolation of (R)-(+)-Pulegone from the European Pennyroyal Mint, Mentha Pulegium. Chem. Educ. 2002, 7, 270–277, doi:10.1007/s00897020599a
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembInsecticides
dc.subject.lembInsecticidas
dc.subject.lembBeetles
dc.subject.lembEscarabajos
dc.subject.lembEssences and essential oils
dc.subject.lembEsencias
dc.subject.proposalMezclas bioinsecticidas
dc.subject.proposalBioinsecticide mixtures
dc.subject.proposalGorgojo del maíz
dc.subject.proposalCorn weevil
dc.subject.proposalMonoterpenoides
dc.subject.proposalMonoterpenoids
dc.subject.proposalFenilpropanoides
dc.subject.proposalPhenylpropanoids
dc.subject.proposalAcetilcolinesterasa
dc.subject.proposalAcetylcholinesterase
dc.subject.proposalGlutatión-S-transferasa
dc.subject.proposalGlutathione-S-transferase
dc.subject.proposalCatalsa
dc.subject.proposalCatalse
dc.title.translatedStudy of insecticidal action of chemical constituents present in essential oils and their effect on detoxifying and motor function enzymes for Sitophilus zeamais
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito