Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSaavedra Trujillo, Carlos Humberto
dc.contributor.advisorDíaz Rojas, Jorge Augusto
dc.contributor.authorParra González, Daniel Sebastián
dc.date.accessioned2022-02-03T20:46:25Z
dc.date.available2022-02-03T20:46:25Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80871
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLos pacientes con neoplasias hematológicas y neutropenia febril postquimioterapia podrían presentar alteraciones fisiológicas que lleven a cambios en la farmacocinética (PK) de los fármacos comparado a individuos sin cáncer o neutropenia. Estos cambios, en la PK de antibióticos, podrían resultar en fallos terapéuticos y esto a su vez en hospitalizaciones prolongadas, empeoramiento en la severidad de la infección e inclusive en la muerte. En este estudio, se desarrollaron modelos de PK poblacional para cefepime (FEP) y vancomicina (VAN) en el tratamiento empírico de infecciones en pacientes con neutropenia post-quimioterapia. La farmacocinética de FEP fue descrita por un modelo de dos compartimentos con aclaramiento dependiente del nivel de creatinina sérica (SCR), variabilidad interindividual en todos los parámetros y variabilidad residual con una función aditiva. Por otra parte, la farmacocinética de VAN fue descrita con un modelo de dos compartimentos con aclaramiento dependiente del aclaramiento renal de creatinina (ClCr), variabilidad interindividual en todos los parámetros, correlación entre los parámetros V1 y V2 y una variabilidad residual con funciones aditivas dependientes del método de determinación de VAN. Mediante simulaciones de Monte Carlo se encontró que para FEP, el alcance de los objetivos PK/PD (60%fT>MIC y 100%fT>MIC) es muy dependiente de la duración de infusión, así como del efecto de SCR. Para VAN se encuentra que el alcance del indicador AUC/MIC ≥ 400 se ve afectado por cambios en la dosis diaria total y la prolongación de la duración de infusión no afecta el PTA. Se realizó una comparación entre objetivos dependientes de AUC vs Cmin, y se encuentró que el último no es un predictor adecuado del primero. (Texto tomado de la fuente).
dc.description.abstractPatients with haematological malignancies and post-chemotherapy febrile neutropenia may present with physiological alterations that could lead to changes in the pharmacokinetics (PK) of drugs compared to individuals without cancer or neutropenia. These changes, in the PK of antibiotics, could result in therapeutic failures and this in turn in prolonged hospitalizations, worsening the severity of infection and even death. In this study, population PK models were developed for cefepime (FEP) and vancomycin (VAN) in the empirical treatment of infections in patients with post-chemotherapy neutropenia. FEP pharmacokinetics was described by a two-compartment model with clearance dependent on serum creatinine level (SCR), interindividual variability in all parameters, and residual variability with an additive function. On the other hand, the PK of VAN was described with a two-compartment model with clearance dependent on renal creatinine clearance (CrCl), interindividual variability in all parameters, correlation between parameters V1 and V2, and a residual variability with additive functions dependent on the VAN determination method. Through Monte Carlo simulations, it was found that the achievement of PK/PD objectives (60%fT>MIC and 100%fT>MIC) for FEP is highly dependent on the duration of the infusion, as well as the effect of SCR. It was found that the achievement of the PK/PD objective AUC/MIC ≥ 400 with VAN was affected by changes in the total daily dose and the prolongation of the duration of the infusion does not affect the PTA. A comparison was made between targets relying on AUC or Cmin, and it was found that the latter is not an adequate predictor of the former.
dc.description.sponsorshipLos datos analizados en este proyecto fueron obtenidos con el apoyo del Instituto Nacional de Cancerología con financiamiento para el proyecto, de recursos de Inversión Nación, identificado con el código SAP C41030110-012 y de la Universidad Nacional de Colombia en el marco del convenio interinstitucional entre dos instituciones públicas del estado.
dc.format.extentxxi, 188 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleFarmacocinética poblacional en el manejo empírico de infecciones en pacientes con neoplasias hematológicas y neutropenia febril pos-quimioterapia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.description.notesIncluye anexos
dc.contributor.researchgroupGrupo de Investigacion en Enfermedades Infecciosas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Farmacología
dc.description.methodsModelamiento mediante regresión no lineal de efectos mixtos y simulación mediante métodos de Monte Carlo de datos farmacocinéticos de cefepime y vancomicina en una muestra de pacientes con neutropenia febril post-quimioterapia.
dc.description.researchareaResistencia antimicrobiana
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesAarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991;32(6):669–670.
dc.relation.referencesFood and Drug Administration (FDA). Guidance for Industry Population Pharmacokinetics. 1st ed. February. Rockville, MD: Food and Drug Administration (FDA); 1999.
dc.relation.referencesMould DR, Upton RN. Basic Concepts in Population Modeling, Simulation, and Model- Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.
dc.relation.referencesBonate PL. Pharmacokinetic-Pharmacodynamic Modeling and Simulation. 2nd ed. New York: Springer International Publishing; 2011.
dc.relation.referencesFood and Drug Administration (FDA), FDA. Guidance for Industry: Exposure-Response Relationships - Study Design, Data Analysis and Regulatory Applications. FDA Guid. 2003;(April):1–25.
dc.relation.referencesSheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445– 479.
dc.relation.referencesAarons L. Software for Population Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet. 1999;36(4):255–264.
dc.relation.referencesShargel L,Wu-Pong S, Yu A. Applied Biopharmaceutics and Pharmacokinetics, 5th Edition. vol. 94; 2004.
dc.relation.referencesDartois C, Brendel K, Comets E, Laffont CM, Laveille C, Tranchand B, et al. Overview of model-building strategies in population PK/PD analyses: 2002-2004 Literature survey. Br J Clin Pharmacol. 2007;64(5):603–612.
dc.relation.referencesWang Y. Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn. 2007;34:575–593.
dc.relation.referencesPinheiro JC, Bates DM. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model. J Comput Graph Stat. 1995;4(1):12–35.
dc.relation.referencesGibiansky L, Gibiansky E, Bauer R. Comparison of NONMEM 7.2 estimation methods and parallel processing efficiency on a target-mediated drug disposition model. J Pharmacokinet Pharmacodyn. 2012;39(1):17–35.
dc.relation.referencesDempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J R Stat Soc Ser B. 1977;39(1):1–22.
dc.relation.referencesD Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User’s Guide: Pharmacokinetic/ Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Resource (BMSR); 2009.
dc.relation.referencesKarimi B, Lavielle M. Efficient Metropolis-Hastings sampling for nonlinear mixed effects models. In: Proc. BAYSM. Warwick, United Kingdom; 2018.
dc.relation.referencesGelman A, Lee D, Guo J. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. J Educ Behav Stat. 2015;40(5):530–543.
dc.relation.referencesTatarinova T, Neely MN, Barttoff J, van Guilder M, Yamada W, Bayard D, et al. Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian. J Pharmacokinet Pharmacodyn. 2013;40(2):189–199.
dc.relation.referencesBustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Parametric and Nonparametric Population Methods : Their Comparative Performance in Analysing a Clinical Data Set and Two Monte Carlo Simulation Studies. Clin Pharmacokinet. 2006;45(4):1–40.
dc.relation.referencesYamada WM, Bartroff J, Bayard D, Burke J, Van Guilder M, Jelliffe RW, et al. The Nonparametric Adaptive Grid Algorithm for Population Pharmacokinetic Modeling; 2013.
dc.relation.referencesDudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: Ready for prime time. Curr Opin Microbiol. 2000;3(5):515–521.
dc.relation.referencesEtte EI, Ludden T. Population Pharmacokinetic Modeling: The Importance of Informative Graphics. Pharm Res. 1995;12(12):1845–1855.
dc.relation.referencesMandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic- pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511– 528.
dc.relation.referencesBauer RJ. NONMEM users guide: introduction to NONMEM 7.2.0. ICON Dev Solut Ellicott City, MD. 2011.
dc.relation.referencesByon W, Smith MK, Chan P, Tortorici MA, Riley S, Dai H, et al. Establishing best practices and guidance in population modeling: An experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):1–8.
dc.relation.referencesBrendel K, Dartois C, Comets E, Diot AL, Laveille C, Tranchand B, et al. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet. 2007;46(3):221–234.
dc.relation.referencesRescigno A, Beck JS, Thakur AK. The use and abuse of models. J Pharmacokinet Biopharm. 1987;15(3):327–340.
dc.relation.referencesYano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28(2):171–192.
dc.relation.referencesBennet JE, Dolin R, Blaser MJ. Principles and Practice of Infectious Diseases. Eigth edit ed. Elsevier Saunders; 2015.
dc.relation.referencesAndrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48 Suppl 1(Suppl S1):5–16.
dc.relation.referencesCraig WAA. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin Infect Dis. 2007;26(1):1–10.
dc.relation.referencesCraig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1991;74:63–70.
dc.relation.referencesMouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/ pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J Antimicrob Chemother. 2005;55(5):601–607.
dc.relation.referencesCalbo E, Garau J. Application of Pharmacokinetics and Pharmacodynamics to Antimicrobial Therapy of Community-Acquired Respiratory Tract Infections. Respiration. 2005;72(2):561– 571.
dc.relation.referencesScaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents. 2008;32(4):294–301.
dc.relation.referencesRubinstein RY, Kroese DP. Simulation and the Monte Carlo Method. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017.
dc.relation.referencesRoberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: Maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011;66(2):227–231.
dc.relation.referencesAsín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/ pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319–329.
dc.relation.referencesTheuretzbacher U. Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin Infect Dis. 2012;54(12):1785–1792.
dc.relation.referencesÁlvarez Rodríguez JC, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de cefepime en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá [Tesis de Especialidad]. Universidad Nacional de Colombia; 2015.
dc.relation.referencesPérez Mesa JA, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de un producto de Vancomicina en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá –Colombia [Tesis de Especialidad]. Universidad Nacional de Colombia; 2016.
dc.relation.referencesOwen JS, Fiedler-Kelly J. Introduction to Population PK-PD Analysis with NONMEM. 1st ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014.
dc.relation.referencesDelattre M, Lavielle M, Poursat MA. A note on BIC in mixed-effects models. Electron J Stat. 2014;8(1):456–475.
dc.relation.referencesFood and Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry. vol. 1043. Rockville, MD: Food and Drug Administration (FDA); 2018.
dc.relation.referencesJusko WJ. Use of pharmacokinetic data below lower limit of quantitation values. Pharm Res. 2012;29(9):2628–2631.
dc.relation.referencesNguyen THT, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT Pharmacometrics Syst Pharmacol. 2017;6(2):87–109.
dc.relation.referencesProost JH. Combined proportional and additive residual error models in population pharmacokinetic modelling. Eur J Pharm Sci. 2017;109(May):S78–S82.
dc.relation.referencesLixoft. Monolix 2019 User Guide; 2019 [citado 2020-03-04]. Disponible en: http: //monolix.lixoft.com/single-page/.
dc.relation.referencesRyan TP. Modern Regression Methods. John Wiley & Sons, Inc; 2009.
dc.relation.referencesMaronna RA, Zamar RH. Robust estimates of location and dispersion for high-dimensional datasets. Technometrics. 2002;44(4):307–317.
dc.relation.referencesHutmacher MM, Kowalski KG. Covariate selection in pharmacometric analyses: A review of methods. Br J Clin Pharmacol. 2015;79(1):132–147.
dc.relation.referencesThai HT, Mentré F, Holford NHG, Veyrat-Follet C, Comets E. Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: A simulation study in population pharmacokinetics. J Pharmacokinet Pharmacodyn. 2014;41(1):15–33.
dc.relation.referencesEfron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26. Efron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26.
dc.relation.referencesJamsen KM, Patel K, Nieforth K, Kirkpatrick CMJ. A Regression Approach to Visual Predictive Checks for Population Pharmacometric Models. CPT Pharmacometrics Syst Pharmacol. 2018;7(10):678–686.
dc.relation.referencesRoberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083.
dc.relation.referencesFink DJ, Sluss PM, Januzzi JL, Lewandrowski KB. Appendix: Laboratory Values of Clinical Importance. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s Princ. Intern. Med.. 18th ed. New York: The McGraw-Hill Companies, Inc; 2012. .
dc.relation.referencesUdy AA, Roberts JA, Lipman J. Antibiotic Pharmacokinetic/ Pharmacodynamic Considerations in the Critically Ill. 1st ed. Melbourne, Australia: Springer Nature Singapore; 2018.
dc.relation.referencesSavic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: Problems and solutions. AAPS J. 2009;11(3):558–569.
dc.relation.referencesDuval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res. 2002;19(12):1835– 1840.
dc.relation.referencesDuggan JX. Quantification below the LLOQ in regulated LC-MS/MS assays: A review of bioanalytical considerations and cautions. Bioanalysis. 2019;11(8):797–814.
dc.relation.referencesDosne AG, Bergstrand M, Karlsson MO. A strategy for residual error modeling incorporating scedasticity of variance and distribution shape. J Pharmacokinet Pharmacodyn. 2016;43(2):137–151.
dc.relation.referencesEndimiani A, Perez F, Bonomo RA. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(6):805–824.
dc.relation.referencesBarbhaiya RH, Knupp CA, Thomas Forgue S, Matzke GR, Guay DRP, Pittman KA. Pharmacokinetics of cefepime in subjects with renal insufficiency. Clin Pharmacol Ther. 1990;48(3):268–276.
dc.relation.referencesCronqvist J, Nilsson-Ehle I, Oqvist B, Norrby SR. Pharmacokinetics of cefepime dihydrochloride arginine in subjects with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2676–2680.
dc.relation.referencesJonckheere S, De Neve N, De Beenhouwer H, Berth M, Vermeulen A, Van Bocxlaer J, et al. A model-based analysis of the predictive performance of different renal function markers for cefepime clearance in the ICU. J Antimicrob Chemother. 2016;71(9):2538–2546.
dc.relation.referencesTam VH, Mckinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and Pharmacodynamics of Cefepime in Patients with Various Degrees of Renal Function. Antimicrob Agents Chemother. 2003;47(6):1853–1861.
dc.relation.referencesLevey A, Perrone RD, Madias NE. Serum Creatinine And Renal Function. Annu Rev Med. 1988;39(1):465–490.
dc.relation.referencesAnderson GD. Sex and racial differences in pharmacological response: Where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Women’s Heal. 2005;14(1):19–29.
dc.relation.referencesBarbhaiya RH, Knupp CA, Pittman KA. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob Agents Chemother. 1992;36(6):1181–1185.
dc.relation.referencesBarbhaiya RH, Forgue ST, Shyu WC, Papp EA, Pittman KA. High-pressure liquid chromatographic analysis of BMY-28142 in plasma and urine. Antimicrob Agents Chemother. 1987;31(1):55–59.
dc.relation.referencesBenet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121.
dc.relation.referencesT’jollyn H, Vermeulen A, Van Bocxlaer J, Colin P. A Physiologically Based Pharmacokinetic Perspective on the Clinical Utility of Albumin-Based Dose Adjustments in Critically Ill Patients. Clin Pharmacokinet. 2018;57(1):59–69.
dc.relation.referencesLi D. Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism. J Bioanal Biomed. 2017;09(02):107–113.
dc.relation.referencesDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.
dc.relation.referencesWhited L, Grove M, Rose D, Rhodes NJ, Scheetz MH, O’Donnell JN, et al. Pharmacokinetics of Cefepime in Patients with Cancer and Febrile Neutropenia in the Setting of Hematologic Malignancies or Hematopoeitic Cell Transplantation. Pharmacother J Hum Pharmacol Drug Ther. 2016 sep;36(9):1003–1010.
dc.relation.referencesRhodes NJ, Grove ME, Kiel PJ, O’Donnell JN, Whited LK, Rose DT, et al. Population pharmacokinetics of cefepime in febrile neutropenia: implications for dose-dependent susceptibility and contemporary dosing regimens. Int J Antimicrob Agents. 2017;50(3):482– 486.
dc.relation.referencesLee DG, Choi SM, Yoo JH, Yim DS, Bae KS, Shin WS, et al. Population pharmacokinetics of cefepime in febrile neutropenic patients. J Korean Soc Clin Pharmacol Ther. 2003;11(1):23–29.
dc.relation.referencesSime FB, Roberts MS, Tiong IS, Gardner JH, Lehman S, Peake SL, et al. Adequacy of High- Dose Cefepime Regimen in Febrile Neutropenic Patients with Hematological Malignancies. Antimicrob Agents Chemother. 2015;59(9):5463–5469.
dc.relation.referencesRoos JF, Bulitta J, Lipman J, Kirkpatrick CMJ. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–993.
dc.relation.referencesGeorges B, Conil JM, Seguin T, Dieye E, Cougot P, Decun JF, et al. Cefepime in intensive care unit patients: Validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther. 2008 apr;46(04):157–164.
dc.relation.referencesNicasio AM, Ariano RE, Zelenitsky SA, Kim A, Crandon JL, Kuti JL, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically 111 patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476– 1481.
dc.relation.referencesDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.
dc.relation.referencesMcKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351.
dc.relation.referencesCrandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1111–1116.
dc.relation.referencesRhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu J, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60(3):1401–1410.
dc.relation.referencesBarbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, et al. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36(3):552–557.
dc.relation.referencesThe European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10 ed. Version 10.0. EUCAST; 2020. Disponible en: https://www.eucast.org/.
dc.relation.referencesButterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP. Refining vancomycin protein binding estimates: Identification of clinical factors that influence protein binding. Antimicrob Agents Chemother. 2011;55(9):4277–4282.
dc.relation.referencesNeely MN, Kato L, Youn G, Kraler L, Bayard D, Van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):1–12.
dc.relation.referencesLixoft SAS. Monolix Version 2019R2. 1st ed. Antony, France: Lixoft SAS; 2019. Disponible en: http://lixoft.com/products/monolix/.
dc.relation.referencesZamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clinical and Experimental Pharmacology and Physiology. 2019;46(4):292–301.
dc.relation.referencesCole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. American Journal of Epidemiology. 2014;179(2):252–260.
dc.relation.referencesRybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clinical Infectious Diseases. 2006;42(SUPPL. 1):35–39.
dc.relation.referencesMarsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: A review of population pharmacokinetic analyses. Clinical Pharmacokinetics. 2012;51(1):1–13.
dc.relation.referencesConil JM, Georges B, Breden A, Ruiz S, Cougot P, Fourcade O, et al. Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: Superiority of the Chronic Kidney Disease Epidemiology Collaboration equation? Anaesthesia and Intensive Care. 2014;42(2):178–184.
dc.relation.referencesLi X, Nielsen J, Cirincione B, Li H, Addy C, Wagner J, et al. Development of a population pharmacokinetic model for taranabant, a cannibinoid-1 receptor inverse agonist. AAPS Journal. 2010;12(4):537–547.
dc.relation.referencesStec GP, Atkinson AJ. Analysis of the contributions of permeability and flow to intercompartmental clearance. Journal of Pharmacokinetics and Biopharmaceutics. 1981;9(2):167–180.
dc.relation.referencesBrussee JM, Krekels EHJ, Calvier EAM, Pali´c S, Rostami-Hodjegan A, Danhof M, et al. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clearance of Selected CYP3A Substrates in Children. AAPS Journal. 2019;21(5):1–11.
dc.relation.referencesZane NR, Reedy MD, Gastonguay MR, Himebauch AS, Ramsey EZ, Topjian AA, et al. A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated from Cardiac Arrest. Pediatric Critical Care Medicine. 2017;18(7):e290–e297.
dc.relation.referencesYoshitsugu H, Sakurai T, Ishikawa H, Roy A, Bifano M, Pfister M, et al. Pooled modelbased approach to compare the pharmacokinetics of entecavir between Japanese and non- Japanese chronic hepatitis B patients. Diagnostic Microbiology and Infectious Disease. 2011;70(1):91–100. Disponible en: http://dx.doi.org/10.1016/j.diagmicrobio. 2010.12.009.
dc.relation.referencesMartinez JM, Khier S, Morita S, Rauch C, Fabre D. Population pharmacokinetic analysis of fexofenadine in Japanese pediatric patients. Journal of Pharmacokinetics and Pharmacodynamics. 2014;41(2):187–195.
dc.relation.referencesMangin O, Urien S, Mainardi JL, Fagon JY, Faisy C. Vancomycin Pharmacokinetic and Pharmacodynamic Models for Critically Ill Patients with Post-Sternotomy Mediastinitis. Clinical Pharmacokinetics. 2014;53(9):849–861.
dc.relation.referencesShi S, Klotz U. Age-related changes in pharmacokinetics. Current Drug Metabolism. 2011;12:601–610.
dc.relation.referencesMangoni AA, Jackson SHD. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. British Journal of Clinical Pharmacology. 2004;57(1):6–14.
dc.relation.referencesLe Normand Y, Milpiedb N, Kergueris MF, Harousseau Jl. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. International Journal of Bio-Medical Computing. 1994;36:121–125.
dc.relation.referencesSantos Buelga D, Del Mar Fernandez De Gatta M, Herrera EV, Dominguez-Gil A, García MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrobial Agents and Chemotherapy. 2005;49(12):4934–4941.
dc.relation.referencesAl-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. Journal of Oncology Pharmacy Practice. 2010;16(4):245–250.
dc.relation.referencesJarkowski III A, Forrest A, Sweeney RP, Tan W, Segal BH, Almyroudis N, et al. Characterization of vancomycin pharmacokinetics in the adult acute myeloid leukemia population. Journal of Oncology Pharmacy Practice. 2012;18(1):91–96.
dc.relation.referencesHaeseker MB, Croes S, Neef C, Bruggeman CA, Stolk LML, Verbon A. Vancomycin dosing in neutropenic patients. PLoS ONE. 2014;9(11).
dc.relation.referencesHirai K, Ishii H, Shimoshikiryo T, Shimomura T, Tsuji D, Inoue K, et al. Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin. Therapeutic Drug Monitoring. 2016;38(6):706–710.
dc.relation.referencesBury D, ter Heine R, van de Garde EMW, Nijziel MR, Grouls RJ, Deenen MJ. The effect of neutropenia on the clinical pharmacokinetics of vancomycin in adults. European Journal of Clinical Pharmacology. 2019;75:921–928. 187
dc.relation.referencesGuo T, van Hest RM, Roggeveen LF, Fleuren LM, Thoral PJ, Bosman RJ, et al. External Evaluation of Population Pharmacokinetic Models of Vancomycin in Large Cohorts of Intensive Care Unit Patients. Antimicrobial Agents and Chemotherapy. 2019;63(5):1–9. Disponible en: https://doi.org/10.1128/AAC.01708-10.
dc.relation.referencesÁlvarez R, Cortés LEL, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy. 2016;60(5):2601–2609.
dc.relation.referencesMen P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24 /MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic review and meta-analysis. PLoS ONE. 2016;11(1):1–11.
dc.relation.referencesLodise TP, Rhoney DH, Tam VH, McKinnon PS, Drusano GL. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–230.
dc.relation.referencesRybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2020;77(11):835–863.
dc.relation.referencesJung Y, Song KH, Cho JE, Kim HS, Kim NH, Kim TS, et al. Area under the concentrationtime curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. International Journal of Antimicrobial Agents. 2014;43(2):179–183. Disponible en: http://dx.doi.org/10. 1016/j.ijantimicag.2013.10.017.
dc.relation.referencesCasapao AM, Lodise TP, Davis SL, Claeys KC, Kullar R, Levine DP, et al. Association between Vancomycin Day 1 Exposure Profile and Outcomes among Patients with Methicillin- Resistant Staphylococcus aureus Infective Endocarditis. Antimicrobial Agents and Chemotherapy. 2015;59(6):2978–2985. Disponible en: http://dx.doi.org/10.1128.
dc.relation.referencesGawronski KM, Goff DA, Jack Brown, Khadem TM, Bauer KA. A stewardship program’s retrospective evaluation of vancomycin auc24/mic and time to microbiological clearance in patients with methicillin-resistant staphylococcus aureus bacteremia and osteomyelitis. Clinical Therapeutics. 2013;35(6):772–779. Disponible en: http://dx.doi.org/10. 1016/j.clinthera.2013.05.008.
dc.relation.referencesKullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clinical Infectious Diseases. 2011;52(8):975–981.
dc.relation.referencesSuzuki Y, Tokimatsu I, Morinaga Y, Sato Y, Takano K, Kohno K, et al. A retrospective analysis to estimate target trough concentration of vancomycin for febrile neutropenia in patients with hematological malignancy. Clinica Chimica Acta. 2015;440:183–187. Disponible en: http://dx.doi.org/10.1016/j.cca.2014.11.027.
dc.relation.referencesRybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2009;66(1):82–98.
dc.relation.referencesLundberg SM, Lee SI. A unified approach to interpreting model predictions; 2017. Disponible en: https://github.com/slundberg/shap.
dc.relation.referencesAljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin Area under the Curve and Acute Kidney Injury: A Meta-analysis. Clinical Infectious Diseases. 2019;69(11):1881–1887.
dc.relation.referencesHof F, Bridge LJ. Exact solutions and equi-dosing regimen regions for multi-dose pharmacokinetics models with transit compartments. Journal of Pharmacokinetics and Pharmacodynamics. 2021;48(1):99–131. Disponible en: https://doi.org/10.1007/ s10928-020-09719-8.
dc.relation.referencesYap BW, Sim CH. Comparisons of various types of normality tests. J Stat Comput Simul. 2011;81(12):2141–2155.
dc.relation.referencesNyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, et al. Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol. 2015;79(1):6–17.
dc.relation.referencesSnowden TJ, Graaf PHVD, Tindall MJ. Model reduction in mathematical pharmacology. Journal of Pharmacokinetics and Pharmacodynamics. 2018;45(4):537–555. Disponible en: https://doi.org/10.1007/s10928-018-9584-y.
dc.relation.referencesDerbalah A, Al-Sallami HS, Duffull SB. Reduction of quantitative systems pharmacology models using artificial neural networks. Journal of Pharmacokinetics and Pharmacodynamics. 2021;3. Disponible en: https://doi.org/10.1007/s10928-021-09742-3.
dc.relation.referencesHornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 1991;4(2):251–257.
dc.relation.referencesAbadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large- Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Disponible en: https://www.tensorflow.org/.
dc.relation.referencesKingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015:1–15.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsFebrile Neutropenia
dc.subject.decsNeutropenia Febril
dc.subject.decsHematologic Neoplasms
dc.subject.decsNeoplasias Hematológicas
dc.subject.decsQuimioterapia
dc.subject.decsDrug therapy
dc.subject.proposalVancomicina
dc.subject.proposalCefepime
dc.subject.proposalFarmacocinética
dc.subject.proposalSimulación
dc.subject.proposalDosificación
dc.subject.proposalÁrea bajo la curva
dc.subject.proposalVancomycin
dc.subject.proposalCefepime
dc.subject.proposalPharmacokinetics
dc.subject.proposalSimulation
dc.subject.proposalDosage
dc.subject.proposalNeutropenia febril inducida por quimioterapia
dc.subject.proposalChemotherapy-induced febrile neutropenia
dc.subject.proposalArea under curve
dc.title.translatedPopulation pharmacokinetics in the empirical management of infections in patients with hematological malignancies and post-chemotherapy febrile neutropenia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameInstituto Nacional de Cancerología
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito