Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGrajales Buitrago, Marco Antonio
dc.contributor.advisorCamacho Rodríguez, Bernardo Armando
dc.contributor.advisorAngarita de Botero, María del Pilar
dc.contributor.advisorSánchez Pedraza, Ricardo
dc.contributor.authorBurbano Gutiérrez, Juan Felipe
dc.date.accessioned2022-02-01T19:45:25Z
dc.date.available2022-02-01T19:45:25Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80841
dc.descriptionilustraciones
dc.description.abstractLa infección por SARSCoV-2 causa la enfermedad por coronavirus del 2019 (COVID-19), considerada como pandemia, con complicaciones hematológicas derivadas de síndromes hiperinflamatorios y autoinmunidad en pacientes de alto riesgo y ancianos que desarrollan una infección grave por COVID-19. Una de las complicaciones documentadas es la anemia hemolítica autoinmune (AHAI), que está mediada por la emergencia de autoanticuerpos contra los eritrocitos del huésped. El diagnóstico de AHAI a menudo no se realiza, lo que conduce a resultados clínicos deficientes debido a anemia, disfunción endotelial e hipoperfusión tisular. Se realizó un estudio observacional de corte transversal por período para evaluar la coocurrencia de anemia y prueba de antiglobulina directa (PAD) positiva, en pacientes hospitalizados por COVID-19 en dos hospitales de Bogotá, Colombia, del 18 de marzo al 29 de abril. 2021. La asociación sustantiva entre anemia y PAD positiva se estimó por medio del coeficiente de agrupamiento o de cluster; Las variables de confusión que se sabe están asociadas con la anemia y PAD (p. ej., inflamación, gravedad de COVID-19, sangrado mayor y tratamiento con antibióticos) se controlaron mediante regresión logística multivariable. Se evaluaron 185 pacientes, 84 (45,4%) eran mujeres y la edad media fue 59,7 ± 14,7. Cien (54,1%) ingresaron a la unidad de cuidados intensivos, 67 (36,2%) con disfunción multiorgánica (medida por qSOFA ≥2). La prevalencia de anemia y PAD positiva fue del 19,4% (intervalo de confianza [IC] del 95%, 13,8 a 25,2). El coeficiente de cluster fue de 1,55, lo que demuestra una asociación sustancial no coincidencial. La disfunción multiorgánica, la PAD positiva y la terapia con antibióticos se asociaron significativamente con anemia durante la hospitalización (OR: 5,11 (IC 95%: 2,46 - 10,60), 2,72 (IC 95%: 1,32 – 5,60) y 2,48 (IC 95% 1,10 - 5,57), respectivamente. En conclusión, la coocurrencia de anemia y PAD positiva en pacientes hospitalizados con infección por SARS-CoV-2 no es una coincidencia y se asocia a insuficiencia multiorgánica y terapia con antibióticos. Para el médico, la anemia de nueva aparición después o durante la hospitalización debido a un COVID-19 grave debe despertar sospechas de AHAI. (texto tomado de la fuente)
dc.description.abstractHematologic complications derived from hyperinflammatory syndromes and autoimmunity can be seen in high-risk and elderly patients who develop severe COVID-19 infection. One of the reported complications is autoimmune hemolytic anemia (AIHA), which is mediated by the emergency of autoantibodies against host erythrocytes. The diagnosis of AIHA is often unrecognized leading to poor clinical outcomes due to anemia, endothelial dysfunction, and tissue hypoperfusion. Herein, we conducted a cross-sectional, observational study to evaluate the prevalence of anemia and a positive Direct Antiglobulin Test (DAT), among hospitalized patients with COVID-19 in two hospitals in Bogota, Colombia during COVID surge from March 18 to April 29, 2021. The association between anemia and a positive DAT was estimated by cluster coefficient; confounding variables known to be associated with anemia (eg, inflammation, COVID-19 severity, mayor bleeding and antibiotic therapy) were controlled by multivariate logistic regression. One hundred and eighty-five patients were evaluated, 84 (45,4%) were female, and the mean age was 59,7 ± 14,7. One hundred (54,1%) were admitted to intensive care unit, 67 (36,2%) with multi-organ dysfunction (measured by qSOFA ≥2). The prevalence of anemia and positive DAT was 19.4% (95% confidence interval [CI], 13.8 to 25.2). Cluster coefficient was 1.55 showing a substantive non coincidental association. Multi-organic dysfunction, positive DAT and antibiotic therapy were significantly associated with anemia that occurred during hospitalization (OR:5,11 (95% CI 2,46 – 10,60), 2,72 (95% CI 1,32 – 5,60) and 2,48 (95% CI 1,10 – 5,57), respectively In summary, the prevalence of anemia and positive DAT in hospitalized patients with SARS-CoV-2 infection is not coincidental and it is associated to multiple organ failure and antibiotic therapy. For the clinician, new onset anemia following hospitalization due to severe COVID-19 should raise suspicion for AIHA.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.otherInfecciones por Coronavirus
dc.subject.otherCoronavirus Infections
dc.subject.otherAnemia
dc.subject.otherAnemia Hemolítica Autoinmune
dc.subject.otherAnemia, Hemolytic, Autoimmune
dc.titleCoocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
dc.typeTrabajo de grado - Especialidad Médica
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Hematología
dc.contributor.researcherAmador Rodríguez, Mónica Patricia
dc.contributor.researcherGaviria García, Paula Andrea
dc.contributor.researcherGrass Guáqueta, Jeser Santiago
dc.contributor.researcherDeantonio Paéz, Danna Valentina
dc.description.degreelevelEspecialidades Médicas
dc.description.degreenameEspecialista en Hematología
dc.description.researchareaHematología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Medicina Interna
dc.publisher.facultyFacultad de Medicina
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedLaReferencia
dc.relation.references1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/
dc.relation.references2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
dc.relation.references3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.104362
dc.relation.references4. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc2010472
dc.relation.references5. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191
dc.relation.references6. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575
dc.relation.references7. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794
dc.relation.references8. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.2020006695
dc.relation.references9. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.2020007483
dc.relation.references10. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-3
dc.relation.references11. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.16883
dc.relation.references12. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-3
dc.relation.references13. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.17023
dc.relation.references14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa2001017
dc.relation.references15. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B2000083
dc.relation.references16. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.12458
dc.relation.references17. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9
dc.relation.references18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-5
dc.relation.references19. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa1249
dc.relation.references20. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation
dc.relation.references21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504
dc.relation.references22. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.102581
dc.relation.references23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
dc.relation.references24. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp2009249
dc.relation.references25. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.5669
dc.relation.references26. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077
dc.relation.references27. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp2009575
dc.relation.references28. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648
dc.relation.references29. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-0
dc.relation.references30. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283
dc.relation.references31. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme2025501
dc.relation.references32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.2003
dc.relation.references33. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.108427
dc.relation.references34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9
dc.relation.references35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.022
dc.relation.references36. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-9
dc.relation.references37. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.991844
dc.relation.references38. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-x
dc.relation.references39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.2020200463
dc.relation.references40. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc6156
dc.relation.references41. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.103548
dc.relation.references42. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954
dc.relation.references43. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.0000000000000045
dc.relation.references44. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-7
dc.relation.references45. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.1521722
dc.relation.references46. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.100648
dc.relation.references47. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.1138219
dc.relation.references48. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.008
dc.relation.references49. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.0000000000000459
dc.relation.references50. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp1900554
dc.relation.references51. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.00590
dc.relation.references52. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-3
dc.relation.references53. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.382
dc.relation.references54. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-212
dc.relation.references55. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.25212
dc.relation.references56. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/21006651
dc.relation.references57. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RS
dc.relation.references58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452.
dc.relation.references59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-9
dc.relation.references60. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.28382
dc.relation.references61. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.16846
dc.relation.references62. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.16786
dc.relation.references63. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-9
dc.relation.references64. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.015
dc.relation.references65. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.73
dc.relation.references66. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.101606
dc.relation.references67. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/0471445428
dc.relation.references68. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
dc.relation.references69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S
dc.relation.references70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/51976
dc.relation.references71. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html
dc.relation.references72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s001270200001
dc.relation.references73. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.018
dc.relation.references74. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.12091
dc.relation.references75. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762
dc.relation.references76. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.1881225
dc.relation.references77. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.5764
dc.relation.references78. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa1470
dc.relation.references79. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.053
dc.relation.references80. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 1715791
dc.relation.references81. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.005
dc.relation.references82. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.004
dc.relation.references83. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.005
dc.relation.references84. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 468
dc.relation.references85. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.14478
dc.relation.references86. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x
dc.relation.references87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794
dc.relation.references88. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.11495
dc.relation.references89. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc3608
dc.relation.references90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078
dc.relation.references90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078
dc.relation.references92. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-7
dc.relation.references93. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506
dc.relation.references94. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/13814789609162146
dc.relation.references95. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.018
dc.relation.references96. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCOVID-19
dc.subject.proposalSARS-CoV-2
dc.subject.proposalAnemia
dc.subject.proposalAnemia hemolítica autoinmune
dc.subject.proposalPrueba antiglobulínica directa
dc.subject.proposalAutoimmune hemolytic anemia
dc.subject.proposalDirect antiglobulin test
dc.title.translatedPrevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito