Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRomero Angulo, Hernán Mauricio
dc.contributor.advisorRiaño, Diego Mauricio
dc.contributor.authorGaitán Chaparro, Sandra Liliana
dc.date.accessioned2021-11-09T14:37:17Z
dc.date.available2021-11-09T14:37:17Z
dc.date.issued2021-08-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80667
dc.descriptiongráficas, ilustraciones, tablas
dc.description.abstractLa enfermedad de la pudrición de flecha en la palma de aceite, es causada por el hongo patógeno Thielaviopsis paradoxa. El híbrido OxG proporciona un valioso recurso genético para seleccionar el germoplasma resistente y establecer los genes asociados con resistencia a este patógeno. En este estudio, el híbrido OxG con código 517 fue identificado como un genotipo resistente que limitó la colonización de T. paradoxa, mientras que otro híbrido OxG con código 485 mostró alta susceptibilidad. Para comprender la respuesta transcripcional del híbrido a la infección por T. paradoxa, estos dos materiales del híbrido OxG se inocularon con este patógeno y se comparó su perfil transcripcional mediante secuenciación de ARN en seis puntos de tiempo (0, 24, 48, 72, 96 y 120 hpi). Para establecer los puntos de tiempo se realizó una caracterización del desarrollo de la enfermedad y se estableció una escala de severidad. Se detectaron 1798 genes expresados diferencialmente (DEG), incluidos 454 genes sobreexpresados y 86 subexpresados, en el híbrido 517, en comparación con el híbrido 485. Los perfiles de transcripción de veinte genes putativos relacionados con la defensa de la palma de aceite se midieron mediante transcripción inversa y PCR cuantitativa en la hoja de los híbridos de palma de aceite. Los genes están involucrados en los procesos de percepción y señales de transducción, generación y depuración de ROS, vía relacionada con fenilpropanoide, inhibidores proteasa serina, factores de transcripción, biosíntesis de fitohormonas (AJ y ET) y proteínas relacionadas con patogénesis. Los resultados mostraron un aumento en la expresión de estos genes dentro de las primeras 24 hpi en el híbrido 517 y que esta sobreexpresión se mantenía en el tiempo evaluado. Esta sobrexpresión en fases tempranas de la infección podría contribuir a mediar la resistencia a T. paradoxa. En conclusión, los resultados proporcionaron información sobre el proceso de defensa dinámico del híbrido OxG y sugieren que los materiales del híbrido de palma de aceite responden de manera diferente en términos de expresión de la vía fenilpropanoide y proteínas relacionadas con patogénesis para conferir defensa y resistencia a esta enfermedad. (Texto tomado de la fuente)
dc.description.abstractSpear rot disease in oil palm, is caused by the pathogenic fungus Thielaviopsis paradoxa. The OxG hybrid provides a valuable genetic resource for selecting resistant germplasm and for stablish resistance-associated genes to this pathogen. In this study, an OxG hybrid coded 517 was identified as a resistant genotype that limited the colonization of T. paradoxa, while another OxG hybrid coded 485 showed high susceptibility. To understand the OxG hybrid transcriptional response to T. paradoxa infection, these two OxG hybrid materials were inoculated with this pathogen and its transcriptional profile was compared by RNA sequencing at six time points (0, 24, 48, 72, 96 and 120 hpi). To establish the time points, a characterization of the development of the disease was performed and a severity scale was established. 1798 differentially expressed genes (DEG), including 454 up-regulated genes and 86 downregulated genes, were detected in hybrid 517, compared to hybrid 485. The transcription profiles of twenty putative genes related to oil palm defense were measured by reverse transcription and quantitative PCR at the leaves of oil palm hybrids. Genes are involved in the processes of signal perception and transduction, generation and purification of ROS, a pathway related to phenylpropanoid, serine protease inhibitors, transcription factors, phytohormone biosynthesis (AJ and ET) and pathogenesis related proteins. These results show an increase in the expression of these genes within the first 24 hpi in hybrid 517 and that this overexpression was maintained over the evaluated time. This overexpression in the early stages of infection could contribute to mediate resistance to T. paradoxa. In conclusion, the results provided information on the dynamic defense process of the OxG hybrid and suggested that the oil palm hybrid materials respond differently in terms of expression of the phenylpropanoid pathway and pathogenesis-related proteins to confer defense and resistance to this disease.
dc.format.extentxiii, 126 páginas
dc.format.mimetypeapplication/pdf
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.titleAnálisis de la expresión de genes asociados con defensa en el modelo palma de aceite -thielaviopsis paradoxa (de seynes) höhn
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnología
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Biotecnología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentObservatorio Astronómico Nacional
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbas, E. H., & Abdulla, A. S. (2003). First report of neck bending disease on date palm in Qatar. Plant Pathology, 52(6), 790. doi: 10.1111/j.1365-3059.2003.00899.x Ahmad, P., Rasool, S., Gul, A., Sheikh, S. A., Akram, N. A., Ashraf, M., Kazi, A. M., & Gucel, S. (2016). Jasmonates: Multifunctional roles in stress tolerance. In Frontiers in Plant Science (Vol. 7, Issue JUNE2016). Frontiers Research Foundation. doi: 10.3389/fpls.2016.00813 Al-Obaidi, J. R., Hussin, S. N. I. S., Saidi, N. B., Rahmad, N., & Idris, A. S. (2017). Comparative proteomic analysis of Ganoderma species during in vitro interaction with oil palm root. Physiological and Molecular Plant Pathology, 99, 16–24. doi: 10.1016/J.PMPP.2017.02.001 Ali, M., Cheng, Z., Ahmad, H., & Hayat, S. (2018). Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ros employed by crops against verticillium dahlia wilts. Journal of Plant Interactions, 13(1), 353–363. doi: 10.1080/17429145.2018.1484188 Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339 Aoun, M. (2017). Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A review. In International Journal of Botany (Vol. 13, Issue 2, pp. 82–102). doi: 10.3923/ijb.2017.82.102 Barba, J., Orellana, F., Vallejo, G., & Manzano, R. (2010). Evaluación agronómica de híbridos interespecíficos de plama de aceite O x G (Elaeis oleífera x Elaeis guineensis) provenientes de diversos orígenes americanos y su tolerancia a la pudrición del cogollo. Palma (Ecuador), 11–15. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/6/6 Baruah, I., Baldodiya, G. M., Sahu, J., & Baruah, G. (2020). Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Current Genomics, 21(7), 491–503. doi: 10.2174/1389202921999200727213500 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. doi: 10.1093/JXB/ERT375 Bayona-Rodríguez, C. J., Ochoa-Cadavid, I., & Romero, H. M. (2016). Impacts of the dry season on the gas exchange of oil palm (Elaeis guineensis) and interspecific hybrid (Elaeis oleífera x Elaeis guineensis) progenies under field conditions in eastern Colombia. Agronomía Colombiana, 34(3), 329–335. doi: 10.15446/AGRON.COLOMB.V34N3.55565 Bezerra-Neto, J. P., Araújo, F. C., Ferreira-Neto, J. R. C., Silva, R. L. O., Borges, A. N. C., Matos, M. K. S., Silva, J. B., Silva, M. D., Kido, E. A., & Benko-Iseppon, A. M. (2019). NBS-LRR genes-Plant health sentinels: Structure, roles, evolution and biotechnological applications. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress (pp. 63–120). Elsevier. doi: 10.1016/B978-0-12-816030-5.00004-5 Binder, B. M., Chang, C., & Schaller, G. E. (2018). Perception of Ethylene by Plants - Ethylene Receptors. In Annual Plant Reviews online (pp. 117–145). Chichester, UK: John Wiley & Sons, Ltd. doi: 10.1002/9781119312994.apr0477 Boller, T. (2018). Ethylene in pathogenesis and disease resistance. In The Plant Hormone Ethylene (pp. 293–314). doi: 10.1201/9781351075763 Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6(MAR). doi: 10.3389/fpls.2015.00170 Caudwell, R. W. (2001). Insect pollination of oil palm-time to evaluate the long-term viability and sustainability of Elaeidobius kamerunicus? In Planter (Vol. 77, Issue 901, pp. 181–190). Retrieved from https://www.cabdirect.org/cabdirect/abstract/20013107000 Cesari, S. (2018). Multiple strategies for pathogen perception by plant immune receptors. New Phytologist, 219(1), 17–24. doi: 10.1111/nph.14877 Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: Signaling and cross talk. In Molecular Aspects of Plant-Pathogen Interaction (pp. 159–184). Springer Singapore. doi: 10.1007/978-981-10-7371-7_7 Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf Cochard, B., Adon, B., Rekima, S., Billotte, N., De Chenon, R. D., Koutou, A., Nouy, B., Omoré, A., Purba, A. R., Glazsmann, J. C., & Noyer, J. L. (2009). Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics and Genomes, 5(3), 493–504. doi: 10.1007/s11295-009-0203-3 Corley, R., & Tinker, P. (2008). The oil palm. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=NtCo1TdXuQkC&oi=fnd&pg=PR5&dq=introduction+of+oil+palm+in+america&ots=CDvHgJ2iKl&sig=CYTqjFIIBsFnsGVVnAfKhDBLiRs De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1). doi: 10.1371/journal.pone.0191884 De Franqueville, H. (2003). Oil palm bud rot in Latin America. In Experimental Agriculture (Vol. 39, Issue 3, pp. 225–240). Cambridge University Press. doi: 10.1017/S0014479703001315 Devendrakumar, K. T., Li, X., & Zhang, Y. (2018). MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences 2018 75:16, 75(16), 2981–2989. doi: 10.1007/S00018-018-2839-3 Dey, S., & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science, 6(AUG), 28. doi: 10.3389/fpls.2015.00640 Dhillon, B., Hamelin, R. C., & Rollins, J. A. (2021). Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 22(1). doi: 10.1186/S12864-021-07644-9 Dian, N. L. H. M., Hamid, R. A., Kanagaratnam, S., Isa, W. R. A., Hassim, N. A. M., Ismail, N. H., Omar, Z., & Sahri, M. M. (2017). Palm oil and palm kernel oil: Versatile ingredients for food applications. Journal of Oil Palm Research, 29(4), 487–511. doi: 10.21894/jopr.2017.00014 Dievart, A., Gottin, C., Périn, C., Ranwez, V., & Chantret, N. (2020). Origin and Diversity of Plant Receptor-Like Kinases. Annual Review of Plant Biology, 71(1). doi: 10.1146/annurev-arplant-073019-025927 Durrant, W. E., & Dong, X. (2004). SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology, 42(1), 185–209. doi: 10.1146/annurev.phyto.42.040803.140421 Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo. 238. Retrieved from https://publicaciones.fedepalma.org/index.php/anuario/article/view/13235/13024 Fontanilla, C. A., Montoya, M. M., Ruiz, E., Sánchez, A. C., Arias, N., Guerreo, J. M., Castro, W., & Penagos, Y. (2014). Estimación de costos de manejo de la Pudrición del cogollo (PC) de la palma de aceite. Revista Palmas, 35(2), 23–37. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/10977 Forster, B. P., Sitepu, B., Setiawati, U., Kelanaputra, E. S., Nur, F., Rusfiandi, H., Rahmah, S., Ciomas, J., Anwar, Y., Bahri, S., & Caligari, P. D. S. (2017). Oil palm (Elaeis Guineensis). In Genetic Improvement of Tropical Crops (pp. 241–290). Springer International Publishing. doi: 10.1007/978-3-319-59819-2_8 Franqueville, H. De. (2001). Oil palm bud rot in Latin America: preliminary review of established facts and achievements. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=FR2019158941 Geeta, & Mishra, R. (2018). Fungal and bacterial biotrophy and necrotrophy. In Molecular Aspects of Plant-Pathogen Interaction (pp. 21–42). Springer Singapore. doi: 10.1007/978-981-10-7371-7_2 Genva, M., Obounou Akong, F., Andersson, M. X., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. In Phytochemistry Reviews (Vol. 18, Issue 1, pp. 343–358). Springer Netherlands. doi: 10.1007/s11101-018-9595-8 Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. doi: 10.1146/annurev.phyto.43.040204.135923 H Cui, K. T. J. P. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol, 66, 487–511. doi: 10.1146/annurev-arplant-050213-040012 Hafizi, R., Salleh, B., & Latiffah, Z. (2013). Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology, 44(3), 959–968. doi: 10.1590/S1517-83822013000300047 Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S., & Frazer, K. A. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10(3). doi: 10.1186/gb-2009-10-3-r32 Henders, S., Martin Persson, U., Kastner -, T., Meyfroidt, P., Carlson, K. M., Fagan, M. E., -, al, Richard Furumo, P., & Mitchell Aide, T. (2017). Characterizing commercial oil palm expansion in Latin America: land use change and trade Related content Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities Multiple pathways of commodity crop expansion in tropical forest landscapes Characterizing commercial oil palm expansion in Latin America: land use change and trade. Iopscience.Iop.Org. doi: 10.1088/1748-9326/aa5892 Henschel, R., Nista, P. M., Lieber, M., Haas, B. J., Wu, L. S., & Leduc, R. D. (2012). Trinity RNA-Seq assembler performance optimization. ACM International Conference Proceeding Series. doi: 10.1145/2335755.2335842 Hickman, R., Van Verk, M. C., Van Dijken, A. J. H., Mendes, M. P., Vroegop-Vos, I. A., Caarls, L., Steenbergen, M., Van der Nagel, I., Wesselink, G. J., Jironkin, A., Talbot, A., Rhodes, J., De Vries, M., Schuurink, R. C., Denby, K., Pieterse, C. M. J., & Van Wees, S. C. M. (2017). Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell, 29(9), 2086–2105. doi: 10.1105/tpc.16.00958 Hormaza, P., Fuquen, E. M., & Romero, H. M. (2012). Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. In Scientia Agricola (Vol. 69, Issue 4, pp. 275–280). doi: 10.1590/S0103-90162012000400007 Huang, W., Wang, Y., Li, X., & Zhang, Y. (2019). Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant. doi: 10.1016/J.MOLP.2019.12.008 Huang, X. F., Bi, C. Y., Shi, Y. Y., Hu, Y. Z., Zhou, L. X., Liang, C. X., Huang, B. F., Xu, M., Lin, S. Q., & Chen, X. Y. (2020). Discovery and analysis of NBS-LRR gene family in sweet potato genome. Acta Agronomica Sinica(China), 46(8), 1195–1207. doi: 10.3724/SP.J.1006.2020.94163 Ikeda, K., Park, P., & Nakayashiki, H. (2019). Cell biology in phytopathogenic fungi during host infection: commonalities and differences. In Journal of General Plant Pathology (Vol. 85, Issue 3, pp. 163–173). Springer Tokyo. doi: 10.1007/s10327-019-00846-w Imran, Q., Biotechnology, B. Y.-J. of C. S. and, & 2020, undefined. (2020). Pathogen-induced Defense Strategies in Plants. Springer, 23(2), 97–105. doi: 10.1007/s12892-019-0352-0 Ithnin, M., & Kushairi, A. (2020). The Oil Palm Genome (M. Ithnin & A. Kushairi (eds.)). Cham: Springer International Publishing. doi: 10.1007/978-3-030-22549-0 J Bigeard, J. C. H. H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 8(4), 521–539. doi: 10.1016/j.molp.2014.12.022 Jawhar, M., Al-daoude, A., Shoaib, A., Mycopath, E. A.-S.-, & 2018, U. (2018). Differential gene behavior in barley plants challenged with biotrophic and necrotrophic pathogens. MYCOPATH, 15(1). Retrieved from http://111.68.103.26/journals/index.php/mycopath/article/view/1308 Jose, J., Ghantasala, S., & Choudhury, S. R. (2020). Arabidopsis transmembrane receptor-like kinases (RLKS): A bridge between extracellular signal and intracellular regulatory machinery. In International Journal of Molecular Sciences (Vol. 21, Issue 11, pp. 1–29). doi: 10.3390/ijms21114000 Kachroo, A., & Kachroo, P. (2009). Fatty acid-derived signals in plant dfense. Annual Review of Phytopathology, 47, 153–176. doi: 10.1146/ANNUREV-PHYTO-080508-081820 Kanwar, P., & Jha, G. (2018). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta 2018 249:2, 249(2), 305–318. doi: 10.1007/S00425-018-3018-3 Khatiwada, D., Palmén, C., Silveira, S., & Palm, C. (2018). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Taylor & Francis, 12(2), 135–147. doi: 10.1080/17597269.2018.1461520 Kourelis, J., Malik, S., Mattinson, O., Krauter, S., Kahlon, P. S., Paulus, J. K., & Hoorn, R. A. L. van der. (2020). Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nature Communications 2020 11:1, 11(1), 1–15. doi: 10.1038/s41467-020-18069-5 Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T., & Schumacher, K. (2018). Advances and current challenges in calcium signaling. In New Phytologist (Vol. 218, Issue 2, pp. 414–431). Blackwell Publishing Ltd. doi: 10.1111/nph.14966 Lai, O., Tan, C., & Akoh, C. (2015a). Palm oil: production, processing, characterization, and uses. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=6uRxCgAAQBAJ&oi=fnd&pg=PP1&dq=oil+palm+uses&ots=Xy2AKT_47t&sig=FEbqshXU3fG4GCTRQQbJXlXkBP4 Lai, O., Tan, C., & Akoh, C. (2015b). Palm oil: production, processing, characterization, and uses. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=6uRxCgAAQBAJ&oi=fnd&pg=PP1&dq=introduction+of+oil+palm+in+malaysia&ots=XzWCGY-beo&sig=Z-k-9r_u1YVli0ejoItFdWptDxo Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923 Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic Acid Biosynthesis in Plants. Frontiers in Plant Science, 11, 338. doi: 10.3389/FPLS.2020.00338 Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN Lim, G. H., Singhal, R., Kachroo, A., & Kachroo, P. (2017). Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. In Annual Review of Phytopathology (Vol. 55, pp. 505–536). Annu Rev Phytopathol. doi: 10.1146/annurev-phyto-080516-035406 Lui, S., Luo, C., Zhu, L., Sha, R., Qu, S., Cai, B., & Wang, S. (2017). Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). Journal of Plant Biology, 60(2), 215–230. doi: 10.1007/s12374-016-0577-3 MADR. (2020). Cadena de palma de aceite, indicadores e instrumentos. Lecturas de Economia, 1–25. Retrieved from https://sioc.minagricultura.gov.co/Palma/Documentos/2020-03-30 Cifras Sectoriales.pdf Malike, F. A., Amiruddin, M. D., Yaakub, Z., Marjuni, M., Abdullah, N., Abu Bakar, N. A., Mustaffa, S., Mohamad, M. M., Hassan, M. Y., Abdullah, M. O., Ghulam Kadir, A. P., & Din, A. K. (2019). Oil palm (Elaeis spp.) breeding in Malaysia. In Advances in Plant Breeding Strategies: Industrial and Food Crops (Vol. 6, pp. 489–535). Springer International Publishing. doi: 10.1007/978-3-030-23265-8_13 Martínez, G. (2010). Pudrición del cogollo, Marchitez sorpresiva, Anillo rojo y Marchitez letal en la palma de aceite en América. In PALMAS (Vol. 31, Issue 1). Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/1471 Mattoo, A. K., & White, W. B. (2018). Regulation of Ethylene Biosynthesis. The Plant Hormone Ethylene, 21–42. doi: 10.1201/9781351075763-2/REGULATION-ETHYLENE-BIOSYNTHESIS-AUTAR-MATTOO-BRUCE-WHITE Meerow, A. W., Krueger, R. R., Singh, R., Low, E. T. L., Ithnin, M., & Ooi, L. C. L. (2012). Coconut, date, and oil palm genomics. In Genomics of Tree Crops (Vol. 9781461409205, pp. 299–351). Springer New York. doi: 10.1007/978-1-4614-0920-5_10 Meng, X., & Zhang, S. (2013). MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51(1), 245–266. doi: 10.1146/annurev-phyto-082712-102314 Mithöfer, A., Ebel, J., & Felle, H. H. (2007). Cation Fluxes Cause Plasma Membrane Depolarization Involved in β-Glucan Elicitor-Signaling in Soybean Roots. Http://Dx.Doi.Org/10.1094/MPMI-18-0983, 18(9), 983–990. doi: 10.1094/MPMI-18-0983 Montoya, M. M., Díaz, C. A. F., Zúñiga, E., Escobar, G., Cadena, Y., León, N., & Velasco, C. (2017). Una experiencia de coordinación de acciones para enfrentar la Pudrición del cogollo: costos asociados a su manejo curativo. Revista Palmas, 38(2), 51–62. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/12124 Mousavi-Derazmahalleh, M., Chang, S., Thomas, G., Derbyshire, M., Bayer, P. E., Edwards, D., Nelson, M. N., Erskine, W., Lopez-Ruiz, F. J., Clements, J., & Hane, J. K. (2019). Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics, 20(1). doi: 10.1186/s12864-019-5774-2 MUJICA GRANADOS, C. (2010). EVOLUCIÓN DEL SECTOR PALMICULTOR CAROLINA MUJICA GRANADOS BUCARAMANGA 2010 CONTENIDO. Müller, M., & Munné-Bosch, S. (2015). Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology, 169(1), 32–41. doi: 10.1104/pp.15.00677 Nambiappan, B., Ismail, A., Hashim, N., Ismail, N., Shahari, D. N., Idris, N. A. N., Omar, N., Salleh, K. M., Hassan, N. A. M., & Kushairi, A. (2018). Malaysia: 100 years of resilient palm oil economic performance. In Journal of Oil Palm Research (Vol. 30, Issue 1, pp. 13–25). doi: 10.21894/jopr.2018.0014 Nelson, J. W., Sklenar, J., Barnes, A. P., & Minnier, J. (2017). The START App: A web-based RNAseq analysis and visualization resource. Bioinformatics, 33(3), 447–449. doi: 10.1093/bioinformatics/btw624 Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers. The Plant Pathology Journal, 35(1), 19. doi: 10.5423/PPJ.OA.02.2018.0034 Pardey, Á. E. B. (2019). Impact of Defoliating Insects on Oil Palm Production in Colombia. In Revista Palmas (Vol. 40, Issue 4). Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/12948 Pattyn, J., Vaughan‐Hirsch, J., Phytologist, B. V. de P.-N., & 2021, undefined. (2021). The regulation of ethylene biosynthesis: A complex multilevel control circuitry. Wiley Online Library, 229(2), 770–782. doi: 10.1111/nph.16873 Petit, Y., Blaise, F., Plissonneau, C., Rouxel, T., Balesdent, M.-H., Blondeau, K., Noureddine, L., Gallay, I., Moigne, T. Le, Tilbeurgh, H. van, & Fudal, I. (2017). Structural and functional characterization of Leptosphaeria maculans effectors: the example of AvrLm4-7. P;231. Retrieved from https://hal.archives-ouvertes.fr/hal-01530816 Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8, 150. doi: 10.3389/fpls.2017.00150 Pilet-Nayel, M. L., Moury, B., Caffier, V., Montarry, J., Kerlan, M. C., Fournet, S., Durel, C. E., & Delourme, R. (2017). Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. In Frontiers in Plant Science (Vol. 8, p. 27). Frontiers Media S.A. doi: 10.3389/fpls.2017.01838 Ponnamma, K., Sajeebkhan, A., & Vijayan, A. (2006). Adverse factors affecting the population of pollinating weevil, Elaeidobius kamerunicus F. and fruit set on oil palm in India. Planter, 82, 555–557. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20063220849 Purnama, K. O., Setyaningsih, D., Hambali, E., & Taniwiryono, D. (2020). Processing, Characteristics, and Potential Application of Red Palm Oil-a review. International Journal of Oil Palm, 3(2), 40–55. doi: 10.35876/ijop.v3i2.47 R.N. Warwick, D., & E.M. Passos, E. (2009). Outbreak of stem bleeding in coconuts caused by Thielaviopsis paradoxa in Sergipe, Brazil. Tropical Plant Pathology, 34(3), 175–177. doi: 10.1590/s1982-56762009000300007 Rival, A., Beule, T., Barre, P., Hamon, S., Duval, Y., & Noirot, M. (1997). Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis jacq) tissue cultures and seed-derived plants. Plant Cell Reports, 16(12), 884–887. doi: 10.1007/s002990050339 Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317–343. doi: 10.1146/annurev-phyto-073009-114447 Ruiz, E., Tovar, J. P., Ospina, C., Rojas, L., Hernández, D., Rosero, G., Hernández, M., Rubiano, M., Suesca, F., Verdugo, J., & Mosquera, M. (2020). Costos de control de la Marchitez letal en plantaciones colombianas localizadas en la región del Bajo Upía. Palmas, 41(3), 38–52. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/13230 Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. In Fungal Genetics and Biology (Vol. 110, pp. 1–9). Academic Press Inc. doi: 10.1016/j.fgb.2017.12.003 Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B., & Chen, J. Q. (2019). Revisiting the Origin of Plant NBS-LRR Genes. In Trends in Plant Science (Vol. 24, Issue 1, pp. 9–12). Elsevier Ltd. doi: 10.1016/j.tplants.2018.10.015 Shen, Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., Xing, G., & Zheng, W. (2017). The early response during the interaction of fungal phytopathogen and host plant. In Open Biology (Vol. 7, Issue 5). Royal Society of London. doi: 10.1098/rsob.170057 Silva, C. da, Macambira, L., … É. M.-R. B., & 2016, undefined. (n.d.). Spatial distribution red ring (Bursaphelenchus cocophilus) and resinose (Thielaviopsis paradoxa) in coconut plantations. Cabdirect.Org. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20173164943 Spanu, P. D., & Panstruga, R. (2017). Editorial: Biotrophic plant-microbe interactions. In Frontiers in Plant Science (Vol. 8). Frontiers Research Foundation. doi: 10.3389/fpls.2017.00192 Suleman, P., Al-Musallam, A., & Menezes, C. A. (2001). Incidence and severity of black scorch on date palms in Kuwait. Kuwait Journal of Science and Engineering, 28(1), 160–169. Retrieved from https://www.researchgate.net/publication/294761747_Incidence_and_severity_of_black_scorch_on_date_palms_in_Kuwait Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. In Crop Protection (Vol. 101, pp. 58–67). Elsevier Ltd. doi: 10.1016/j.cropro.2017.07.010 Tameling, W. I. L., & Joosten, M. H. a. J. (2007). The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 71(4–6), 126–134. doi: 10.1016/j.pmpp.2007.12.006 Tan, Y.-C., Wong, M.-Y., & Ho, C.-L. (2015). Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32. Plant Physiology and Biochemistry : PPB, 96, 296–300. doi: 10.1016/j.plaphy.2015.08.014 Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell, 29(4), 618–637. doi: 10.1105/TPC.16.00891 Teo, T. (2015). Effectiveness of the oil palm pollinating weevil, Elaeidobius kamerunicus, in Malaysia. Retrieved from http://eprints.utar.edu.my/1987/1/Effectiveness_of_the_oil_palm_pollinating_weevil,_Elaeidobius_kamerunicus,_in_Malaysia_-_T.M._Teo.pdf Terauchi, R., Fujisaki, K., Shimizu, M., Oikawa, K., Takeda, T., Takagi, H., Abe, A., Okuyama, Y., Yoshida, K., & Saitoh, H. (2019). Using genomics tools to understand plant resistance against pathogens: A case study of Magnaporthe-rice interactions. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress (pp. 181–188). Elsevier. doi: 10.1016/B978-0-12-816030-5.00008-2 Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Am Phytopath Society, 106(4), 320–329. doi: 10.1094/PHYTO-09-15-0243-RVW USDA. (2020). Palm Oil Explorer. Palm Oil 2020: Ranked by Production. Retrieved from https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000 Van Der Hoorn, R. A. L., & Kamoun, S. (2008). From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell, 20(8), 2009–2017. doi: 10.1105/tpc.108.060194 Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47(1), 177–206. doi: 10.1146/annurev.phyto.050908.135202 Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune signaling: Advancing on two frontiers. In Journal of Integrative Plant Biology (Vol. 62, Issue 1, pp. 2–24). Blackwell Publishing Ltd. doi: 10.1111/jipb.12898 Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. In European Journal of Agronomy (Vol. 83, pp. 57–77). Elsevier B.V. doi: 10.1016/j.eja.2016.11.002 Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., & Wang, C. (2019). The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. In Frontiers in Plant Science (Vol. 10, p. 1349). Frontiers Media S.A. doi: 10.3389/fpls.2019.01349 Yousefi, M., Mohd Rafie, A. S., Abd Aziz, S., Azrad, S., & ABD Razak, A. binti. (2020). Introduction of current pollination techniques and factors affecting pollination effectiveness by Elaeidobius kamerunicus in oil palm plantations on regional and global scale: A review. South African Journal of Botany, 132, 171–179. doi: 10.1016/J.SAJB.2020.04.017 Zahan, K., & Kano, M. (2018). Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies, 11(8), 2132. doi: 10.3390/en11082132 Zdyb, A., Salgado, M. G., Demchenko, K. N., Brenner, W. G., Płaszczyca, M., Stumpe, M., Herrfurth, C., Feussner, I., & Pawlowski, K. (2018). Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS ONE, 13(1), e0190884. doi: 10.1371/journal.pone.0190884 Zhang, M., Su, J., Zhang, Y., Xu, J., & Zhang, S. (2018). Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. In Current Opinion in Plant Biology (Vol. 45, pp. 1–10). Elsevier Ltd. doi: 10.1016/j.pbi.2018.04.012 Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29–36. doi: 10.1016/J.PBI.2019.02.004 Zhao, J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany, 66(7), 1721–1736. Retrieved from http://dx.doi.org/10.1093/jxb/eru540 Zhou, Y., Xiong, Q., Yin, C. C., Ma, B., Chen, S. Y., & Zhang, J. S. (2020). Ethylene Biosynthesis, Signaling, and Crosstalk with Other Hormones in Rice. Small Methods, 4(8). doi: 10.1002/SMTD.201900278 Abbas, E. H., & Abdulla, A. S. (2003). First report of neck bending disease on date palm in Qatar. Plant Pathology, 52(6), 790. doi: 10.1111/j.1365-3059.2003.00899.x Abdullah, S. K., Asensio, L., Monfort, E., Gomez-Vidal, S., Salinas, J., Lorca, L. V. L., & Jansson, H. B. (2009). Incidence of the two date palm pathogens, thielaviopsis paradoxa and T. Punctulata in soil from date palm plantations in Elx, south-east Spain. Journal of Plant Protection Research, 49(3), 276–279. doi: 10.2478/v10045-009-0043-z Al-Onazi, M., Al-Dahain, S., El-Ansary, A., & Marraiki, N. (2011). Isolation and characterization of Thielaviopsis paradoxa L-alanine dehydrogenase. Asian Journal of Applied Sciences, 4(7), 702–711. doi: 10.3923/AJAPS.2011.702.711 Al-Rokibah Y., Abdalla A. (1998). Effect of water salinity on Thielaviopsis paradoxa and growth of date palm seedlings. Journal of King Saud University, Agricultural Sciences. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19981009764 Arafat, K. H., Mohamad, A. M., & Elsharabasy, S. (2012). Biological Control of Date Palm Root Rots Disease Using Egyptian Isolates of Streptomycetes. Research Journal of Agriculture and Biological Sciences, 8(2), 224–230. Ayala, L., & Gómez, P. L. (2000). Patogenicidad de aislamientos de Thielaviopsis paradoxa principal agente causal de la pudrición de cogollo. Palmas, 21(Edición Especial-tomo I), 121–122. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/772 Broadley, R., Wassman, R., & Sinclair, E. (1993). Pineapple pests and disorders. Undefined. Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf Costa Carvalho, R., Souza, P., & S Carvalho Filho, J. L. (2011). 139-739-1-ED. 7. Retrieved from www.scientiaplena.org.br043101-1 Dade, H. A. (1928). Ceratostomella paradoxa, the perfect stage of Thielaviopsis paradoxa (de Seynes) von Höhnel. Transactions of the British Mycological Society, 13(3–4), 184-IN7. doi: 10.1016/s0007-1536(28)80017-9 El-Deeb, H. M., Lashin, S. M., & Arab, Y. A. (2007). Distribution and pathogenesis of date palm fungi in Egypt. Acta Horticulturae, 736, 421–429. doi: 10.17660/ActaHortic.2007.736.39 Elliott, M. L. (2009). Thielaviopsis Trunk Rot of Palm 1. Disease Management, 1–5. Retrieved from http://edis.ifas.ufl.edu. Farrag, E. S. H., & Abo-Elyousr, K. A. (2011). Occurrence of some fungal diseases on date palm trees in upper Egypt and its control. Plant Pathology Journal, 10(4), 154–160. doi: 10.3923/PPJ.2011.154.160 Garofalo, J. F., & McMillan, R. T. (2004). Thielaviopsis diseases of palms. Proceedings of the Florida State Horticultural Society, 117, 324–325. Retrieved from https://pdfs.semanticscholar.org/57e9/49aecc2f67ef1a5ee7af0b7301260246bf0d.pdf Giri, P., Taj, G., & Kumar, A. (2013). Effect of quadratic residue diffuser (QRD) microwave energy on root-lesion nematode, Prathlenchus penetrans. African Journal of Biotechnology, 12(18), 2471–2477. doi: 10.4314/ajb.v12i18 Hewajulige, I. G. N., & Wijesundera, R. L. C. (2014). Thielaviopsis paradoxa, Thielaviopsis basicola (Black Rot, Black Root Rot). In Postharvest Decay: Control Strategies (pp. 287–308). doi: 10.1016/B978-0-12-411552-1.00009-0 Holtz, B. A., & Weinhold, A. R. (1994). Thielaviopsis basicola in San Joaquin Valley soils and the relationship between inoculum density and disease severity of cotton seedlings. Plant Disease, 78(10), 986–990. doi: 10.1094/PD-78-0986 Hood, M. E., & Shew, H. D. (1997). Initial cellular interactions between Thielaviopsis basicola and tobacco root hairs. Phytopathology, 87(3), 228–235. doi: 10.1094/PHYTO.1997.87.3.228 Karampour, F., & Pejman, H. (2007). Study on possible influence of Pathogenic fungi on date bunch fading disorder in Iran. Acta Horticulturae, 736, 431–439. doi: 10.17660/ActaHortic.2007.736.40 Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J., & Turner, S. W. (2010). Real-time DNA sequencing from single polymerase molecules. Methods in Enzymology, 472, 431–455. doi: 10.1126/science.1162986 Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN Liu, G., Kennedy, R., Greenshields, D. L., Peng, G., Forseille, L., Selvaraj, G., & Wei, Y. (2007). Detached and Attached Arabidopsis Leaf Assays Reveal Distinctive Defense Responses Against Hemibiotrophic Colletotrichum spp. Molecular Plant-Microbe Interactions MPMI, 20(10), 1308–1319. doi: 10.1094/MPMI Mendoza-Rodríguez, M., Mendoza-Rodríguez, M., Jiménez, E., Maier, F., Shäfer, W., Leiva-Mora, M., Acosta-Suárez, M., & Alvarado-Capó, Y. (2005). Empleo de la tinción anilina azul-KOH en el estudio de la interacción banano-Mycosphaerella fijiensis Morelet. Biotecnología Vegetal, 5(1). Retrieved from https://revista.ibp.co.cu/index.php/BV/article/view/441 Mycobank. (n.d.). Retrieved from https://www.mycobank.org/ Parra, D., Morillo, F., Guerra, J., Sánchez, P., & Pineda, J. (2003). Presencia de Thielaviopsis paradoxa De Seynes Höhn en el tubo digestivo de Rhynchophorus palmarum Linneo (Coleoptera: Curculionidae). Entomotropica, 18(1), 49–55. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=640008 Paterson, R. R. M., Sariah, M., & Lima, N. (2013). How will climate change affect oil palm fungal diseases? Crop Protection, 46, 113–120. doi: 10.1016/j.cropro.2012.12.023 Paulin-Mahady, A. E., Harrington, T. C., & McNew, D. (2002). Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia, 94(1), 62–72. doi: 10.1080/15572536.2003.11833249 Ploetz RC. (2003). Diseases of tropical fruit crops. In Diseases of tropical fruit crops. doi: 10.1079/9780851993904.0000 Polizzi, G., Castello, I., Aiello, D., & Vitale, A. (2007). First report of stem bleeding and trunk rot of kentia palm caused by Thielaviopsis paradoxa in Italy. In Plant Disease (Vol. 91, Issue 8, p. 1057). doi: 10.1094/PDIS-91-8 Polizzi, G., Castello, I., Vitale, A., Catara, V., & Tamburino, V. (2006). First report of Thielaviopsis trunk rot of date palm in Italy. Plant Disease, 90(7), 972. doi: 10.1094/PD-90-0972C Punja, Z. K. (2004). Virulence of Chalara elegans on bean leaves, and host-tissue responses to infection. Canadian Journal of Plant Pathology, 26(1), 52–62. doi: 10.1080/07060660409507112 R.N. Warwick, D., & E.M. Passos, E. (2009). Outbreak of stem bleeding in coconuts caused by Thielaviopsis paradoxa in Sergipe, Brazil. Tropical Plant Pathology, 34(3), 175–177. doi: 10.1590/s1982-56762009000300007 Rodríguez, J., Vélez, D., Sarria, G. A., Torres, G. A., Noreña, C., Navia, M., Romero, H. M., Varón, F., & Martínez, G. (2009). Identificación Morfológica, Molecular Y Patogénica De Los Microorganismos Asociados A La Pudrición Del Cogollo De La Palma De Aceite En Colombia*. Fitopatología Colombiana, 33(2), 49–56. Sánchez, V., Rebolledo, O., Picaso, R. M., Cárdenas, E., Córdova, J., González, O., & Samuels, G. J. (2007). In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia, 163(1), 49–58. doi: 10.1007/s11046-006-0085-y Soytong, K., & Jitkasemsuk, S. (2001). First Report of Thielaviopsis paradoxa Causing Fruit Rot on Sala ( Salacca edulis ) in Thailand. Plant Disease, 85(2), 230–230. doi: 10.1094/pdis.2001.85.2.230c Suleman, P., Al-Musallam, A., & Menezes, C. A. (2001). Incidence and severity of black scorch on date palms in Kuwait. Kuwait Journal of Science and Engineering, 28(1), 160–169. Retrieved from https://www.researchgate.net/publication/294761747_Incidence_and_severity_of_black_scorch_on_date_palms_in_Kuwait Suwandi, Akino, S., & Kondo, N. (2012). Common spear rot of oil palm in Indonesia. Plant Disease, 96(4), 537–543. doi: 10.1094/PDIS-08-10-0569 Tang, Q. H., Niu, X. Q., Yu, F. Y., Zhu, H., Song, W. W., & Qin, W. Q. (2014). First report of Pindo palm heart rot caused by Ceratocystis paradoxa in China. Plant Disease, 98(9), 1282. doi: 10.1094/PDIS-04-14-0395-PDN Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Am Phytopath Society, 106(4), 320–329. doi: 10.1094/PHYTO-09-15-0243-RVW Yu, F. Y., Niu, X. Q., Tang, Q. H., Zhu, H., Song, W. W., Qin, W. Q., & Zhang, S. X. (2016). First report of trunk rot caused by Ceratocystis paradoxa on triangle palm (Dypsis decaryi) in Hainan, China. Plant Disease, 100(8). doi: 10.1094/PDIS-12-15-1496-PDN YY Molan, RS Al-Obeed, MM Harhash, S. E.-H. (2004). Molan: Decline of date-palm offshoots with Chalara... - Google Académico. Journal of the King Saud University. Retrieved from https://scholar.google.com/scholar_lookup?title=Decline of date palm offshoots infected with Chalara paradoxa in Riyadh region&journal=Journal of the King Saud University Zaid A., Wet PF., Djerbi M., O. A. (2002). Chapter XII Diseases and Pests of Date Palm. In A. Zaid & E. Arias-Jimenez (Ed.), FAO Date palm cultivation (pp. 227–281). FAO Plant Production and Protection. Retrieved from http://www.fao.org/3/Y4360E/y4360e0g.htm Ali, M., Cheng, Z., Ahmad, H., & Hayat, S. (2018). Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ros employed by crops against verticillium dahlia wilts. Journal of Plant Interactions, 13(1), 353–363. doi: 10.1080/17429145.2018.1484188 Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 29–37. Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339 Aoun, M. (2017). Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A review. In International Journal of Botany (Vol. 13, Issue 2, pp. 82–102). doi: 10.3923/ijb.2017.82.102 Astorkia, M., Hernandez, M., Bocs, S., de Armentia, E. L., Herran, A., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2019). Association mapping between candidate gene SNP and production and oil quality traits in interspecific oil palm hybrids. Plants, 8(10). doi: 10.3390/plants8100377 Astorkia, M., Hernández, M., Bocs, S., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2020). Detection of significant SNP associated with production and oil quality traits in interspecific oil palm hybrids using RARSeq. Plant Science, 291. doi: 10.1016/j.plantsci.2019.110366 Ayala, L., & Gómez, P. L. (2000). Patogenicidad de aislamientos de Thielaviopsis paradoxa principal agente causal de la pudrición de cogollo. Palmas, 21(Edición Especial-tomo I), 121–122. Retrieved from https://publicaciones.fedepalma.org/index.php/palmas/article/view/772 Bahari, M. N. A., Sakeh, N. M., Abdullah, S. N. A., Ramli, R. R., & Kadkhodaei, S. (2018). Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biology, 18(1), 377. doi: 10.1186/s12870-018-1594-9 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. doi: 10.1093/JXB/ERT375 Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. doi: 10.1128/EC.00192-12 Blows, F. M., Driver, K. E., Schmidt, M. K., Broeks, A., van Leeuwen, F. E., Wesseling, J., Cheang, M. C., Gelmon, K., Nielsen, T. O., Blomqvist, C., Heikkilä, P., Heikkinen, T., Nevanlinna, H., Akslen, L. a, Bégin, L. R., Foulkes, W. D., Couch, F. J., Wang, X., Cafourek, V., … Huntsman, D. (2010). Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Medicine, 7(5), e1000279. doi: 10.1371/journal.pmed.1000279 Brown, N. A., Schrevens, S., Van Dijck, P., & Goldman, G. H. (2018). Fungal G-protein-coupled receptors: Mediators of pathogenesis and targets for disease control. In Nature Microbiology (Vol. 3, Issue 4, pp. 402–414). Nature Publishing Group. doi: 10.1038/s41564-018-0127-5 Butchko, R. A. E., Brown, D. W., Busman, M., Tudzynski, B., & Wiemann, P. (2012). Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genetics and Biology, 49(8), 602–612. doi: 10.1016/j.fgb.2012.06.003 Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6(MAR). doi: 10.3389/fpls.2015.00170 Cai, H., Yang, S., Yan, Y., Xiao, Z., Cheng, J., Wu, J., Qiu, A., Lai, Y., Mou, S., Guan, D., Huang, R., & He, S. (2015). CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers hightemperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 66(11), 3163–3174. doi: 10.1093/jxb/erv125 Chanclud, E., & Morel, J. B. (2016). Plant hormones: a fungal point of view. In Molecular plant pathology (Vol. 17, Issue 8, pp. 1289–1297). Blackwell Publishing Ltd. doi: 10.1111/mpp.12393 Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: Signaling and cross talk. In Molecular Aspects of Plant-Pathogen Interaction (pp. 159–184). Springer Singapore. doi: 10.1007/978-981-10-7371-7_7 Chen, L.-H., Tsai, H.-C., Yu, P.-L., & Chung, K.-R. (2017). A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLOS ONE, 12(1), e0169103. doi: 10.1371/journal.pone.0169103 Chen, W., Lee, M.-K., Jefcoate, C., Kim, S.-C., Chen, F., & Yu, J.-H. (2014). Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biology and Evolution, 6(7), 1620–1634. doi: 10.1093/gbe/evu132 Chinchilla, C. (2008). Las pudriciones del cogollo en palma aceitera : La complejidad del desorden y una guía de convivencia. ASD Oil Palm Papers, 32, 11–23. Retrieved from http://www.asd-cr.com/images/PDFs/OilPalmPapers/Muchas_caras_de_PC_32_2008.pdf Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1). doi: 10.1038/s41598-017-17248-7 Clemente, M., Corigliano, M. G., Pariani, S. A., Sánchez-López, E. F., Sander, V. A., & Ramos-Duarte, V. A. (2019). Plant serine protease inhibitors: Biotechnology application in agriculture and molecular farming. In International Journal of Molecular Sciences (Vol. 20, Issue 6, p. 1345). MDPI AG. doi: 10.3390/ijms20061345 Conesa, A., & Stefan, G. (2009). Blast2GO Tutorial. June. Costa-Silva, J., Domingues, D., & Lopes, F. M. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. In PLoS ONE (Vol. 12, Issue 12). Public Library of Science. doi: 10.1371/journal.pone.0190152 Del Sorbo, G., Schoonbeek, H. J., & De Waard, M. A. (2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. In Fungal Genetics and Biology (Vol. 30, Issue 1, pp. 1–15). doi: 10.1006/fgbi.2000.1206 Devendrakumar, K. T., Li, X., & Zhang, Y. (2018). MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences 2018 75:16, 75(16), 2981–2989. doi: 10.1007/S00018-018-2839-3 Dey, S., & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science, 6(AUG), 28. doi: 10.3389/fpls.2015.00640 Dhillon, B., Hamelin, R. C., & Rollins, J. A. (2021). Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics, 22(1). doi: 10.1186/S12864-021-07644-9 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. doi: 10.1093/bioinformatics/bts635 Dobin, A., & Gingeras, T. R. (2015). Mapping RNA-seq Reads with STAR. Current Protocols in Bioinformatics. doi: 10.1002/0471250953.bi1114s51 Dobin, A., & Gingeras, T. R. (2016). Optimizing RNA-seq mapping with STAR. In Methods in Molecular Biology. doi: 10.1007/978-1-4939-3572-7_13 Dröge-Laser, W., Snoek, B. L., Snel, B., & Weiste, C. (2018). The Arabidopsis bZIP transcription factor family — an update. In Current Opinion in Plant Biology (Vol. 45, pp. 36–49). Elsevier Ltd. doi: 10.1016/j.pbi.2018.05.001 Duitama, J., Quintero, J. C., Cruz, D. F., Quintero, C., Hubmann, G., Foulquié-Moreno, M. R., Verstrepen, K. J., Thevelein, J. M., & Tohme, J. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 42(6). doi: 10.1093/NAR/GKT1381 Gao, F.-Y., Li, L., Wang, J.-Y., Wang, Y.-L., & Sun, G.-C. (2017). The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi. Yi Chuan = Hereditas, 39(10), 908–917. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29070486 Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469–477. doi: 10.1038/nmeth.1613 Geeta, & Mishra, R. (2018). Fungal and bacterial biotrophy and necrotrophy. In Molecular Aspects of Plant-Pathogen Interaction (pp. 21–42). Springer Singapore. doi: 10.1007/978-981-10-7371-7_2 Genva, M., Obounou Akong, F., Andersson, M. X., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. In Phytochemistry Reviews (Vol. 18, Issue 1, pp. 343–358). Springer Netherlands. doi: 10.1007/s11101-018-9595-8 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. a, Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. doi: 10.1038/nbt.1883 Harimoto, Y., Tanaka, T., Kodama, M., Yamamoto, M., Otani, H., & Tsuge, T. (2008). Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity. Journal of General Plant Pathology, 74(3), 222–229. doi: 10.1007/s10327-008-0089-1 Henschel, R., Nista, P. M., Lieber, M., Haas, B. J., Wu, L. S., & Leduc, R. D. (2012). Trinity RNA-Seq assembler performance optimization. ACM International Conference Proceeding Series. doi: 10.1145/2335755.2335842 Ho, C.-L., & Tan, Y.-C. (2015). Molecular defense response of oil palm to Ganoderma infection. Phytochemistry, 114, 168–177. doi: 10.1016/j.phytochem.2014.10.016 Ho, C. L., Tan, Y. C., Yeoh, K. A., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2016). De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics, 17(1), 1–19. doi: 10.1186/s12864-016-2368-0 Ho, C. L., Tan, Y. C., Yeoh, K. A., Lee, W. K., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2019). Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees - Structure and Function, 33(3), 943–950. doi: 10.1007/S00468-019-01830-9 Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9(9), 868–877. doi: 10.1101/gr.9.9.868 Ikeda, K., Park, P., & Nakayashiki, H. (2019). Cell biology in phytopathogenic fungi during host infection: commonalities and differences. In Journal of General Plant Pathology (Vol. 85, Issue 3, pp. 163–173). Springer Tokyo. doi: 10.1007/s10327-019-00846-w Jiang, C., Zhang, X., Liu, H., & Xu, J. R. (2018). Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathogens, 14(3). doi: 10.1371/journal.ppat.1006875 Kim, Y., Park, S. Y., Kim, D., Choi, J., Lee, Y. H., Lee, J. H., & Choi, W. (2013). Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics, 101(6), 354–361. doi: 10.1016/j.ygeno.2013.04.003 Kochman, K. (2014). Superfamily of G-protein coupled receptors (GPCRs) - Extraordinary and outstanding success of evolution. In Postepy Higieny i Medycyny Doswiadczalnej (Vol. 68, pp. 1225–1237). Polska Akademia Nauk. doi: 10.5604/17322693.1127326 Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., Romeis, T., & Schumacher, K. (2018). Advances and current challenges in calcium signaling. In New Phytologist (Vol. 218, Issue 2, pp. 414–431). Blackwell Publishing Ltd. doi: 10.1111/nph.14966 Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V., & Pareek, N. (2018). Chitinases—Potential candidates for enhanced plant resistance towards fungal pathogens. In Agriculture (Switzerland) (Vol. 8, Issue 7). doi: 10.3390/agriculture8070088 Kumar, V., Joshi, S. G., Bell, A. A., & Rathore, K. S. (2013). Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Research, 22(2), 359–368. doi: 10.1007/s11248-012-9652-9 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923 Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 1–16. doi: 10.1186/1471-2105-12-323 Li, F. H., Sun, X. D., Niu, X. Q., Cao, H. X., & Yu, F. Y. (2018). First report of basal stem rot on oil palm caused by thielaviopsis Paradoxa in Hainan, China. Plant Disease, 102(10), 2029. doi: 10.1094/PDIS-01-18-0009-PDN Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178–2189. doi: 10.1101/gr.1224503 Licatalosi, D. D., & Darnell, R. B. (2010). RNA processing and its regulation: global insights into biological networks. Nature Reviews. Genetics, 11(1), 75–87. doi: 10.1038/nrg2673 Liu, D., Jiao, S., Cheng, G., Li, X., Pei, Z., Pei, Y., Yin, H., & Du, Y. (2018). Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules, 111, 1083–1090. doi: 10.1016/j.ijbiomac.2018.01.113 Lui, S., Luo, C., Zhu, L., Sha, R., Qu, S., Cai, B., & Wang, S. (2017). Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). Journal of Plant Biology, 60(2), 215–230. doi: 10.1007/s12374-016-0577-3 Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19(10), 1127–1137. doi: 10.1094/MPMI-19-1127 Mi, H., & Thomas, P. (2009). PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods in Molecular Biology (Clifton, N.J.), 563, 123–140. doi: 10.1007/978-1-60761-175-2_7 Milani, N. A., Lawrence, D. P., Elizabeth Arnold, A., & Van Etten, H. D. (2012). Origin of pisatin demethylase (PDA) in the genus Fusarium. Fungal Genetics and Biology, 49(11), 933–942. doi: 10.1016/j.fgb.2012.08.007 Mithöfer, A., Ebel, J., & Felle, H. H. (2007). Cation Fluxes Cause Plasma Membrane Depolarization Involved in β-Glucan Elicitor-Signaling in Soybean Roots. Http://Dx.Doi.Org/10.1094/MPMI-18-0983, 18(9), 983–990. doi: 10.1094/MPMI-18-0983 Mousavi-Derazmahalleh, M., Chang, S., Thomas, G., Derbyshire, M., Bayer, P. E., Edwards, D., Nelson, M. N., Erskine, W., Lopez-Ruiz, F. J., Clements, J., & Hane, J. K. (2019). Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics, 20(1). doi: 10.1186/s12864-019-5774-2 Nelson, J. W., Sklenar, J., Barnes, A. P., & Minnier, J. (2017). The START App: A web-based RNAseq analysis and visualization resource. Bioinformatics, 33(3), 447–449. doi: 10.1093/bioinformatics/btw624 Noman, A., Liu, Z., Aqeel, M., Zainab, M., Khan, M. I., Hussain, A., Ashraf, M. F., Li, X., Weng, Y., & He, S. (2017). Basic leucine zipper domain transcription factors: the vanguards in plant immunity. In Biotechnology Letters (Vol. 39, Issue 12, pp. 1779–1791). Springer Netherlands. doi: 10.1007/s10529-017-2431-1 Nusaibah, S. A., Siti Nor Akmar, A., Idris, A. S., Sariah, M., & Mohamad Pauzi, Z. (2016). Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiology and Biochemistry : PPB, 109, 156–165. doi: 10.1016/j.plaphy.2016.09.014 O’Keeffe, K. R., & Jones, C. D. (2019). Challenges and solutions for analysing dual RNA-seq data for non-model host–pathogen systems. Methods in Ecology and Evolution, 10(3), 401–414. doi: 10.1111/2041-210X.13135 Pandey, Dinesh, Rajendran, S. R. C. K., Gaur, M., Sajeesh, P. K., & Kumar, A. (2016). Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 35(4), 1159–1174. doi: 10.1007/s00344-016-9600-7 Parisi, K., Shafee, T. M. A., Quimbar, P., van der Weerden, N. L., Bleackley, M. R., & Anderson, M. A. (2019). The evolution, function and mechanisms of action for plant defensins. Seminars in Cell and Developmental Biology, 88, 107–118. Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., & Quackenbush, J. (2003). TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5), 651–652. doi: 10.1093/bioinformatics/btg034 Petit-Houdenot, Y., & Fudal, I. (2017). Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. Frontiers in Plant Science, 8, 1072. doi: 10.3389/FPLS.2017.01072 Pfaffl, M. W. (2004). Quantification strategies in real-time PCR. Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8, 150. doi: 10.3389/fpls.2017.00150 Pontual, E., Breitenbach, L. C., & Coelho, B. (2013). Protease inhibitors from plants: Biotechnological insights with emphasis on their effects on microbial pathogens. Retrieved from https://www.researchgate.net/publication/275772079 Qiu, Y.-Q. (2013). KEGG Pathway Database. In Encyclopedia of Systems Biology (pp. 1068–1069). Springer New York. doi: 10.1007/978-1-4419-9863-7_472 Quoc, N. B., & Bao Chau, N. N. (2016). The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae. Current Protein & Peptide Science, 18(10). doi: 10.2174/1389203717666160813164955 Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., & Mahdieh, N. (2016). Next generation sequencing: implications in personalized medicine and pharmacogenomics. Molecular BioSystems, 12(6), 1818–1830. doi: 10.1039/c6mb00115g Rafiqi, M., Bernoux, M., Ellis, J. G., & Dodds, P. N. (2009). In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Seminars in Cell & Developmental Biology, 20(9), 1017–1024. doi: 10.1016/j.semcdb.2009.04.010 Richa, K., Tiwari, I. M., Devanna, B. N., Botella, J. R., Sharma, V., & Sharma, T. R. (2017). Novel chitinase gene LOC_Os11g47510 from indica rice tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Frontiers in Plant Science, 8. doi: 10.3389/fpls.2017.00596 Rodríguez, J., Vélez, D., Sarria, G. A., Torres, G. A., Noreña, C., Navia, M., Romero, H. M., Varón, F., & Martínez, G. (2009). IDENTIFICACIÓN MORFOLÓGICA, MOLECULAR Y PATOGÉNICA DE LOS MICROORGANISMOS ASOCIADOS A LA PUDRICIÓN DEL COGOLLO DE LA PALMA DE ACEITE EN COLOMBIA*. Fitopatología Colombiana, 33(2), 49–56. Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1–9. doi: 10.1016/j.fgb.2017.12.003 Sephton-Clark, P. C. S., & Voelz, K. (2018). Spore Germination of Pathogenic Filamentous Fungi. In Advances in Applied Microbiology (Vol. 102, pp. 117–157). Academic Press Inc. doi: 10.1016/bs.aambs.2017.10.002 Seyednasrollah, F., Laiho, A., & Elo, L. L. (2015). Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in Bioinformatics, 16(1), 59–70. doi: 10.1093/bib/bbt086 Shen, Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., Xing, G., & Zheng, W. (2017). The early response during the interaction of fungal phytopathogen and host plant. In Open Biology (Vol. 7, Issue 5). Royal Society of London. doi: 10.1098/rsob.170057 Sher Khan, R., Iqbal, A., Malak, R., Shehryar, K., Attia, S., Ahmed, T., Ali Khan, M., Arif, M., & Mii, M. (2019). Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech, 9(5). doi: 10.1007/S13205-019-1725-5 Shi, H., Wang, X., Ye, T., Chen, F., Deng, J., Yang, P., Zhang, Y., & Chan, Z. (2014). The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. Plant Physiology, 165(3), 1367–1379. doi: 10.1104/pp.114.242404 Skamnioti, P., Furlong, R. F., & Gurr, S. J. (2008). Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization. New Phytologist, 180(3), 711–721. doi: 10.1111/j.1469-8137.2008.02598.x Stotz, H. U., Thomson, J. G., & Wang, Y. (2009). Plant defensins: defense, development and application. In Plant signaling & behavior (Vol. 4, Issue 11, pp. 1010–1012). Taylor & Francis. doi: 10.4161/psb.4.11.9755 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011a). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6(7). doi: 10.1371/journal.pone.0021800 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011b). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLOS ONE, 6(7), e21800. doi: 10.1371/JOURNAL.PONE.0021800 Takao, K., Akagi, Y., Tsuge, T., Harimoto, Y., Yamamoto, M., & Kodama, M. (2016). The global regulator LaeA controls biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. Journal of General Plant Pathology, 82(3), 121–131. doi: 10.1007/s10327-016-0656-9 Tan, Y.-C., Ang, C.-L., Wong, M.-Y., & Ho, C.-L. (2016). Oil Palm Defensin: A Thermal Stable Peptide that Restricts the Mycelial Growth of Ganoderma boninense. Protein & Peptide Letters, 23(11), 994–1002. doi: 10.2174/0929866523666161006103855 Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell, 29(4), 618–637. doi: 10.1105/TPC.16.00891 Tarazona, S., García, F., Ferrer, A., Dopazo, J., & Conesa, A. (2012). NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet.Journal, 17(B), 18. doi: 10.14806/ej.17.b.265 Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. doi: 10.1093/BIOINFORMATICS/BTZ275 Tugizimana, F., Steenkamp, P. A., Piater, L. A., & Dubery, I. A. (2014). Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS ONE, 9(1), e87846. doi: 10.1371/journal.pone.0087846 Urban, M., Bhargava, T., & Hamer, J. E. (1999). An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. In The EMBO Journal (Vol. 18, Issue 3). Visentin, I., Montis, V., Döll, K., Alabouvette, C., Tamietti, G., Karlovsky, P., & Cardinale, F. (2012). Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen fusarium verticillioides. Eukaryotic Cell, 11(3), 252–259. doi: 10.1128/EC.05159-11 Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune signaling: Advancing on two frontiers. In Journal of Integrative Plant Biology (Vol. 62, Issue 1, pp. 2–24). Blackwell Publishing Ltd. doi: 10.1111/jipb.12898 Wu, D., Oide, S., Zhang, N., Choi, M. Y., & Turgeon, B. G. (2012). ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathogens, 8(2), e1002542. doi: 10.1371/journal.ppat.1002542 Wu, Q., & VanEtten, H. D. (2004). Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Molecular Plant-Microbe Interactions, 17(7), 798–804. doi: 10.1094/MPMI.2004.17.7.798 Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., & Wang, C. (2019). The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. In Frontiers in Plant Science (Vol. 10, p. 1349). Frontiers Media S.A. doi: 10.3389/fpls.2019.01349 Yeoh, K. A., Othman, A., Meon, S., Abdullah, F., & Ho, C. L. (2012). Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection. Journal of Plant Physiology, 169(15), 1565–1570. doi: 10.1016/j.jplph.2012.07.006 Zdyb, A., Salgado, M. G., Demchenko, K. N., Brenner, W. G., Płaszczyca, M., Stumpe, M., Herrfurth, C., Feussner, I., & Pawlowski, K. (2018). Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS ONE, 13(1), e0190884. doi: 10.1371/journal.pone.0190884 Zhang, X., Abrahan, C., Colquhoun, T. A., & Liu, C. J. (2017). A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in arabidopsis. Plant Cell, 29(5), 1157–1174. doi: 10.1105/tpc.16.00855 Zhong, C.-L., Zhang, C., & Liu, J.-Z. (2019). Heterotrimeric G protein signaling in plant immunity. Journal of Experimental Botany, 70(4), 1109–1118. doi: 10.1093/jxb/ery426 Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. In Genes (Vol. 9, Issue 7, p. 339). Multidisciplinary Digital Publishing Institute. doi: 10.3390/genes9070339 Astorkia, M., Hernandez, M., Bocs, S., de Armentia, E. L., Herran, A., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2019). Association mapping between candidate gene SNP and production and oil quality traits in interspecific oil palm hybrids. Plants, 8(10). doi: 10.3390/plants8100377 Astorkia, M., Hernández, M., Bocs, S., Ponce, K., León, O., Morales, S., Quezada, N., Orellana, F., Wendra, F., Sembiring, Z., Asmono, D., & Ritter, E. (2020). Detection of significant SNP associated with production and oil quality traits in interspecific oil palm hybrids using RARSeq. Plant Science, 291. doi: 10.1016/j.plantsci.2019.110366 Chen, L.-H., Tsai, H.-C., Yu, P.-L., & Chung, K.-R. (2017). A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLOS ONE, 12(1), e0169103. doi: 10.1371/journal.pone.0169103 Chen, W., Lee, M.-K., Jefcoate, C., Kim, S.-C., Chen, F., & Yu, J.-H. (2014). Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biology and Evolution, 6(7), 1620–1634. doi: 10.1093/gbe/evu132 Kim, Y., Park, S. Y., Kim, D., Choi, J., Lee, Y. H., Lee, J. H., & Choi, W. (2013). Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics, 101(6), 354–361. doi: 10.1016/j.ygeno.2013.04.003 Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19(10), 1127–1137. doi: 10.1094/MPMI-19-1127 Pandey, D., Rajendran, S. R. C. K., Gaur, M., Sajeesh, P. K., & Kumar, A. (2016). Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 35(4), 1159–1174. doi: 10.1007/s00344-016-9600-7
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOil palm OxG hybrid, spear-arrow rot, T. paradoxa, RNASeq, defense response.
dc.subject.proposalHíbrido OxG de palma de aceite
dc.subject.proposalPudrición de flecha
dc.subject.proposalT. paradoxa
dc.subject.proposalRNASeq
dc.subject.proposalRespuesta de defensa
dc.subject.proposalOil palm OxG hybrid
dc.subject.proposalSpear-arrow rot
dc.subject.proposalT. paradoxa
dc.subject.proposalRNASeq
dc.subject.proposalDefense response
dc.title.translatedExpression analysis of genes associated with defense in the model oil palm -thielaviopsis paradoxa (de seynes) höhn
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameFondo de Fomento Palmero
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito