Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRojano, Benjamín Alberto
dc.contributor.authorZapata Osorio, Luz Angela
dc.date.accessioned2021-11-29T15:02:16Z
dc.date.available2021-11-29T15:02:16Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80737
dc.descriptionilustraciones, tablas
dc.description.abstractLa guayaba agria, Psidium araca, tiene características sensoriales y compuestos bioactivos que pueden hacerla competitiva en mercados internacionales y a la vez utilizarse como ingrediente para impulsar el mercado de productos funcionales a nivel nacional. Teniendo esto en cuenta, este trabajo se enfocó en la elaboración de un producto alimenticio del sector de galletería utilizando pulpa de guayaba agria como ingrediente funcional. Inicialmente se hizo una caracterización de los compuestos bioactivos y la capacidad antioxidante de la pulpa liofilizada de guayaba agria. Se evaluó el contenido de fenoles totales, flavonoides totales y taninos condesados. También se evaluó la capacidad para atrapar radicales libres ABTS●+, DPPH y peroxilos (ORAC), y la capacidad para reducir el hierro férrico (FRAP). Luego se fabricaron dos tipos de galleta adicionando la pulpa liofilizada de guayaba agria directamente a la galleta o a la crema de relleno. Se evaluó el contenido de fenoles totales y taninos condensados, al igual que la capacidad reductora (FRAP), tanto a las galletas con adición de pulpa como las galletas sin adición de pulpa. Se hizo una medición adicional de capacidad antioxidantes por ABTS y ORAC para las galletas con adición de pulpa. Finalmente, se efectuó una evaluación sensorial de las galletas utilizando una prueba hedónica para los aspectos de color, sabor, dureza, masticabilidad y aceptabilidad general, en un grupo de 78 personas no entrenadas. A partir de este trabajo, se puede afirmar que la pulpa liofilizada de guayaba presenta actividad antioxidante significativa en comparación con otros productos. Además, se obtuvo un producto alimenticio funcional tipo galleta, con valores de actividad antioxidante significativamente mayores a una galleta común y con buena aceptación del público evaluador. (Texto tomado de la fuente)
dc.description.abstractThe sour guava, Psidium araca, has sensory characteristics and bioactive compounds which can make it competitive in international markets and at the same time it can be used as an ingredient to boost the market of functional products at a national scale. Considering this, this work focused on the elaboration of a food product for the biscuit sector using sour guava pulp as a functional ingredient. Initially, the bioactive compounds and antioxidant capacity of freeze-dried sour guava pulp were characterised. The content of total phenols, total flavonoids and condensed tannins was evaluated. The ability to trap ABTS●+, DPPH and peroxyl free radicals (ORAC), and the ability to reduce ferric iron (FRAP) were also evaluated. Two types of biscuit were then manufactured by adding the freeze-dried sour guava pulp directly to the biscuit or to the cream filling. The content of total phenols and condensed tannins, as well as the reducing capacity (FRAP), were evaluated for both the biscuits with added pulp and the biscuits without added pulp. An additional measurement of antioxidant capacity by ABTS and ORAC was made for the biscuits with added pulp. Finally, a sensory evaluation of the biscuits was carried out using a hedonic test for colour, taste, hardness, chewiness and overall acceptability in a group of 78 untrained persons. From the results of this work, it can be stated that freeze-dried guava pulp shows significant antioxidant activity compared to other products. Furthermore, a biscuit-type functional food product was obtained, with significantly higher antioxidant activity values than a common biscuit and with good acceptance by the evaluating public.
dc.format.extent61 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleElaboración de un producto alimenticio funcional mediante el uso de pulpa liofilizada de guayaba agria (Psidium araca)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.educationalvalidatorMorales Saavedra, Diana Marcela
dc.contributor.researchgroupQuímica de los Productos Naturales y los Alimentos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentos
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbdel-Hamid, M., Romeih, E., Huang, Z., Enomoto, T., Huang, L., & Li, L. (2020). Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chemistry, 303, 125400. https://doi.org/10.1016/j.foodchem.2019.125400
dc.relation.referencesAgrahar-Murugkar, D. (2020). Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. Lwt, 130, 109703. https://doi.org/10.1016/j.lwt.2020.109703
dc.relation.referencesAjila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319–326. https://doi.org/10.1016/j.jcs.2007.10.001
dc.relation.referencesAlcaire, F., Antúnez, L., Vidal, L., Velázquez, A. L., Giménez, A., Curutchet, M. R., Girona, A., & Ares, G. (2020). Healthy snacking in the school environment: Exploring children and mothers’ perspective using projective techniques. Food Quality and Preference, 104173. https://doi.org/10.1016/j.foodqual.2020.104173
dc.relation.referencesAlongi, M., Melchior, S., & Anese, M. (2019). Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT, 100, 300–305. https://doi.org/10.1016/j.lwt.2018.10.068
dc.relation.referencesAlvídrez-Morales, A., González-Martínez, B. E., & Jiménez-Salas, Z. (2002). Tendencias en la producción de alimentos: Alimentos funcionales. Revista Salud Pública y Nutrición, 3(3), 1–6.
dc.relation.referencesAmorim, C., Godoy Alves Filho, E., Soares Rodrigues, T. H., Bender, R. J., Marques Canuto, K., Santos Garruti, D., & Rogéria Antoniolli, L. (2020). Volatile compounds associated to the loss of astringency in ‘Rama Forte’ persimmon fruit. Food Research International, 136, 109570. https://doi.org/10.1016/j.foodres.2020.109570
dc.relation.referencesAntoniewska, A., Rutkowska, J., & Martinez Pineda, M. (2019). Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chemistry, 286, 376–387. https://doi.org/10.1016/j.foodchem.2019.02.029
dc.relation.referencesAntoniewska, A., Rutkowska, J., Martinez Pineda, M., & Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217–223. https://doi.org/10.1016/j.lwt.2017.10.039
dc.relation.referencesAranceta Bartrina, J., Blay Cortés, G., Echevarría Guitiérrez, F. J., Inmaculada;, G. C., Hernández Cabria, M., Iglesias Barcia, J. R., & López Díaz-Ufano, M. L. (2011). Atención primaria de calidad: Guía de buena práctica clinica en Alimentos funcionales. Organización Médica Colegial de España.
dc.relation.referencesAvello, M., & Suwalsky, M. (2006). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea, 494, 161–172. https://doi.org/10.4067/s0718-04622006000200010
dc.relation.referencesBajaj, S., Urooj, A., & Prabhasankar, P. (2006). Effect of incorporation of mint on texture, colour and sensory parameters of biscuits. International Journal of Food Properties, 9(4), 691–700. https://doi.org/10.1080/10942910600547632
dc.relation.referencesBenzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
dc.relation.referencesBhat, N. A., Wani, I. A., & Hamdani, A. M. (2020). Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 6(1), e03042. https://doi.org/10.1016/j.heliyon.2019.e03042
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
dc.relation.referencesBrand, M. H., Connolly, B. A., Levine, L. H., Richards, J. T., Shine, S. M., & Spencer, L. E. (2017). Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species. Scientia Horticulturae, 224, 332–342. https://doi.org/10.1016/j.scienta.2017.06.021
dc.relation.referencesBrennan, C. S., & Samyue, E. (2004). Evaluation of Starch Degradation and Textural Characteristics of Dietary Fiber Enriched Biscuits. International Journal of Food Properties, 7(3), 647–657. https://doi.org/10.1081/JFP-200033070
dc.relation.referencesChagas Barros, R. G., Corrêa Pereira, U., Santana Andrade, J. K., Santos de Oliveira, C., Vieira Vasconcelos, S., & Narain, N. (2020). In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Research International, 136(July), 109614. https://doi.org/10.1016/j.foodres.2020.109614
dc.relation.referencesChen, L.-Y., Cheng, C.-W., & Liang, J.-Y. (2015). Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chemistry, 170, 10–15. https://doi.org/10.1016/j.foodchem.2014.08.038
dc.relation.referencesChen, Y., Wang, Y., Xu, L., Jia, Y., Xue, Z., Zhang, M., Phisalaphong, M., & Chen, H. (2020). Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. LWT, 134, 110007. https://doi.org/10.1016/j.lwt.2020.110007
dc.relation.referencesChuacharoen, T., Prasongsuk, S., & Sabliov, C. M. (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15), 2744. https://doi.org/10.3390/molecules24152744
dc.relation.referencesCombs, C. A. (Ed.). (2016). Tannins: Biochemistry, food sources and nutritional properties. Nova Science Publishers.
dc.relation.referencesCoronado H, M., Vega y León, S., Gutiérrez T, R., Vázquez F, M., & Radilla V, C. (2015). Antioxidantes: perspectiva actual para la salud humana. Revista Chilena de Nutrición, 42(2), 206–212. https://doi.org/10.4067/S0717-75182015000200014
dc.relation.referencesCuadrado Silva, C. T. (2016). Estudio químico de las propiedades sensoriales y biofuncionales de la guayaba agria (Psidium friedrichsthalianum Nied.) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/54997/
dc.relation.referencesDas Chagas, E. G. L., Vanin, F. M., dos Santos Garcia, V. A., Yoshida, C. M. P., & de Carvalho, R. A. (2021). Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. LWT, 137, 110472. https://doi.org/10.1016/j.lwt.2020.110472
dc.relation.referencesDe Lacerda de Oliveira Pineli, L., Veras de Carvalho, M., Andrade de Aguiar, L., de Oliveira, G. T., Costa Celestino, Sô. M., Braz Assunção Botelho, R., & Chiarello, M. D. (2015). Use of baru (Brazilian almond) waste from physical extraction of oil toproduce flour and cookies. LWT - Food Science and Technology, 60(1), 50–55. https://doi.org/10.1016/j.lwt.2014.09.035
dc.relation.referencesDe Oliveira, S. D., Araújo, C. M., Borges, G. da S. C., Lima, M. dos S., Viera, V. B., Garcia, E. F., de Souza, E. L., & de Oliveira, M. E. G. (2020). Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT, 134, 110200. https://doi.org/10.1016/j.lwt.2020.110200
dc.relation.referencesDinero. (2018). Exportación de frutas colombianas en 2018. 23 /05/2018. https://www.dinero.com/edicion-impresa/pais/articulo/exportacion-de-frutas-colombianas-en-2018/258606
dc.relation.referencesDjaoudene, O., Mansinhos, I., Gonçalves, S., Jara-Palacios, M. J., Bachir bey, M., & Romano, A. (2021). Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion. South African Journal of Botany, 137, 133–148. https://doi.org/10.1016/j.sajb.2020.10.015
dc.relation.referencesDos Santos, W. N. L., da Silva Sauthier, M. C., Pinto dos Santos, A. M., de Andrade Santana, D., Almeida Azevedo, R. S., & da Cruz Caldas, J. (2017). Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 583–592. https://doi.org/10.1016/j.microc.2017.04.029
dc.relation.referencesFonseca C, Z. Y., Patiño B, G. A., & Herrán F, O. F. (2013). Malnutrición y seguridad alimentaria: un estudio multinivel. Revista Chilena de Nutrición, 40(3), 206–215. https://doi.org/10.4067/S0717-75182013000300001
dc.relation.referencesGalla, N. R., Pamidighantam, P. R., Karakala, B., Gurusiddaiah, M. R., & Akula, S. (2017). Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). International Journal of Gastronomy and Food Science, 7, 20–26. https://doi.org/10.1016/j.ijgfs.2016.12.003
dc.relation.referencesGarzón, G. Astrid, Narváez-Cuenca, C.-E., Vincken, J.-P., & Gruppen, H. (2017). Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 217, 364–372. https://doi.org/10.1016/j.foodchem.2016.08.107
dc.relation.referencesGarzón, G.A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017
dc.relation.referencesGuevara Benavides, L. M. (2017, December 22). Nutresa y Colombina son los líderes del negocio de las galletas en Navidad. La República. https://www.larepublica.co/empresas/nutresa-y-colombina-son-los-lideres-del-negocio-de-las-galletas-en-navidad-2584201
dc.relation.referencesHagerman, A. E., & Butler, L. G. (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15(6), 1795–1810. https://doi.org/10.1007/BF01012267
dc.relation.referencesHamid, Thakur, N. S., Thakur, A., & Kumar, P. (2020). Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274(August), 109656. https://doi.org/10.1016/j.scienta.2020.109656
dc.relation.referencesHaytowitz, D. B., & Bhagwat, S. (2010). Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. In Nutrient Data Laboratory (pp. 1–46). U.S. Department of Agriculture, Agricultural Research Service. http://www.ars.usda.gov/Services/docs.htm?docid=15866
dc.relation.referencesKasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (2019). Leaf Disc Assays for Rapid Measurement of Antioxidant Activity. Scientific Reports, 9(1), 1884. https://doi.org/10.1038/s41598-018-38036-x
dc.relation.referencesKidoń, M., & Grabowska, J. (2021). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT, 136(January 2020), 110302. https://doi.org/10.1016/j.lwt.2020.110302
dc.relation.referencesKrystyjan, M., Gumul, D., Ziobro, R., & Korus, A. (2015). The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT - Food Science and Technology, 63(1), 640–646. https://doi.org/10.1016/j.lwt.2015.03.075
dc.relation.referencesKuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732. https://doi.org/10.1590/S0101-20612005000400016
dc.relation.referencesLara Mantilla, C. (2008a). Chemical analysis of the culture medium: Psidium araca, 25% P/V. Archivos de Zootecnia, 217, 79–82.
dc.relation.referencesLara Mantilla, C. (2008b). Composición química de un medio de cultivo a partir de guayaba agria (Psidium araca) y su relación con la nutrición de los microorganismos ruminales. Revista Colombiana de Biotecnología, 10(2), 44–49.
dc.relation.referencesLara Mantilla, C., Nerio, L., & Oviedo Zumaqué, L. E. (2007). Evaluación fisicoquímica y bromatológica de la guayaba agria (Psidium araca) en dos estados de maduración. Temas Agrarios, 12(1), 13–21. https://doi.org/10.21897/rta.v12i1.647
dc.relation.referencesLee, D. P. S., Gan, A. X., & Kim, J. E. (2020). Incorporation of biovalorised okara in biscuits: Improvements of nutritional, antioxidant, physical, and sensory properties. LWT, 134, 109902. https://doi.org/10.1016/j.lwt.2020.109902
dc.relation.referencesLillo, A., Carvajal-Caiconte, F., Nuñez, D., Balboa, N., & Alvear Zamora, M. (2016). Cuantificacion espectrofometria de compuestos fenolicos y actividad antioxidante en distintos berries nativos de Cono Sur de America. Revista de Investigaciones Agropecuarias, 42(2), 168–174. http://www.redalyc.org/articulo.oa?id=86447075010%0ACómo
dc.relation.referencesLima, R. da S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2019). May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 451–459. https://doi.org/10.1016/j.foodres.2018.10.053
dc.relation.referencesLucini Mas, A., Brigante, F. I., Salvucci, E., Pigni, N. B., Martinez, M. L., Ribotta, P., Wunderlin, D. A., & Baroni, M. V. (2020). Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chemistry, 316, 126279. https://doi.org/10.1016/j.foodchem.2020.126279
dc.relation.referencesMahloko, L. M., Silungwe, H., Mashau, M. E., & Kgatla, T. E. (2019). Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, 5(10), e02479. https://doi.org/10.1016/j.heliyon.2019.e02479
dc.relation.referencesMammen, D., & Daniel, M. (2012). A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chemistry, 135(3), 1365–1368. https://doi.org/10.1016/j.foodchem.2012.05.109
dc.relation.referencesMarinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260.
dc.relation.referencesMir, S. A., Bosco, S. J. D., Shah, M. A., Santhalakshmy, S., & Mir, M. M. (2017). Effect of apple pomace on quality characteristics of brown rice based cracker. Journal of the Saudi Society of Agricultural Sciences, 16(1), 25–32. https://doi.org/10.1016/j.jssas.2015.01.001
dc.relation.referencesPasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. https://doi.org/10.1016/j.heliyon.2019.e02242
dc.relation.referencesPedraza Chaverri, J., & Cárdenas Rodríguez, N. (2018). Especies reactivas de oxígeno y sistemas antioxidantes. Aspectos básicos. Educación Química, 17(2), 164. https://doi.org/10.22201/fq.18708404e.2006.2.66056
dc.relation.referencesPérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461–472. https://doi.org/10.1016/j.foodres.2017.11.022
dc.relation.referencesPerumal, V., Khatib, A., Uddin Ahmed, Q., Fathamah Uzir, B., Abas, F., Murugesu, S., Zuwairi Saiman, M., Primaharinastiti, R., & EL-Seedi, H. (2021). Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences, 100012. https://doi.org/10.1016/j.fochms.2021.100012
dc.relation.referencesPrice, M. L., Van Scoyoc, S., & Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26(5), 1214–1218. https://doi.org/10.1021/jf60219a031
dc.relation.referencesPrior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., & Jacob, R. (2003). Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity (ORAC FL)) of Plasma and Other Biological and Food Samples. Journal of Agricultural and Food Chemistry, 51(11), 3273–3279. https://doi.org/10.1021/jf0262256
dc.relation.referencesPrior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698
dc.relation.referencesRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
dc.relation.referencesRodriguez-Sandoval, E., Prasca-Sierra, I., & Hernandez, V. (2017). Effect of modified cassava starch as a fat replacer on the texture and quality characteristics of muffins. Journal of Food Measurement and Characterization, 11(4), 1630–1639. https://doi.org/10.1007/s11694-017-9543-0
dc.relation.referencesRojano, B., Gaviria, C., Gil, M., Saez, J., Schinella, G., & Tournier, H. (2008). Actividad antioxidante del isoespintanol en diferentes medios. Vitae, 15(1), 173–181.
dc.relation.referencesRoleira, F. M. F., Varela, C. L., Costa, S. C., & Tavares-da-Silva, E. J. (2018). Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Studies in Natural Product Chemistry (Vol. 57, pp. 115–156). Elsevier. https://doi.org/10.1016/B978-0-444-64057-4.00004-1
dc.relation.referencesRotta, E. M., Giroux, H. J., Lamothe, S., Bélanger, D., Sabik, H., Visentainer, J. V., & Britten, M. (2020). Use of passion fruit seed extract (Passiflora edulis Sims) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT, 123, 109088. https://doi.org/10.1016/j.lwt.2020.109088
dc.relation.referencesSánchez-Riaño, A. M., Solanilla-Duque, J. F., Méndez-Arteaga, J. J., & Váquiro-Herrera, H. A. (2020). Bioactive potential of Colombian feijoa in physiological ripening stage. Journal of the Saudi Society of Agricultural Sciences, 19(4), 299–305. https://doi.org/10.1016/j.jssas.2019.05.002
dc.relation.referencesSharma, P., Velu, V., Indrani, D., & Singh, R. P. (2013). Effect of dried guduchi (Tinospora cordifolia) leaf powder on rheological, organoleptic and nutritional characteristics of cookies. Food Research International, 50(2), 704–709. https://doi.org/10.1016/j.foodres.2012.03.002
dc.relation.referencesSidhu, J. S., Al-Hooti, S. N., Al-Saqer, J. M., Al-Amiri, H. A., Al-Foudari, M., Al-Othman, A., Ahmad, A., Al-Haji, L., Ahmed, N., Mansor, I. B., & Minal, J. (2004). Developing Functional Foods Using Red Palm Olein: Pilot-Scale Studies. International Journal of Food Properties, 7(1), 1–13. https://doi.org/10.1081/JFP-120022491
dc.relation.referencesSingleton, G., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology And Viticulture, 16(3), 144–158.
dc.relation.referencesSrivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827–833. https://doi.org/10.3109/09637486.2014.937797
dc.relation.referencesThaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003
dc.relation.referencesTyagi, P., Chauhan, A. K., & Aparna. (2020). Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. LWT, 130, 109639. https://doi.org/10.1016/j.lwt.2020.109639
dc.relation.referencesVallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Effect of climatic and sulphur fertilisation conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. European Food Research and Technology, 216(5), 395–401. https://doi.org/10.1007/s00217-003-0664-9
dc.relation.referencesVoss-Rech, D., Klein, C. S., Techio, V. H., Scheuermann, G. N., Rech, G., & Fiorentin, L. (2011). Antibacterial activity of vegetal extracts against serovars of Salmonella. Ciência Rural, 41(2), 314–320. https://doi.org/10.1590/S0103-84782011000200022
dc.relation.referencesZapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012
dc.relation.referencesZapata, S., Piedrahita, A. M., & Rojano, B. (2014). Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas En Nutrición Humana, 16(1), 25–36.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIndustria alimenticia
dc.subject.lembFood industry and trade
dc.subject.proposalPsidium araca
dc.subject.proposalGuayaba agria
dc.subject.proposalSour guava
dc.subject.proposalAntioxidant activity
dc.subject.proposalActividad antioxidante
dc.subject.proposalBioactive compounds
dc.subject.proposalProducto alimenticio funcional
dc.subject.proposalFunctional food product
dc.subject.proposalGalleta
dc.subject.proposalBiscuit
dc.subject.proposalRelleno de galleta
dc.subject.proposalBiscuit filling
dc.subject.proposalCompuestos bioactivos
dc.title.translatedPreparation of a functional food product by using freeze-dried pulp of sour guava (Psidium araca)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameLaboratorio Ciencia de los Alimentos
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito