Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorLara Valencia, Luis Augusto
dc.contributor.authorBedoya Zambrano, David Marcelo
dc.date.accessioned2022-02-01T13:57:57Z
dc.date.available2022-02-01T13:57:57Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80827
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEsta tesis presenta una metodología para administrar fuerzas de control en amortiguadores magnetoreológicos (MR-Dampers). Se basa en la programación de un algoritmo genético de clasificación no dominada, (Non-Dominated Genetic Sorting Algorithm-NSGA-II) combinado con lógica difusa (Fuzzy Logic-FL). Se pretende mejorar la capacidad de respuesta de las estructuras cuando éstas se encuentran sometidas a la acción de cargas dinámicas. El NSGA-II ha sido ampliamente utilizado en problemas de optimización multi-objetivo, demostrando ser uno de los algoritmos más eficientes para controlar sistemas dinámicos complejos y altamente no lineales. En este trabajo se desarrollan dos tipos de controladores: el primer controlador FLC-1, se basa en lógica difusa clásica y ha sido programado empleando 49 reglas de inferencia que se obtuvieron mediante un análisis empírico. El segundo controlador FLC-2, fue desarrollado con 20 reglas de inferencia gaussianas y sus parámetros fueron optimizados a través de un GA tipo NSGA-II, combinado con lógica difusa. Los dos controladores se utilizaron en modelos numéricos de estructuras tipo pórtico plano y pórtico tridimensional, bajo la acción de distintas aceleraciones de suelo. Los parámetros de entrada que se emplearon fueron los desplazamientos y velocidades de las edificaciones, mientras que el único parámetro de salida fue el voltaje requerido para generar las fuerzas de control en el amortiguador MR. Los resultados obtenidos demuestran que estos dispositivos mejoran significativamente la función de respuesta de las estructuras. Sin embargo, el controlador FLC-2 presenta mejores índices de desempeño para las respuestas RMS de aceleraciones, RMS de desplazamientos y las derivas máximas de piso. (Texto tomado de la fuente)
dc.description.abstractThis thesis presents a methodology to provide control forces using magnetorheological dampers (MR.) It is based on the programming of a Non-Dominated Genetic Sorting Algorithm (NSGA-II) combined with Fuzzy Logic (FL). The MR dampers improve the response capacity of the structures, when they are subjected to the action of dynamic loads. NSGA-II has been used extensively in multi-objective optimization problems, proving to be one of the most efficient algorithms to control complex and highly nonlinear dynamic systems. In this research two types of controllers were developed: the first controller, called FLC-1 is based on classical fuzzy logic and was programmed using 49 inference rules obtained through an empirical analysis. The second controller, called FLC-2 was developed with 20 Gaussian inference rules. Its parameters were optimized using a GA type NSGA-II, combined with fuzzy logic. The two controllers were used in numerical models of plane frame and 3D frame structures under the action of different ground accelerations. The input parameters used were the displacements and velocities of the buildings, while the only output parameter was the command voltage required to generate the control forces in the MR damper. The results obtained show that these mechanisms significantly improve the response function of the structures. However, the FLC-2 controller presents higher decreases in the RMS accelerations, RMS displacements and maximum floor drifts.
dc.format.extentxx, 202 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.titleControl semi-activo de estructuras empleando un algoritmo genético tipo NSGA-II combinado con lógica difusa para administrar fuerzas de control en amortiguadores magnetoreológicos MR
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructuras
dc.contributor.researchgroupCentro de Proyectos e Investigaciones Sísmicas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaAlgoritmos genéticos
dc.description.researchareaDinámica de Estructuras-Control Estructural
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Civil
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesD. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration control using semi-active force generators," 1974.
dc.relation.referencesM. Bitaraf, O. E. Ozbulut, S. Hurlebaus, and L. Barroso, "Application of semi-active control strategies for seismic protection of buildings with MR dampers," Eng. Struct., vol. 32, no. 10, pp. 3040-3047, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.engstruct.2010.05.023
dc.relation.referencesS. Hurlebaus and L. Gaul, "Smart structure dynamics," vol. 20, pp. 255-281, 2006.
dc.relation.referencesJ. T. Yao, "Concept of structural control," J. Struct. Div., pp. 1567-1574, 1972.
dc.relation.referencesD. A. Shook, P. N. Roschke, P. Y. Lin, and C. H. Loh, "GA-optimized fuzzy logic control of a large-scale building for seismic loads," Eng. Struct., vol. 30, no. 2, pp. 436-449, 2008.
dc.relation.referencesD. Gomez, J. Marulanda, and P. Thomson, "Control systems for dynamic loading protection of civil structures," Dyna-Colombia, vol. 75, no. 155, pp. 77-89, 2008.
dc.relation.referencesH. Kim and H. Adeli, "Hybrid control of irregular steel highrise building structures under seismic excitations," Int. J. Numer. Methods Eng., vol. 63, pp. 1757-1774, jul 2005.
dc.relation.referencesL. Gaul, S. Hurlebaus, J. Wirnitzer, and H. Albrecht, "Enhanced damping of lightweight structures by semi-active joints," Acta Mech., vol. 195, no. 1-4, pp. 249-261, 2008.
dc.relation.referencesH. S. Kim and J. W. Kang, "Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm," Eng. Struct., vol. 41, pp. 242-257, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.engstruct.2012.03.038
dc.relation.referencesJ. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched Pareto genetic algorithm for multiobjective optimization," in Proc. rst IEEE Conf. Evol. Comput. IEEE world Congr. Comput. Intell. Ieee, 1994, pp. 82-87.
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, 2002.
dc.relation.referencesY. Liu, F. Gordaninejad, C. A. Evrensel, and G. H. Hitchcock, "<title>Experimental study on fuzzy logic vibration control of a bridge using fail-safe magnetorheological fluid dampers</title>," Smart Struct. Mater. 2001 Smart Syst. Bridg. Struct. Highw., vol. 4330, pp. 281-288, 2001.
dc.relation.referencesJ. Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B. and Yao, "Structural control: Past, present and future," J. engi-neering Mech., pp. 897-971, 1997.
dc.relation.referencesE. S. Blake and E. N. Rappaport, "The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts)," NOAATechnical Memo. NWS TPC-5, vol. 2006, no. August, pp. -45, 2001. [Online]. Available: http://scholar.google.com/scholar?hl=enf&gbtnG=Searchf&gq=intitle: THE+DEADLIEST,+COSTLIEST,+AND+MOST+INTENSE+UNITED+ STATES+TROPICAL+CYCLONES+FROM+1851+TO+2006{#}0
dc.relation.referencesG. Yang, "Large-scale magnetorheological fluid damper for vibration, mitigation: Modeling: Testing and control," Ph. D. Diss. Notre Dame Univ., 2001.
dc.relation.referencesD. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration control using semi-active force generators," 1974.
dc.relation.referencesD. Hrovat, P. Barak, and M. Rabins, "Semi-active versus passive or active tuned mass dampers for structural control," J. Eng. Mech., vol. 109, no. 3, pp. 691-705, 1983.
dc.relation.referencesH. Yoshioka, J. C. Ramallo, and B. F. Spencer Jr, ""Smart" base isolation strategies employing magnetorheological dampers," J. Eng. Mech., vol. 128, no. 5, pp. 540-551, 2002.
dc.relation.referencesY. Y. Okamoto K, Tabei R, Fukushima M, Nosaka S, "NII-Electronic Library Service," Chem. Pharm. Bull., no. 43, p. 2091, 1970. [Online]. Available: http://www.mendeley.com/research/ geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/
dc.relation.referencesE. A. Johnson, R. E. Christenson, and B. F. Spencer, "Semiactive damping of cables with sag," Comput. Civ. Infrastruct. Eng., vol. 18, no. 2, pp. 132-146, 2003.
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "An experimental study of MR dampers for seismic protection," Smart Mater. Struct., vol. 7, no. 5, pp. 693-703, 1998.
dc.relation.referencesS. J. Dyke and B. F. Spencer, "A comparison of semi-active control strategies for the MR damper," Proc. - Intell. Inf. Syst. IIS 1997, no. 6, pp. 580-584, 1997.
dc.relation.referencesS. Dyke, B. Spencer, M. Sain, and J. Carlson, "Seismic Response Reduction Using Magnetorheological Dampers," IFAC Proc. Vol., vol. 29, no. 1, pp. 5530-5535, 1996
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996.
dc.relation.referencesS. J. Dyke, "Acceleration feedback control strategies for active and semi-active control systems: Modeling, algorithm development, and experimental veri cation." 1997.
dc.relation.referencesM. Kerboua, M. Benguediab, A. Megnounif, K. H. Benrahou, and F. Kaoulala, "Semi active control of civil structures, analytical and numerical studies," Phys. Procedia, vol. 55, pp. 301-306, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.phpro. 2014.07.044
dc.relation.referencesM. D. Symans and M. C. Constantinou, "Semi-active control systems for seismic protection of structures: A state-of-the-art review," Eng. Struct., vol. 21, no. 6, pp. 469- 487, 1999.
dc.relation.referencesG. Yang, "MITIGATION: MODELING, TESTING AND CONTROL," Ph.D. dissertation, University of Notre Dame, 2001.
dc.relation.referencesFENG and Q., "Use of a Variable Damper for Hybrid Control of Bridge Response under Earthquake," Proc. U.S. Natl. Work. Struct. Control Res., 1990. [Online]. Available: http://ci.nii.ac.jp/naid/10006922731/en/
dc.relation.referencesL. A. Lara V, "Estudo de Algorítimo de Controle Semi-Ativo Aplicados a Amortecedores," p. 223, 2011.
dc.relation.referencesZ. Akbay and H. M. Aktan, "Actively regulated friction slip devices," in Proc. 6th Can. Conf. Earthq. Engrg, 1991, pp. 367-374.
dc.relation.referencesS. Kannan, H. M. Uras, and H. M. Aktan, "Active control of building seismic response by energy dissipation," Earthq. Eng. Struct. Dyn., vol. 24, no. 5, pp. 747-759, 1995.
dc.relation.referencesF. Sadek and B. Mohraz, "Semiactive control algorithms for structures with variable dampers," J. Eng. Mech., vol. 124, no. 9, pp. 981-990, 1998.
dc.relation.referencesJ. M. Ro esset and J. T. Yao, "State of the Art of Structural Engineering," Perspect. Civ. Eng. Commem. 150th Anniv. Am. Soc. Civ. Eng., no. July, pp. 131-141, 2003
dc.relation.referencesS. K. Bhattacharyya, "Tuned sloshing damper in response control of tall building structure," Proc. Indian Natl. Sci. Acad., vol. 82, no. 2, pp. 223-231, 2016.
dc.relation.referencesM. A. Haroun, J. A. Pires, and A. Y. J. Won, "Active ori ce control in hybrid liquid column dampers," in Proc. rst world Conf. Struct. Control, vol. 1, 1994, pp. 69-78.
dc.relation.referencesJ. Y. K. Lou, L. D. Lutes, and J. J. Li, "Active tuned liquid damper for structural control," in Proc. 1st World Conf. Struct. Control, 1994, pp. 70-79.
dc.relation.referencesS. K. Yalla, A. Kareem, and J. C. Kantor, "Semi-active tuned liquid column dampers for vibration control of structures," Eng. Struct., vol. 23, no. 11, pp. 1469-1479, 2001.
dc.relation.referencesB. F. Spencer Jr, G. Yang, J. D. Carlson, and M. K. Sain, "Smart dampers for seismic protection of structures: a full-scale study," in Proc. Second world Conf. Struct. Control, vol. 1. Kyoto, 1998, pp. 417-426.
dc.relation.referencesH. P. Gavin, R. D. Hanson, and F. E. Filisko, "Electrorheological dampers, part i: Analysis and design," J. Appl. Mech. Trans. ASME, vol. 63, no. 3, pp. 669-675, 1996.
dc.relation.referencesH. P. Gavin, R. D. Hanson, and F. E. Filisko, "Electrorheological dampers, Part II: Testing and modeling," Am. Soc. Mech. Eng., vol. 63, no. September 1996, 1996.
dc.relation.referencesN. Makris and A. Whittaker, "Seismic protection with fluid dampers and the issue of viscous heating," no. July 1998, 2016.
dc.relation.referencesN. H. McClamroch, D. S. Oritz, H. P. Gavin, and R. D. Hanson, "Electrorheological dampers and semi-active structural control," in Proc. 1994 33rd IEEE Conf. Decis. Control, vol. 1. IEEE, 1994, pp. 97-102.
dc.relation.referencesH. P. Gavin, Y. D. Hose, and R. D. Hanson, "Design and control of electrorheological dampers," in Proc. 1st World Conf. Struct. Control, 1994, pp. 83-92.
dc.relation.referencesN. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali, "Bouc-Wen model parameter identi cation for a MR fluid damper using computationally e cient GA," ISA Trans., vol. 46, no. 2, pp. 167-179, 2007.
dc.relation.referencesR. Jacob, "The magnetic fluid clutch," Trans. Am. Inst. Electr. Eng., vol. 67, no. 2, pp. 1308-1315, 1948.
dc.relation.referencesY.-Q. Guo, W.-H. Xie, and X. Jing, "Study on Structures Incorporated With MR Damping Material Based on PSO Algorithm," Front. Mater., vol. 6, p. 37, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fmats.2019.00037
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996.
dc.relation.referencesK. C. Schurter and P. N. Roschke, "Neuro-fuzzy control of structures using magnetorheological dampers," Proc. Am. Control Conf., vol. 2, no. October, pp. 1097-1102, 2001.
dc.relation.referencesD. H. Wang and W. H. Liao, "Modeling and control of magnetorheological fluid dampers using neural networks," Smart Mater. Struct., vol. 14, no. 1, pp. 111-126, 2004. [Online]. Available: http://dx.doi.org/10.1088/0964-1726/14/1/011
dc.relation.referencesN. D. Nordin, A. G. Muthalif, and M. K. M Razali, "Control of transtibial prosthetic limb with magnetorheological fluid damper by using a fuzzy PID controller," J. Low Freq. Noise Vib. Act. Control, vol. 37, no. 4, pp. 1067-1078, 2018.
dc.relation.referencesJ. B. Jun, S. Y. Uhm, J. H. Ryu, and K. D. Suh, "Synthesis and characterization of monodisperse magnetic composite particles for magnetorheological fluid materials," Colloids Surfaces A Physicochem. Eng. Asp., vol. 260, no. 1-3, pp. 157-164, 2005.
dc.relation.referencesM. Aslam, Y. Xiong-Liang, and D. Zhong-Chao, "Review of magnetorheological (MR) fluids and its applications in vibration control," J. Mar. Sci. Appl., vol. 5, no. 3, pp. 17-29, 2006.
dc.relation.referencesA. G. Olabi and A. Grunwald, "Design and application of magneto-rheological fluid," Mater. Des., vol. 28, no. 10, pp. 2658-2664, 2007.
dc.relation.referencesM. R. Jolly, J. W. Bender, and J. D. Carlson, "Properties and Applications of Commercial Magnetorheological Fluids," J. Intell. Mater. Syst. Struct., vol. 10, no. 1, pp. 5-13, 1999.
dc.relation.references"Magneto-Rheological (MR) Fluid." [Online]. Available: https://www.lord. com/products-and-solutions/active-vibration-control/industrial-suspension-systems/ magneto-rheological-mr- fluid
dc.relation.referencesE. Gedik, H. Kurt, Z. Recebli, and C. Balan, "Two-dimensional CFD simulation of magnetorheological fluid between two xed parallel plates applied external magnetic eld," Comput. Fluids, vol. 63, pp. 128-134, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.comp fluid.2012.04.011
dc.relation.referencesW. W. Chooi and S. Olutunde Oyadiji, "Mathematical modeling, analysis, and design of magnetorheological (MR) dampers," J. Vib. Acoust. Trans. ASME, vol. 131, no. 6, pp. 0 610 021-06 100 210, 2009.
dc.relation.referencesJ. P. Hartnett and M. Kostic, "Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts," in Adv. heat Transf. Elsevier, 1989, vol. 19, pp. 247-356.
dc.relation.referencesH. A. Barnes, J. F. Hutton, and K. Walters, "An introduction to rheology". Elsevier, 1989, vol. 3.
dc.relation.referencesA. Yahia and K. H. Khayat, "Analytical models for estimating yield stress of highperformance pseudoplastic grout," Cem. Concr. Res., vol. 31, no. 5, pp. 731-738, 2001.
dc.relation.referencesC. F. Ferraris, "Measurement of the rheological properties of high performance concrete: state of the art report," J. Res. Natl. Inst. Stand. Technol., vol. 104, no. 5, p. 461, 1999.
dc.relation.referencesS. A. Khan, A. Suresh, and N. SeethaRamaiah, "Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode," Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1547-1556, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.mspro.2014.07.136
dc.relation.referencesJ. D. Carlson and B. F. Spencer Jr, "Magnetorheological Fluid Dampers: Scalability and Design Issue for Application to Dynamic Hazard Mitigation. in workshop on structural control. 1996," Hong Kong, China. AFP, vol. 53.
dc.relation.referencesH. Fujitani, Y. Shiozaki, T. Hiwatashi, K. Hata, T. Tomura, H. Sodeyama, and S. Soda, "A research and development of smart building structures by magneto-rheological damper," in Adv. Build. Technol. Elsevier, 2002, pp. 473-480.
dc.relation.referencesC. M. D. Wilson, "Fuzzy Control of Magnetorheological Dampers for Vibration Reduction of Seismically Excited Structures," 2005.
dc.relation.referencesR. C. Ehrgott and S. F. Masri, "Modeling the oscillatory dynamic behaviour of electrorheological materials in shear," Smart Mater. Struct., vol. 1, no. 4, p. 275, 1992.
dc.relation.referencesC.-C. Chang and P. Roschke, "Neural network modeling of a magnetorheological damper," J. Intell. Mater. Syst. Struct., vol. 9, no. 9, pp. 755-764, 1998.
dc.relation.referencesD.-H. Wang and W.-H. Liao, "Neural network modeling and controllers for magnetorheological fluid dampers," in 10th IEEE Int. Conf. Fuzzy Syst. No. 01CH37297), vol. 3. IEEE, 2001, pp. 1323-1326.
dc.relation.referencesX. Song, M. Ahmadian, and S. C. Southward, "Modeling magnetorheological dampers with application of nonparametric approach," J. Intell. Mater. Syst. Struct., vol. 16, no. 5, pp. 421-432, 2005.
dc.relation.referencesR. Stanway, J. L. Sproston, and N. G. Stevens, "Non-linear identi cation of an electrorheological vibration damper," IFAC Proc. Vol., vol. 18, no. 5, pp. 195-200, 1985.
dc.relation.referencesR. Stanway, J. L. Sproston, and N. G. Stevens, "Non-linear modelling of an electro rheological vibration damper," J. Electros- tat., vol. 20, no. 2, pp. 167-184, 1987.
dc.relation.referencesB. F. Spencer and M. K. Sain, "Controlling buildings: a new frontier in feedback," IEEE Control Syst. Mag., vol. 17, no. 6, pp. 19-35, 1997.
dc.relation.referencesD. R. Gamota and F. E. Filisko, "Dynamic mechanical studies of electrorheological materials: Moderate frequencies," J. Rheol. (N. Y. N. Y)., vol. 35, no. 3, pp. 399-425, 1991.
dc.relation.referencesJ. S. BF, S. J. Dyke, M. K. Sain, and J. D. Carlson, "Phenomenological model of a magnetorheological damper," J. Eng. Mech., vol. 123, no. 3, pp. 230-238, 1997.
dc.relation.referencesA. M. Halabian, M. M. Zafarani, M. S. Soheilipour, and S. Behbahani, "Optimal semiactive control of seismically excited MR-equipped nonlinear buildings using FLC and multi-objective NSGAII algorithms considering ground excitations," J. Civ. Struct. Heal. Monit., vol. 6, no. 3, pp. 561-586, 2016.
dc.relation.referencesJ. N. Yang, S. Lin, and F. Jabbari, "H2-based control strategies for civil engineering structures," J. Struct. Control, vol. 10, no. 3-4, pp. 205-230, 2003.
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996. [Online]. Available: http://dx.doi.org/10.1088/0964-1726/5/5/006
dc.relation.referencesW. L. Brogan, "Modern control theory," 1991.
dc.relation.referencesZ. Ying, Y.-Q. Ni, and J. M. Ko, "Nonclipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers," in Smart Struct. Mater. 2002 Smart Syst. Bridg. Struct. Highw., vol. 4696. International Society for Optics and Photonics, 2002, pp. 209-218.
dc.relation.referencesJ. N. Yang, J. C. Wu, and A. K. Agrawal, "Sliding mode control for seismically excited linear structures," J. Eng. Mech., vol. 121, no. 12, pp. 1386-1390, 1995.
dc.relation.referencesJ. Zhang and P. N. Roschke, "Active control of a tall structure excited by wind," J. Wind Eng. Ind. Aerodyn., vol. 83, no. 1-3, pp. 209-223, 1999.
dc.relation.referencesD. Dubois and H. Prade, "Operations on fuzzy numbers," Int. J. Syst. Sci., vol. 9, no. 6, pp. 613-626, 1978.
dc.relation.referencesM. Mizumoto and K. Tanaka, "Fuzzy sets and type 2 under algebraic product and algebraic sum," Fuzzy Sets Syst., vol. 5, no. 3, pp. 277-290, 1981.
dc.relation.referencesA. Norwich and I. B. Turksen, "A model for the measurement of membership and the consequences of its empirical implementation," Fuzzy sets Syst., vol. 12, no. 1, pp. 1-25, 1984.
dc.relation.referencesM.-G. Chun, K.-C. Kwak, and J.-W. Ryu, "Application of ANFIS for coagulant dosing process in a water puri cation plant," in FUZZ-IEEE'99. 1999 IEEE Int. Fuzzy Syst. Conf. Proc. (Cat. No. 99CH36315), vol. 3. IEEE, 1999, pp. 1743-1748.
dc.relation.referencesS. Yasunobu and T. Hasegawa, "Evaluation of an automatic con-tainer crane operation sys-tem based on predictive fuzzy control," Control Theory Adv. Technol., vol. 2, no. 3, pp. 419-432, 1986.
dc.relation.referencesJ. A. Bernard, "Use of a rule-based system for process control," IEEE Control Syst. Mag., vol. 8, no. 5, pp. 3-13, 1988.
dc.relation.referencesR. Guclu and H. Yazici, "Fuzzy logic control of a non-linear structural system against earthquake induced vibration," J. Vib. Control, vol. 13, no. 11, pp. 1535-1551, 2007.
dc.relation.referencesC. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller|Part I," IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 404-418, 1990.
dc.relation.referencesM. Gen and R. Cheng, "Genetic algorithms and engineering optimization". John Wiley & Sons, 1999, vol. 7.
dc.relation.referencesK. Mittal, A. Jain, K. S. Vaisla, O. Castillo, and J. Kacprzyk, "A comprehensive review on type 2 fuzzy logic applications: Past, present and future," Eng. Appl. Artif. Intell., vol. 95, no. August, p. 103916, 2020. [Online]. Available: https://doi.org/10.1016/j.engappai.2020.103916
dc.relation.referencesJ. M. Mendel, "Uncertainty, fuzzy logic, and signal processing," Signal Processing, vol. 80, no. 6, pp. 913-933, 2000. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0165168400000116
dc.relation.referencesO. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, "Type-2 Fuzzy Logic: Theory and Applications," in 2007 IEEE Int. Conf. Granul. Comput. (GRC 2007), 2007, p. 145.
dc.relation.referencesMathWorks, "Foundations of Fuzzy Logic," 2021. [Online]. Available: https: //ww2.mathworks.cn/help/fuzzy/foundations-of-fuzzy-logic.html
dc.relation.referencesJ. Harris, F"uzzy logic applications in engineering science". Springer Science & Business Media, 2005, vol. 29.
dc.relation.referencesG. J. Klir and B. Yuan, "Fuzzy sets and fuzzy logic: theory and applications," Possi- bility Theory versus Probab. Theory, vol. 32, no. 2, pp. 207-208, 1996.
dc.relation.referencesG. Chen, T. T. Pham, and N. M. Boustany, "Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems," Appl. Mech. Rev., vol. 54, no. 6, pp. B102|-B103, 2001.
dc.relation.referencesY. Liu, F. Gordaninejad, C. A. Evrensel, and G. H. Hitchcock, "Experimental study on fuzzy logic vibration control of a bridge using fail-safe magnetorheological fluid dampers," in Proc.SPIE, vol. 4330, jul 2001. [Online]. Available: https: //doi.org/10.1117/12.434135
dc.relation.referencesL. A. Lara-Valencia, Y. Valencia-Gonzalezf, and J. L. V. De Brito, "Use of fuzzy logic for the administration of a structural control system based on magnetorheological dampers," Rev. Fac. Ing., vol. 1, no. 74, pp. 151-164, 2015.
dc.relation.referencesH.-J. Jung, B. F. Spencer, and I.-W. Lee, "Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers," J. Struct. Eng., vol. 129, no. 7, pp. 873-883, 2003.
dc.relation.referencesB. L. Zhang, Q. L. Han, and X. M. Zhang, "Recent advances in vibration control of offshore platforms," Nonlinear Dyn., vol. 89, no. 2, pp. 755-771, 2017
dc.relation.referencesM. Salari and E. Spacone, "Analysis of Steel-Concrete Composite Frames with Bond- Slip Steel-Concrete Composite Frames," J. Struct. Eng., vol. 9445, no. November, 2001.
dc.relation.referencesS. Pourzeynali and M. Zarif, "Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms," J. Sound Vib., vol. 311, no. 3, pp. 1141-1160, 2008. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0022460X07008085
dc.relation.referencesJ. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in Proc. rst Int. Conf. Genet. algorithms their Appl. 1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.
dc.relation.referencesD. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning. Addison," Reading, 1989.
dc.relation.referencesC. M. Fonseca and P. J. Fleming, "Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization," Proc. 5th Int. Conf. Genet. Algorithms, vol. 1, no. October, pp. 416{423, 1993. [Online]. Available: http://pdf.aminer.org/000/310/607/geneticf galgorithmsf gforf g multiobjectivef goptimizationf gformulationdiscussionf gandf ggeneralization.pdf
dc.relation.referencesE. Bonabeau, D. d. R. D. F. Marco, M. Dorigo, G. Théraulaz, G. Theraulaz, and Others, "Swarm intelligence: from natural to arti cial systems". Oxford university press, 1999, no. 1.
dc.relation.referencesS. Katoch, S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: past, present, and future," Multimed. Tools Appl., pp. 1{36, 2020.
dc.relation.referencesM. Mitchell, S. Fe, and S. Forrest, "Arti cial Life 1 Introduction 2 Overview of Genetic Algorithms," Optimization, pp. 1-28, 1993.
dc.relation.referencesG. E. Box, "Evolutionary operation: A method for increasing industrial productivity," Evol. Comput. Foss. Rec., vol. 6, no. 2, pp. 121-141, 1998.
dc.relation.referencesW. W. Bledsoe, "The use of biological concepts in the analytical study of systems," in ORSA-TIMS Natl. Meet., 1961.
dc.relation.referencesH. J. Bremermann and Others, "Optimization through evolution and recombination," Self-organizing Syst., vol. 93, p. 106, 1962.
dc.relation.referencesL. J. Fogel, A. J. Owens, and M. J. Walsh, "Arti cial intelligence through simulated evolution," 1966.
dc.relation.referencesJ. H. Holland and Others, "Adaptation in natural and arti cial systems: an introductory analysis with applications to biology, control, and arti cial intelligence". MIT press, 1992.
dc.relation.referencesH. Chen, R. Ooka, and S. Kato, "Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction," Build. Environ., vol. 43, no. 1, pp. 18-30, 2008.
dc.relation.referencesA. Ghaheri, S. Shoar, M. Naderan, and S. S. Hoseini, "The applications of genetic algorithms in medicine," Oman Med. J., vol. 30, no. 6, p. 406, 2015.
dc.relation.referencesC. W. Padgett and A. Saad, "Genetic algorithms in chemistry: Success or failure is in the genes," in Appl. Soft Comput. Springer, 2009, pp. 181-189.
dc.relation.referencesZ. Michalewicz, "Genetic algorithms+ data structures= evolution programs." Springer Science & Business Media, 2013.
dc.relation.referencesD. Liu, "Mathematical modeling analysis of genetic algorithms under schema theorem," J. Comput. Methods Sci. Eng., vol. 19, no. S1, pp. S131-S137, 2019.
dc.relation.referencesJ. Nicklow, P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-hilton, M. Karamouz, B. Minsker, A. Ostfeld, A. Singh, and E. Zechman, "State of the Art for Genetic Algorithms and Beyond in Water," J. Water Resour. Plann. Manag., vol. 136, no. August, pp. 412-432, 2010.
dc.relation.referencesS. Kobayashi, "Foundations of genetic algorithms and its applications," Commun. ORSJ, vol. 45, pp. 256-261, 1993.
dc.relation.referencesR. Cheng, M. Gen, and Y. Tsujimura, "A tutorial survey of job-shop scheduling problems using genetic algorithms|I. Representation," Comput. Ind. Eng., vol. 30, no. 4, pp. 983-997, 1996.
dc.relation.referencesI. Rechenberg, "Evolutionsstrategien, in Simulationsmethoden der Medizin und Biol". Springer, 1978, pp. 83-114.
dc.relation.referencesR. A. Caruana, L. J. Eshelman, and J. D. Schaffer, "Representation and hidden bias II: Eliminating de ning length bias in genetic search via shuffe crossover," in Proc. 11th Int. Jt. Conf. Artif. Intell. 1, 1989, pp. 750-755.
dc.relation.referencesL. T. Leng, "Guided genetic algorithm," Univ. Essex, A thesis Submitt. degree Ph. D Comput. Sci. Dep. Comput. Sci., 1999.
dc.relation.referencesS. N. Sivanandam and S. N. Deepa, "Genetic algorithms, in Introd. to Genet. algo- rithms". Springer, 2008, pp. 15-37.
dc.relation.referencesB. R. Fox and M. B. McMahon, "Genetic operators for sequencing problems," in Found. Genet. algorithms. Elsevier, 1991, vol. 1, pp. 284-300.
dc.relation.referencesS. Jiang, K.-S. Chin, L. Wang, G. Qu, and K. L. Tsui, "Modi ed genetic algorithmbased feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department," Expert Syst. Appl., vol. 82, pp. 216-230, 2017.
dc.relation.referencesK. Jebari and M. Madia , "Selection methods for genetic algorithms," Int. J. Emerg. Sci., vol. 3, no. 4, pp. 333-344, 2013.
dc.relation.referencesL. Araujo and C. Cervigón, Algoritmos evolutivos: un enfoque práctico. Ra-Ma, 2009.
dc.relation.referencesC.-Y. Lee, "Entropy-Boltzmann selection in the genetic algorithms," IEEE Trans. Syst. Man, Cybern. Part B, vol. 33, no. 1, pp. 138-149, 2003.
dc.relation.referencesA. Hussain, Y. S. Muhammad, M. Nauman Sajid, I. Hussain, A. Mohamd Shoukry, and S. Gani, "Genetic algorithm for traveling salesman problem with modi ed cycle crossover operator," Comput. Intell. Neurosci., vol. 2017, 2017.
dc.relation.referencesD. A. Van Veldhuizen and G. B. Lamont, "Multiobjective evolutionary algorithms: analyzing the state-of-the-art." Evol. Comput., vol. 8, no. 2, pp. 125-147, 2000.
dc.relation.referencesM. T. Emmerich and A. H. Deutz, "A tutorial on multiobjective optimization: fundamentals and evolutionary methods," Nat. Comput., vol. 17, no. 3, pp. 585-609, 2018.
dc.relation.referencesC. A. C. Coello, "A comprehensive survey of evolutionary-based multiobjective optimization techniques," Knowl. Inf. Syst., vol. 1, no. 3, pp. 269-308, 1999.
dc.relation.referencesF. Kursawe, "A variant of evolution strategies for vector optimization," in Int. Conf. Parallel Probl. Solving from Nat. Springer, 1990, pp. 193-197.
dc.relation.referencesC. M. Fonseca, P. J. Fleming, and Others, "Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization." in Icga, vol. 93, no. July. Citeseer, 1993, pp. 416-423.
dc.relation.referencesM. Akbari, P. Asadi, M. K. B. Givi, and G. Khodabandehlouie, "Arti ficial neural net- work and optimization, 2014.
dc.relation.referencesJ. B. Kollat and P. M. Reed, "Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design," Adv. Water Resour., vol. 29, no. 6, pp. 792-807, 2006.
dc.relation.referencesC. Peñuela and M. Granada Echeverri, "Optimización multiobjetivo usando un algoritmo genético y un operador elitista basado en un ordenamiento no-dominado (nsga-ii)." Sci. Tech., vol. 3, no. 35, pp. 175-180, 2007.
dc.relation.referencesThe Center for Engineering Strong Motion Data (CESMD), "Strong-Motion Data Set." [Online]. Available: https://www.strongmotioncenter.org/cgi-bin/CESMD/archive.pl
dc.relation.referencesD. A. Caicedo, "A comparative analysis on the seismic behavior of buildings using inerter-based devices: Tuned Mass Damper Inerter (TMDI) and Tuned Inerter Damper (TID)." 2020.
dc.relation.referencesY. P. Wang, W. H. Liao, and C. L. Lee, "A state-space approach for dynamic analysis of sliding structures," Eng. Struct., vol. 23, no. 7, pp. 790-801, 2001.
dc.relation.referencesA. K. Chopra, "Dinámica de estructuras," México, 2014.
dc.relation.referencesP. Paultre, "Dynamics of structures". John Wiley & Sons, 2013.
dc.relation.referencesF. Y. Cheng, "Matrix analysis of structural dynamics: applications and earthquake en- gineering". CRC Press, 2017, vol. 1.
dc.relation.referencesS. M. Zahrai and H. Salehi, "Semi-active seismic control of mid-rise structures using magneto-rheological dampers and two proposed improving mechanisms," Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 38, no. C1, pp. 21-36, 2014.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEstructuras - Amortiguadores
dc.subject.lembShock absorbers
dc.subject.lembAmortiguadores
dc.subject.lembSistemas dinámicos complejos
dc.subject.lembComplex dynamical systems
dc.subject.proposalControl estructural
dc.subject.proposalAlgoritmos genéticos
dc.subject.proposalLógica difusa
dc.subject.proposalAmortiguadores magnetoreológicos
dc.subject.proposalStructural control
dc.subject.proposalGenetic algorithms
dc.subject.proposalFuzzy logic
dc.subject.proposalMagnetorheological dampers
dc.title.translatedSemi-active control structures using a NSGA-II genetic algorithm combined with fuzzy logic to provide control forces in magnetorheological (MR) dampers
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Ingeniería Civil


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito