Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorVargas Jimenez, Carlos Alberto
dc.contributor.authorAngulo Montenegro, Alejandra Josefina
dc.date.accessioned2021-11-11T20:51:24Z
dc.date.available2021-11-11T20:51:24Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80679
dc.descriptionimágenes, ilustraciones, tablas
dc.description.abstractLa presencia de secuencias sedimentarias ubicadas en diversos contextos geotectónicos, donde prevalecen intervalos sedimentarios con rangos de temperatura entre 60-120°C, han permitido identificar patrones de reservorios de hidrocarburos de importancia económica. Este patrón ha sido denominado Zona Dorada por Buller et al. (2005) y Nadeau (2011) y hace referencia a una hipótesis de coexistencia de un sistema petrolífero con trampas de hidrocarburos que garantizan mínima degradación o transformación de la materia orgánica. A medida que aumentan las observaciones puntuales reportadas, la distribución de cinturones de la Zona Dorada en el mundo se precisa y permite configurar mapas que ayudan a identificar zonas de mayor potencial y efectividad del ejercicio exploratorio. La Profundidad de Curie representa la profundidad a la cual las rocas pierden sus propiedades magnéticas, esto ocurre a temperaturas entre los 550oC y 580oC (Turcotte y Schubert, 2002). En este trabajo se estimó un modelo global de profundidad de Curie a partir de una inversión de anomalías magnéticas con datos del grid EMAG2v3, utilizando la técnica del espectro radial de potencia promediado. Los resultados de profundidad de Curie obtenidos están en un rango de 10 a 50 km, observándose en promedio, valores menores en la zona oceánica respecto a la zona continental; con estos resultados de profundidad de Curie se estimó un modelo global de gradiente geotérmico. Por otro lado, se compiló una base mundial de datos de gradientes geotérmicos que permitió estimar un modelo global de distribución y variaciones laterales, mediante la integración de mediciones reales de gradiente geotérmico con los resultados previos de la inversión de anomalías magnéticas, obteniéndose resultados de gradientes geotérmicos que oscilan entre aprox. 10-90 km/°C. Adicionalmente, la estimación de la Zona Dorada tuvo en cuenta el mapa GlobSed (Straume et al. 2019) que tiene datos de espesores sedimentarios actualizados para áreas oceánicas y mares marginales, así como otros conjuntos de datos e información puntual reportada en literatura para áreas continentales y oceánicas. En general, los resultados de este estudio muestran que los intervalos de la Zona Dorada varían en diferentes ambientes tectónicos, encontrándose entre los 500 a 5000 m. (Texto tomado de la fuente)
dc.description.abstractThe presence of sedimentary sequences located in diverse geotectonic contexts that prevail with temperatures ranging between 60-120ºC has permitted the identification of hydrocarbon reservoir patterns of economic importance. Those patterns named as the Golden Zone by Buller et al. (2005) and Nadeau (2011), refer to a hypothesis of coexistence of a petroleum system with traps that guarantee minimal degradation or transformation of hydrocarbons. By real data incorporation from regional observations, the precision on the mapping of global Golden Zone distribution will improve, helping to distinguish zones of relevant hydrocarbon potential and improving exploration effectiveness. The Curie Point Depth (CPD), which represents the depth at which the ferromagnetic minerals lose their magnetic properties (approx. 580ºC for magnetite). A CPD worldwide was estimated using the EMAG2v3 grid by applying the radial averaged power spectrum technique. The CPD results varying between 10 to 50 km, showing lower values on oceanic zones, a global model of geothermal gradient was estimated by those CPD results. On the other side, a world database of geothermal gradients was compiled to estimate a global model of distribution and lateral variations, by integrating real data of geothermal gradient with the previous results of the inversion of magnetic anomalies, obtaining geothermal gradient results ranging from approx. 10-58 km / °C. Additionally, we used a global map of sedimentary thickness supported on datasets coming from oceanic areas and marginal seas (Straume et al., 2019), as well as other observations reported in the literature for continental and oceanic areas. In general, we found that the Golden Zone interval varies in different geotectonic settings, ranging between approx. 500 a 5000 m.
dc.format.extentxiii, 145 páginas
dc.format.mimetypeapplication/pdf
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::553 - Geología económica
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleEstimación de la zona dorada de hidrocarburos a nivel mundial
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geología
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Geología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá - Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMoreno, C., Caballero, V., Horton, B., Mora, A. (2009). Exhumation history of the Northern Andes from the Cenozoic syn-tectonic sedimentary fill of the Middle Magdalena Valley Basin, Colombia. AGU Fall Meeting Abstracts. -1. 2082.
dc.relation.referencesMoss, S., Chambers, J., Cloke, I., Nas, D., Ali, J., Baker, S., Milsom, J., Carter, A. (1997). New Observations on the Sedimentary and Tectonic Evolution of the Tertiary Kutai Basin, East Kalimantan. Geological Society London Special Publications. 126. 395–416. 10.1144/GSL.SP.1997.126.01.24
dc.relation.referencesMountford, N. (1994). Hydrocarbon prospectivity assessment of the Southern Pattani Trough, Gulf of Thailand. United States: N. p., Web.
dc.relation.referencesNadeau, P. H. (2011). Earth’s energy Golden Zone: A synthesis from mineralogical research: Clay Minerals, v. 46, n. 1, p. 1–24.
dc.relation.referencesNagel, S., Castelltort, S., Wetzel, A., Willett, S., Mouthereau, F., Lin, A. (2013). Sedimentology and foreland basin paleogeography during Taiwan arc continent collision. Journal of Asian Earth Sciences. 62. 180–204. 10.1016/j.jseaes.2012.09.001.
dc.relation.referencesNakashima, Keishi. (2005). Petroleum Potential in the East Siberian Region. Journal of The Japanese Association for Petroleum Technology. 70. 132-141. 10.3720/japt.70.132
dc.relation.referencesNaylor, D., Haughey, N., Clayton, G., Graham, J. R. (1993). The Kish Bank Basin, Offshore Ireland. Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference, 845–855. Doi:10.1144/0040845
dc.relation.referencesNdikum, E., Tabod, C., Essimbi, B., Koumetio, F., Noutchogwe, C. (2014). Gravity Model for an Anomalous Body Located in the NW Portion of the Douala Sedimentary Sub-Basin, Cameroon (Central Africa). Open Journal of Geology. 04. 524-541. 10.4236/ojg.2014.410039.
dc.relation.referencesNicholson, U., Van Der Es, B., Clift, P. D., Flecker, R., Macdonald, D. I. M. (2015). The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: new evidence from seismic stratigraphy and Neogene-Recent sediment budgets. Basin Research, 28(2), 273–297. doi:10.1111/bre.12110
dc.relation.referencesNicholson, U., VanLaningham, S., Macdonald, D. I. M. (2013). Quaternary landscape evolution over a strike-slip plate boundary: Drainage network response to incipient orogenesis in Sakhalin, Russian Far East. Geosphere, 9(3), 588–601. doi:10.1130/ges00883.1
dc.relation.referencesNigel, H., Joseph, A. (1998). Structure of the East Shetland Platform, northern North Sea. Petroleum Geoscience, 4, 353-362
dc.relation.referencesNils Ræstad, Sagex. (2004). Paris Basin – the geological foundation for petroleum, culture and wine. Geo Expro Vol 1, No. 1
dc.relation.referencesNorvick M., Smith M. (2001). Mapping the plate tectonic reconstruction of Southern and Southeastern Australia and implications for petroleum systems. The APPEA Journal 41, 15-35. https://doi.org/10.1071/AJ00001
dc.relation.referencesNorwegian Petroleum Directorate. (2019). Structure elements in the Norwegian Continental Shelf, https://www.npd.no/en/facts/geology/structure-elements/
dc.relation.referencesNwankwo, L., Sunday, A. (2017). Regional estimation of Curie-point depths and succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria. Geothermal Energy Science. 5. 1-9. 10.5194/gtes-5-1-2017.
dc.relation.referencesNyabeze, P., Gwavava, O. (2016). Investigating heat and magnetic source depths in the Soutpansberg Basin, South Africa: exploring the Soutpansberg Basin Geothermal Field. Geothermal Energy. 4. 1-22. 10.1186/s40517-016-0050-z.
dc.relation.referencesOkere, Davies & Toothill, Steve. (2012). New insights on hydrocarbon plays in the Caspian Sea, Kazakhstan. Petroleum Geoscience. 18. 253-268. 10.1144/1354-079311-045.
dc.relation.referencesOkubo, Y., Graff, R. G., Hansen, R. O., Ogawa, K., Tsu, H. (1985). Curie point depths of the Island of Kyushu and surrounding areas: Geophysics, v. 53, p. 481–494.
dc.relation.referencesOliveira, C., Zalan, P., Alkmin, F., (1997). Tectonic Evolution of the Acre Basin, Brazil. VI Simposio Bolivariano “Exploración Petroléra en las Cuencas Subandinas”. Memorias Tomo1
dc.relation.referencesPawlewicz, M. J. (2006). Total petroleum systems of the North Carpathian Province of Poland, Ukraine, Czech Republic, and Austria. Reston, Va : U.S. Dept. of the Interior, U.S. Geological Survey
dc.relation.referencesPawlewicz, M.J., Steinshouer, D.W., Gautier, D.L., 2002, Map showing geology, oil and gas fields, and geologic provinces of Europe including Turkey: U.S. Geological Survey Open-File Report 97-470-I, 14 p., https://doi.org/10.3133/ofr97470I.
dc.relation.referencesPellegrini, B., Ribeiro, H. (2018). Exploratory plays of Pará-Maranhão and Barreirinhas basins in deep and ultra-deep waters, Brazilian Equatorial Margin. Brazilian Journal of Geology, 48(3), 485-502. https://dx.doi.org/10.1590/2317-4889201820180146
dc.relation.referencesPersits, F.M., Ahlbrandt, T.S., Tuttle, M.L., Charpentier, R.R., Brownfield, M.E., and Takahashi, K.I., 1997, Maps showing geology, oil and gas fields and geological provinces of Africa: U.S. Geological Survey Open-File Report 97-470-A, https://doi.org/10.3133/ofr97470A.
dc.relation.referencesPeterson, J. (1985). Geology and petroleum resources of central east-central Africa. United States Department of the interior Geological Survey
dc.relation.referencesPeterson, J., Clarke W. (1983). Petroleum Geology and Resources of the Volga-Ural Province, U.S.S.R. GEOLOGICAL SURVEY CIRCULAR 885
dc.relation.referencesPieters, P., Pigram, C.J., Trail, D., Dow, D.B., Ratman, N., Sukamto, R. (1983). The Stratigraphy of Western Irian Jaya. Indonesian Petroleum Association. 12th Annual Convention Proceedings (Volume 1), Pages 229-261.
dc.relation.referencesPirajno, F., Bagas, L. (2002). Gold and silver metallogeny of the South China Fold Belt: a consequence of multiple mineralizing events?, Ore Geology Reviews, Volume 20, Issues 3–4, Pages 109-126, ISSN 0169-1368, https://doi.org/10.1016/S0169-1368(02)00067-7.
dc.relation.referencesPollastro, R.M., Persits, F.M., Steinshouer, D.W., 1997, Map showing geology, oil and gas fields, and geologic provinces of Iran: U.S. Geological Survey Open-File Report 97-470-G, 10 p., https://doi.org/10.3133/ofr97470G.
dc.relation.referencesPratsch, J.C. (1980). Basement deformation and basement structure in the Northwest German basin. Geol Rundsch 69, 609–621. https://doi.org/10.1007/BF02104637
dc.relation.referencesPrischepa, O. M., Bazhenova, T. K., & Bogatskii, V. I. (2011). Petroleum systems of the Timan–Pechora sedimentary basin (including the offshore Pechora Sea). Russian Geology and Geophysics, 52(8), 888–905. doi:10.1016/j.rgg.2011.07.011
dc.relation.referencesPutra, P., Sapiie, B., & Ramdhan, A.M. (2019). Relationship between Pore Pressure and Structural Model in “Passive Margin” Offshore Tarakan Sub-Basin, Northeast Kalimantan, Indonesia; Search and Discovery Article #11207 (2019).
dc.relation.referencesRavat, D., Pignatelli, A., Nicolosi, I., Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International. 169. 421–434. 10.1111/j.1365-246X.2007.03305.x.
dc.relation.referencesReijers, T. J. A., Petters, S. W., & Nwajide, C. S. (1997). Chapter 7 The niger delta basin. African Basins. In Sedimentary Basins of the World. 151–172. Elservier Science doi:10.1016/s1874-5997(97)80010-x
dc.relation.referencesResearchers Map Active Fault Zones off Southern California Coast. (2015). http://www.sci-news.com/othersciences/geophysics/science-fault-zones-southern-california-02862.html
dc.relation.referencesRidgley, J., Drahovzal, J., Keith, B., Kolata, D. (1994). Proceedings of the Illinois Basin energy and mineral resources workshop. U.S. Geological Survey, USGS Publications Warehouse, Open File Report 94-298
dc.relation.referencesRitchie J.D.; Ziska H.; Johnson H.; Evans D. (2011). "Geology of the Faroe-Shetland Basin and adjacent areas". BGS Research Report RR/11/01. British Geological Survey.
dc.relation.referencesRiva Jr, J P. (1983). World petroleum resources and reserves. United States. Taylor & Francis Group.
dc.relation.referencesRobert, A. M. M., Letouzey, J., Kavoosi, M. A., Sherkati, S., Müller, C., Vergés, J., Aghababaei, A. (2014). Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, 57, 68–87. doi:10.1016/j.marpetgeo.2014.05.002
dc.relation.referencesRoberts, A. M., Badley, M. E. Price, J. D., Huck, I. W. (1990). The structural history of a transtensional basin: Inner Moray Firth, NE Scotland. Journal of the Geological Society; 147 (1): 87–103. doi: https://doi.org/10.1144/gsjgs.147.1.0087
dc.relation.referencesRobertson Basins and Plays (Tellus™). (2019). Sedimentary Basins of the World – Shapefile. https://www.arcgis.com/home/item.html?id=9845f1f30a1641efbe54dd1f9c8c668b
dc.relation.referencesRobinson, A. G., Rudat, J. H., Banks, C. J., Wiles, R. L. F. (1996). Petroleum geology of the Black Sea. Marine and Petroleum Geology, 13(2), 195–223. doi:10.1016/0264-8172(95)00042-9
dc.relation.referencesRodnikov, A., Sergeyeva, N., Zabarinskaya, L., Filatova, N., Piip, V., Rashidov, V. (2008). The deep structure of active continental margins of the Far East (Russia). Russian Journal of Earth Sciences. 10. 1-23. 10.2205/2007ES000224.
dc.relation.referencesRosales-Rodríguez J., Bandy, L., Centeno-García E. (2014). Profundidad de la base de la fuente magnética y estructura térmica del Golfo de México. Revista mexicana de ciencias geológicas, 31(3), 420.
dc.relation.referencesRussian Nature, (1 de septiembre de 2020). Biomes and Regions of Northern Eurasia, The Far East, Sakhalin. http://www.rusnature.info/reg/18_5.htm
dc.relation.referencesRyder, R.T. (1995). Appalachian Basin Province (067). USGS National Oil and Gas Assessment, United States Geological Survey document.
dc.relation.referencesRyder, R.T., Rice, D.D., Zhaocai, Sun, Yigang, Z., Yunyu, Q., Zhengwu, G. (1994). Petroleum geology of the Sichuan basin, China; report on U.S. Geological Survey and Chinese Ministry of Geology and Mineral Resources field investigations and meetings, U.S. Geological Survey, Open-File Report 94-426. http://pubs.er.usgs.gov/publication/ofr94426
dc.relation.referencesSalem, A., Bader, O. (2014). The subsidence evolution of the Fort Worth Basin in north central Texas, U.S.A. UNIVERSITY OF TEXAS AT ARLINGTON.
dc.relation.referencesScheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., Pharaoh, T. (2002). The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics. 360. 281-299. 10.1016/S0040-1951(02)00357-8.
dc.relation.referencesSchindler, C., Nicholson, C., Sorlien, C. (2007). 3D Fault Geometry and Basin Evolution in the Northern Continental Borderland Offshore Southern California. AGU Fall Meeting Abstracts. -1. 1100.
dc.relation.referencesScholarly Community Encyclopedia. (20 de Septiembre de 2020). Tectonic Evolution Review of the East China Sea Basin. https://encyclopedia.pub/328
dc.relation.referencesSegunda parte Litoral del golfo de México y Mar Caribe de México. (16 de Septiembre de 2020). https://www.yumpu.com/es/document/view/12371380/segunda-parte-litoral-del-golfo-de-mexico-y-mar-caribe-de-mexico
dc.relation.referencesSeismic Atlas of SE Asian Basins. (16 de Septiembre de 2020). Natuna Sea and Sarawak Basin. http://geoseismic-seasia.blogspot.com/search/label/003%20Table%20of%20Content%20%2F%20Basin%20Index
dc.relation.referencesSelley, R. (1997). Chapter 1 The Sedimentary Basins of Northwest Africa: Stratigraphy and Sedimentation. In Sedimentary Basins of the World. p 3-16. Elservier Science
dc.relation.referencesSeno, T. y Kaplan, D. (1988). Seismotectonics of western New Guinea. Journal of Physics of the Earth. 36. 107-124. 10.4294/jpe1952.36.107.
dc.relation.referencesSheppard, S., Cranfield, L. (2012). Geological framework and mineralization of Papua New Guinea—An update (p. 65). Port Moresby.
dc.relation.referencesSibal, V. K., Raju, S. V. (9 de Octubre de 2020). Oil shale occurrences in upper Assam Basin, India: An overview. Directorate General of Hydrocarbons, New Delhi, India.
dc.relation.referencesSierra, A. (2015). Obtención de un mapa de la isoterma de curie para el arco de scotia a partir de anomalías magnéticas marinas. Cantabria, Universidad de Cantabria.
dc.relation.referencesSigismondi, M., Ramos, V. (2009). El flujo de calor en la Cuenca Neuquina, Petrotecnia, febrero 2009, p 64 – 81.
dc.relation.referencesSimonelli, G. (2014). Tectonics of the Aegean/Anatolian Region. Indiana University. http://www.astro.indiana.edu/gsimonel/G554_paper.pdf.
dc.relation.referencesSingh, D. (2016). Institutional Report Keshava Deva Malaviya Institute of Petroleum Exploration, Proc Indian Natn Sci Acad 82 No. 3 July Spl Issue 2016 pp. 1083-1096
dc.relation.referencesSiyar, S., Waqas, M., Mehmood, S., Jan, A., Awais, M., Islam, F. (2017). Petrophysical Characteristics of Lower Goru Formation (Cretaceous) in Sawan Gas Field, Central Indus Basin, Pakistan. Journal of Biodiversity and Environmental Sciences. 10. 260-266.
dc.relation.referencesSloan, R. A., Elliott, J. R., Searle, M. P., Morley, C. K. (2017). Chapter 2 Active tectonics of Myanmar and the Andaman Sea. Geological Society, London, Memoirs, 48(1), 19–52. doi:10.1144/m48.2
dc.relation.referencesSobornov, K., Kolesnik, V., Zhemchugova, V., Nikonov, N. (2018). Petroleum Habitat and New Exploration Opportunities in the Frontal Part of the Polar Urals Foreland Thrust Belt. 10.3997/2214-4609.201801435.
dc.relation.referencesSouthern Methodist University, Geotermal Laboratory. (22 mayo de 2019). National Geothermal Data System. http://geothermal.smu.edu/gtda/
dc.relation.referencesSpector A., Grant F.S. (1970). Statistical models for interpreting aeromagnetic data.
dc.relation.referencesSriram, K., Gupte, S., Kothari, V., Madhu B., Waraich, R. (2006). Structure and Evolution of Saurashtra Arch in Kutch-Saurashtra Deepwater Area, Western India. 6th International Conference & Exposition on Petroleum Geophysics “Kolkata 2006”
dc.relation.referencesSteckler, M., Akhter, S., Seeber, L. (2008). Collision of the Ganges-Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters. 273. 367-378. 10.1016/j.epsl.2008.07.009.
dc.relation.referencesStein, A. M. (1992). Basin development and petroleum potential in The Minches and Sea of the Hebrides Basins. Geological Society, London, Special Publications, 62(1), 17–20. doi:10.1144/gsl.sp.1992.062.01.03
dc.relation.referencesSteinshouer, D.W., Qiang, J., McCabe, P.J., and Ryder, R.T, 1999, Maps showing geology, oil and gas fields, and geologic provinces of the Asia Pacific region: U.S. Geological Survey Open-File Report 97-470-F, 16 p., https://doi.org/10.3133/ofr97470F.
dc.relation.referencesStephenson, A. (1992). Some aspects of the properties of fine particles in geomagnetism. Magnetic Properties of Fine Particles, editado por J.L. Dormann, D. Fiorani, Elservier, pp. 329-338
dc.relation.referencesStewart, S., Coward, M. (1995). "Synthesis of salt tectonics in the southern North Sea, UK". Marine and Petroleum Geology. 12 (5): 457–475. doi:10.1016/0264-8172(95)91502-g.
dc.relation.referencesStraume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., et al. (2019). GlobSed: Updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20. DOI: 10.1029/2018GC008115
dc.relation.referencesTaira, A. (2001). Tectonic Evolution of the Japanese Island Arc System. Annual Review of Earth and Planetary Sciences, 29(1), 109–134. doi:10.1146/annurev.earth.29.1.109
dc.relation.referencesTamesis, E. (1990). Petroleum Geology of the Sulu Sea Basin, Philippines. AAPG. Proceedings of the South East Asia Petroleum Exploration Society Volume IX, 1990 Pages 45-54.
dc.relation.referencesTanaka, A., Ishikawa, Y. (2005). Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study. Physics of the Earth and Planetary Interiors. 152. 257-266. 10.1016/j.pepi.2005.04.011.
dc.relation.referencesTanaka, A., Okubo, Y., Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of magnetic anomaly data in East and Southeast Asia. Tectonophysics, v. 306, p. 461–470.
dc.relation.referencesTankard Enterprise Ltd. (2002). Tectonic Framework of Basin Evolution in Perú, https://pdfs.semanticscholar.org/0b19/477842caf759d71436ef025278911c3939e7.pdf
dc.relation.referencesTarbuck, E. J., Lutgents, F. K. y Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S. A., Madrid, 375 pp.
dc.relation.referencesTari, G., Ciudin, D., Kostner, A., Raileanu, A., Tulucan, A., Vacarescu, G., Vangelov, D. (2011). Play Types of the Moesian Platform of Romania and Bulgaria. 10.13140/2.1.1977.0887.
dc.relation.referencesTeixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., Lagabrielle, Y. (2018). Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 724-725, 146–170. doi:10.1016/j.tecto.2018.01.009
dc.relation.referencesThe International Heat Flow Commission. (22 de Agosto de 2019). The Global Heat Flow Database. https://engineering.und.edu/research/global-heat-flow-database/data.html
dc.relation.referencesTissot, B.P., Welte, D.H. (1984). Petroleum Formation and Occurrence. Second Revised and Enlarged, Edition. Springer-Verlag Berlin Heidelberg, NewYork Tokyo
dc.relation.referencesTurcotte, D. L., Schubert, G. (2002). Geodynamics: New York, Cambridge University Press, 456 p.
dc.relation.referencesU.S. Energy Information Administration. (2018). Permian Basin Wolfcamp Shale Play Geology Review. https://www.eia.gov/maps/pdf/PermianBasin_Wolfcamp_EIAReport_Oct2018.pdf
dc.relation.referencesUlmishek, G., (2001a). Petroleum geology and resources of The Nepa-Botuoba High, Angara-Lena, CIS-Patom Foredeep, southeastern Siberian Craton, Russia. U.S. Geol. Surv. Bull. 2201C
dc.relation.referencesUlmishek, G., (2001b). Petroleum Geology and Resources of the Middle Caspian Basin, Former Soviet Union. U.S. Geol. Surv. Bull. 2201A.
dc.relation.referencesUlmishek, G., (2004) Petroleum geology and resources of the Amu-Darya Basin, Turkmenistan, Uzbekistan, Afghanistan, and Iran. USGS Bulletin 2201-H.
dc.relation.referencesUlmishek, G., Bogino, V., Keller, M., Poznyakevich, Z. (1994). "Structure, Stratigraphy, and Petroleum Geology of the Pripyat and Dnieper-Donets Basins, Byelarus and Ukraine", Interior Rift Basins, Susan M. Landon, Anny B. Coury
dc.relation.referencesUnited States Geological, Survey. (2006). Geologic Provinces of the United States: Rocky Mountains. http://wrgis.wr.usgs.gov/docs/usgsnps/province/rockymtn.html
dc.relation.referencesVargas, C., Idarraga-García J., Rodríguez J.M. (2015). Curie point depths in Northwestern South America and the Southwestern Caribbean Sea, Petroleum Geology and Potential of the Colombian Caribbean Margin, vol. 108, AAPG Memoir, pp. 179e200.
dc.relation.referencesVergés, J., Kullberg, J. C., Casas-Sainz, A., de Vicente, G., Duarte, L. V., Fernàndez, M., Vegas, R. (2019). An Introduction to the Alpine Cycle in Iberia. Regional Geology Reviews, 1–14. doi:10.1007/978-3-030-11295-0_1
dc.relation.referencesVerma, O., Khosla, A. (2019). Developments in the stratigraphy of the Deccan Volcanic Province, peninsular India. Comptes Rendus Geoscience. doi:10.1016/j.crte.2019.10.002
dc.relation.referencesVo, D. T., Witjaksana, R. S., Sukerim, W., Dharmawan, A., Iwan, H., Okuno, M. (2001). Reservoir Management for Ultra-Thin Oil Columns Under Gas-Cap and Water Support: Attaka Field Examples. Society of Petroleum Engineers. doi:10.2118/68675-MS
dc.relation.referencesVyssotski, A. V., Vyssotski, V. N., Nezhdanov, A. A. (2006). Evolution of the West Siberian Basin. Marine and Petroleum Geology, 23(1), 93–126. doi:10.1016/j.marpetgeo.2005.03.002
dc.relation.referencesWang, Y., Zhang, F., Fan, W., Zhang, G., Chen, S., Cawood, P., Zhang, A. (2010). Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics. 29. 10.1029/2010TC002750
dc.relation.referencesWang, B., Doust, H., Liu, J. (2019). Geology and Petroleum Systems of the East China Sea Basin. Energies. 12. 4088. 10.3390/en12214088.
dc.relation.referencesWang, J., Li, C-F. (2018). Curie point depths in Northeast China and their geothermal implications for the Songliao Basin. Journal of Asian Earth Sciences. 163. 177-193. 10.1016/j.jseaes.2018.05.026.
dc.relation.referencesWaters, C.N., Dean, M.T., Jones, N.S., Somerville, I.D. (2011). Northumberland Trough and Solway Basin. In: Waters, Colin, (ed.) A revised correlation of Carboniferous rocks in the British Isles. Geological Society of London, 89-95.
dc.relation.referencesWikipedia, La encyclopedia libre. (2 de mayo de 2020). Cratón. https://es.wikipedia.org/w/index.php?title=Crat%C3%B3n&oldid=121606721
dc.relation.referencesWitt Jr., W. (1993). I Principal Oil and Gas Plays in the Appalachian Basin (Province 131). U.S. Geological Survey, Bulletin 1839-I, J Evolution of Sedimentary Basins – Appalachian Basin.
dc.relation.referencesWitter, J., Miller, C. (2016). Curie point depth mapping pilot study in Northwest British Columbia, Geoscience BC Report 2016-14.
dc.relation.referencesWitter, J., Miller, C. (2017). Curie point depth mapping in Yukon. Yukon, Geological Survey, Open File 2017-3, 37 p.
dc.relation.referencesWorld Wildlife Fund. (20 de Octubre 2020). Upper Amazon Basin of Perú, Brazil and Bolivia. https://www.worldwildlife.org/ecoregions/nt0166.
dc.relation.referencesWright, J. (1985). Chapter The Benue Trough and coastal Basins. In Geology and Mineral Resources of West Africa. pp 98-113 Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3932-6_11
dc.relation.referencesWu, Y. S., Chen, Y. J., Zhou, K. F. (2017). Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting. Ore Geology Reviews, 81, 641–671.
dc.relation.referencesYang, K., Xing, J., Gong, W., Li, C., Wu, X. (2017a) Curie Point Depth from Spectral Analysis of Magnetic Data in the Southeast Tibet, Earth Sciences. Vol. 6, No. 5, 2017, pp. 88-96. doi: 10.11648/j.earth.20170605.15
dc.relation.referencesYang, R., Jin, Z., Loon, T., Han, Z., Fan, A. (2017b). Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development. AAPG Bulletin. 101. 95-117. 10.1306/06101615095.
dc.relation.referencesYin, W. (2013). Hydrocarbon Geology Characteristics and Oil & Gas Resource Potential in the Afghan-Tajik Basin. Advanced Materials Research, 734-737, 366–372. doi:10.4028/www.scientific.net/amr.734-737.366
dc.relation.referencesYoris, F., Ostos, M. (1997). Geología de Venezuela: Geología General y Cuencas Petrolíferas, en Singer, J. (ed.), WEC 1997 evaluación de Pozos: Texas, Jolley Printing Schlumberger – Surenco C.A., pp. 24–44.
dc.relation.referencesYoung, M., Rawlinson, N., Arroucau, P., Reading, A., Tkalčić, H. (2011). High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania's tectonic past. Geophysical Research Letters - GEOPHYS RES LETT. 38. 10.1029/2011GL047971.
dc.relation.referencesZalan, P., Wolff, S., Astolfi, M.A.M., Vieira, I.S., Conceição, J.C.J., Appi, V.T., Neto, E., Cerqueira, J., Marques, A. (1990). The Paraná Basin, Brazil. Interior Cratonic Basins. 51. 681-708.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembHidrocarburos
dc.subject.lembHydrocarbons
dc.subject.proposalGradiente geotermal
dc.subject.proposalProfundidad de Curie
dc.subject.proposalZona dorada
dc.subject.proposalCuencas sedimentarias
dc.subject.proposalDistribución de hidrocarburos
dc.subject.proposalGeothermal gradient
dc.subject.proposalCurie Point Depth
dc.subject.proposalGolden Zone
dc.subject.proposalSedimentary Basins
dc.subject.proposalHydrocarbon pattern distribution
dc.title.translatedGlobal distribution of the Hydrocarbons Golden Zone
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaOcupación Humana


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito