Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSánchez Aguilar, John Jairo
dc.contributor.authorCadena Ibarra, Oscar Ernesto
dc.coverage.temporal2004-2010
dc.date.accessioned2022-02-09T13:48:04Z
dc.date.available2022-02-09T13:48:04Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80915
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractEn este estudio se analiza la sismicidad tipo LP del volcán Galeras para el periodo 2004 – 2010, desde los aspectos relacionados con: 1) su distribución temporal, mediante la aplicación de la técnica de variación de la dimensión fractal, 2) la segmentación de la sismicidad en familias y grupos de familias, utilizando correlación cruzada y la caracterización de familias y grupos mediante información espectral, 3) los resultados generados en 1 y 2, sirven de apoyo contextual para la generación de modelos de resonancia de una columna de magma, dentro de la cual se aplica una perturbación que se propaga en forma de ondas sísmicas por la interfase de la columna y la corteza superficial, hasta alcanzar un receptor. La información para la parametrización de la corteza superficial y el magma, se obtuvo de estudios específicos preexistentes, y la solución de los sistemas de ecuaciones se realiza mediante el método de elementos finitos. Los resultados muestran un comportamiento anómalo en la dimensión fractal durante el emplazamiento de los domos de lava de 2006 y 2008. La caracterización sísmica evidencia la existencia de 9 familias de sismos LP que se distribuyeron en dos grupos G1 y G2, asociados respectivamente con el emplazamiento de los domos de lava en superficie y la sismicidad precedente a estos domos. Se parametrizaron modelos para los grupos, G1 y G2, los cuales tienen por diferencias principales: la longitud de la columna de magma y el tipo de acción de la fuente sísmica. Se propone la resonancia de una columna de magma de aproximadamente 2800 m de largo, cuyo tope casi alcanza la superficie, como posible causante de la sismicidad del grupo G1 y una columna cercana a los 2000 m como responsable de los sismos del grupo G2. Adicionalmente, los resultados de este estudio ponen en duda la efectividad de la localización de sismicidad de fluidos basda en el método de atenuación de amplitudes. (Texto tomado de la fuente).
dc.description.abstractThis study analyzes the Long Period-type seismicity (LP) registered in Galeras volcano in the 2004 – 2010 period, from aspects related to: 1) its temporal distribution by applying the technique of the variation in the fractal dimension, 2) the segmentation of the seismicity into families and groups of families, using cross-correlation method and the characterization of families and groups using spectral information, 3) the results generated in 1 and 2, serve as contextual support for the generation of resonance models of a magma column, within from which a disturbance is applied. This disturbance is propagated in the form of seismic waves through the interface between the column and the superficial crust until to reach a receptor. The reference information used for the parameterization of the superficial crust and magma properties was obtained from specific pre-existing studies, and the solution for the system of the equations is carried out using the finite element method (FEM). The results show anomalous behavior in the fractal dimension during the emplacement of the lava domes of 2006 and 2008. Seismic characterization reveals the existence of 9 families of LP earthquakes that were distributed into two groups, G1 and G2, associated with the seismicity preceding the lava domes (G2) and that associated with their emplacement on the surface (G1). Models for groups G1 and G2 were parameterized, which have as main differences: the length of the magma column and the form of action of the seismic source. The resonance of a magma column of approximately 2000 m long is proposed as a possible cause of the seismicity of G2 group, while a 2800 m long column, whose top almost reaches the surface, as responsible for the earthquakes of the G1 group. Additionally, the results of this study cast doubt on the effectiveness of locating fluids seismicity based on seismic waves amplitude attenuation method.
dc.format.extentxxi, 170 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleModelos de fuente de sismicidad LP para la actividad del volcán Galeras 2004-2010 (Colombia)
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Geociencias
dc.description.notesIncluye anexos
dc.contributor.researchgroupGrupo de Investigación en Vulcanología Giv
dc.coverage.countryColombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Geociencias
dc.description.researchareaSismología volcánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAki, K., Fehler, M., & Das, S. (1977). Source mechanism of volcanic tremor : fluid-driven crack models and their application to the 1963 kilauea eruption. Department of Earth and Planetary Sciences , Massachusetts Institute of Technology.
dc.relation.referencesBain, et al., (2019). Textural and geochemical constraints on andesitic plug emplacement prior to the 2004 – 2010 vulcanian explosions at Galeras volcano, Colombia. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2019.05.001 0377-0273
dc.relation.referencesBrocher, T. (2005). Earthquake Hazard Assessment of Southern California View project Yucca Mountain Project View project Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120050077
dc.relation.referencesBuurman, H., & West, M. (2010). Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano. US Geological Survey Professional Paper. https://doi.org/10.3133/pp17692.
dc.relation.referencesCalvache, M., (1990). Geology and Vulcanology of the recent evolution of the Galeras Volcano, Colombia. Ms. Thesis. Louisiana State University.
dc.relation.referencesCalvache V, M. L., & Williams, S. N. (1997). Emplacement and petrological evolution of the andesitic dome of Galeras volcano, 1990–1992. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/S0377-0273(96)00086-8.
dc.relation.referencesCampagnola, S., Romano, C., Mastin, L. G., & Vona, A. (2016). Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contributions to Mineralogy and Petrology, 171(6). https://doi.org/10.1007/s00410-016-1265-5
dc.relation.referencesCarcolé, E., Ugalde, A., & Vargas, C. A. (2006). Three-dimensional spatial distribution of scatterers in Galeras volcano, Colombia. Geophysical Research Letters, 33(8). https://doi.org/10.1029/2006GL025751
dc.relation.referencesCaruso, F., Vinciguerra, S., Lotora, V., Rapisarda, A. & Malone, S. (2006). Multifractal analysis of Mt. St. Helens seismicity as a tool for identifying eruptive activity. Fractals. Vol 14. 179-186. https://doi.org/10.1142/S0218348X06003180
dc.relation.referencesCepeda, H. (1985). Anotaciones a cerca de la geología del volcán Galeras, Colombia. Encyclopedia of Volcanoes. 421-430.
dc.relation.referencesChouet, B. (1988). Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. Journal of Geophysical Research, 93(B5), 4375–4400. https://doi.org/10.1029/JB093iB05p04375
dc.relation.referencesChouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption forecasting. In Nature (Vol. 380, Issue 6572, pp. 309–316). Macmillan Magazines Ltd. https://doi.org/10.1038/380309a0
dc.relation.referencesChouet, B. (1986). Dynamics of a fluid-driven crack in three dimensions by the finite difference method. Journal of Geophysical Research, 91(B14), 13967. https://doi.org/10.1029/jb091ib14p13967
dc.relation.referencesChouet, B., Saccorotti, G., Dawson, P., Martini, M., Scarpa, R., De Luca, G., Milana, G., & Cattaneo, M. (1999). Broadband measurements of the sources of explosions at Stromboli Volcano, Italy. Geophysical Research Letters, 26(13), 1937–1940. https://doi.org/10.1029/1999GL900400
dc.relation.referencesCollier, L., & Neuberg, J. (2006). Incorporating seismic observations into 2D conduit flow modeling. Journal of Volcanology and Geothermal Research, 152(3–4), 331–346. https://doi.org/10.1016/j.jvolgeores.2005.11.009
dc.relation.referencesEspinoza, A. (2001). Erupciones históricas de los volcanes colombianos (1500-1995). Editorial Guadalupe Ltda. Bogotá.
dc.relation.referencesFeder, J. (1988). Fractals. Plenum Press, New York.
dc.relation.referencesFerrazzini, V., & Aki, K. (1987). Slow waves trapped in a fluid-filled infinite crack: Implication for volcanic tremor. Journal of Geophysical Research, 92(B9), 9215. https://doi.org/10.1029/jb092ib09p09215
dc.relation.referencesFord, S. R., & Walter, W. R. (2013). An Explosion Model Comparison with Insights from the Source Physics Experiments. In pubs.geoscienceworld.org. https://pubs.geoscienceworld.org/ssa/bssa/article/103/5/2937/350029
dc.relation.referencesFraga, F., & Mondragón, R. (2016). Cálculo de dimensión fractal para series de tiempo con el método de multiresolución de conteo de cajas. Komputer Sapiens Vol. 2. 25-36.
dc.relation.referencesFrías, V. (2004). Aportaciones al estudio de las máquinas eléctricas de flujo axial mediante la aplicación del método de los elementos finitos. Tesis Doctoral. Departamento de Ingeniería Eléctrica, UPC.
dc.relation.referencesGoff, F., Stimac, J., Larocque, A., & Jr, P. T. (1994). Gold Degassing and Deposition. GSA Today from https://www.geosociety.org/gsatoday/archive/4/10/pdf/i1052-5173-4-10-sci.pdf
dc.relation.referencesGómez ,D., Torres, R. (1997). Unusual low-frequency volcanic seismic events with slowly decaying coda waves observed at Galeras and other volcanoes. Journal of Volcanology and Geothermal Research. 77, 173–193.
dc.relation.referencesGómez, D., Laverde, C., Narváez, L., Ortega, A., Silva, B., Torres, J. & Torres, R. (2004). Catalogo de señales sísmicas volcánicas de Colombia. INGEOMINAS. Pasto-Colombia.
dc.relation.referencesGoto, A. (1999). A new model for volcanic earthquake at Unzen Volcano:Melt rupture model. Geophysical Research Letters, vol. 26, No. 16, Pages 2541-2544.
dc.relation.referencesHarnett, C. E., Thomas, M. E., Purvance, M. D., & Neuberg, J. (2018). Using a discrete element approach to model lava dome emplacement and collapse. Journal of Volcanology and Geothermal Research, 359, 68–77. https://doi.org/10.1016/j.jvolgeores.2018.06.017
dc.relation.referencesINGEOMINAS. (2005). Boletín semestral de actividad del volcán Galeras julio a diciembre de 2004. Pasto-Combia. Informe público.
dc.relation.referencesINGEOMINAS. (2005). Boletín semestral de actividad del volcán Galeras enero a junio de 2005. Pasto-Colombia. Informe público.
dc.relation.referencesINGEOMINAS. (2006). Boletín semestral de actividad del volcán Galeras enero a junio de 2006. Pasto-Colombia. Informe público.
dc.relation.referencesINGEOMINAS. (2008). Boletín semestral de actividad del volcán Galeras enero a junio de 2008. Pasto-Colombia. Informe público.
dc.relation.referencesINGEOMINAS. (2008). Informe de resultados, análisis de oxidos mayores muestra roca volcán Galeras. Laboratorio de Geoquímica INGEOMINAS. Bogotá-Colombia.
dc.relation.referencesJousset, P., Neuberg, J. & Jolly, A. (2004). Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography. Journal of Volcanology and Geothermal Research.
dc.relation.referencesJousset, P., Neuberg, J., & Sturton, S. (2003). Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. Journal of Volcanology and Geothermal Research, 128(1–3), 201–223. https://doi.org/10.1016/S0377-0273(03)00255-5
dc.relation.referencesJulian, B. R. (1994). Volcanic tremor: nonlinear excitation by fluid flow. Journal of Geophysical Research, 99(B6). https://doi.org/10.1029/93jb03129
dc.relation.referencesKumagai, H., & Chouet, B. A. (1999). The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes. Geophysical Journal International, 138(2). https://doi.org/10.1046/j.1365-246X.1999.00911.x
dc.relation.referencesLahr, J. C., Chouet, B. A., Stephens, C. D., Power, J. A., & Page, R. A. (1994). Earthquake classification , location , and error analysis in a volcanic environment : implications for the magmatic system of the 1989-1990 eruptions at Redoubt Volcano , Alaska. Journal of Volcanology and Geothermal Research 62(93), 137–151.
dc.relation.referencesLatter, J. (1979). Volcanological observations at Tangariro National Park, 2: types and classification of volcanic earthquakes. Report/Geophysics Division. Legrand, D., Cisternas, A., Dorbath L. (1996). Multifractal analysis of the 1992 Erzincan aftershock sequence. Geophysical Research Letters 23., 933-936.
dc.relation.referencesLegrand, D., Cisternas, A., Dorbath L. (1996). Multifractal analysis of the 1992 Erzincan aftershock sequence. Geophysical Research Letters 23., 933-936.
dc.relation.referencesLondoño, J. M. & Ospina, M. F. (2008). Estructura tridimensional de velocidad de onda P para el volcán Galeras. Boletín Geológico INGEOMINAS. 42(1-2), 7-24.
dc.relation.referencesMastin, L. G. (2002). Insights into volcanic conduit flow from an open-source numerical model. Geochemistry Geophysics Geosystems. Vol 3. No.7.
dc.relation.referencesMurcia, L. & Cepeda, H. (1991). Mapa Geológico de Colombia, Plancha 410, La Unión, Memoria explicativa. INGEOMINAS.
dc.relation.referencesMedwin, H., Clay, C. (1997). Fundamentals of Acoustic Oceanography. Departament of Geology and Geophysics. University of Wisconsin at Madison. ACADEMIC PRESS.
dc.relation.referencesMolina, I., Kumagai, H., García, A., Nakano, M., & Mothes, P. (2008). Source process of very-long-period events accompanying long-period signals at Cotopaxi Volcano , Ecuador. Journal of Volcanology and Geothermal Research 176. 119–133. https://doi.org/10.1016/j.jvolgeores.2007.07.019
dc.relation.referencesMoncayo, E. (2004). Tomografía por coda Q en el volcán Galeras Nariño. Thesis de pregrado. Universidad Nacional de Colombia. https://doi.org/10.1016/j.jvolgeores.2007.07.019
dc.relation.referencesNava, A. (2013). Procesamiento de series de tiempo. Ediciones científicas Universitarias. Mexico.
dc.relation.referencesNeuberg, J., Luckett, R., Baptie, B., & Olsen, K. (2000). Models of tremor and low-frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal Research, 101(1–2), 83–104. https://doi.org/10.1016/S0377-0273(00)00169-4
dc.relation.referencesNeuberg, J. W., Tuffen, H., Collier, L., Green, D., Powell, T., & Dingwell, D. (2006). The trigger mechanism of low-frequency earthquakes on Montserrat. Journal of Volcanology and Geothermal Research, 153(1-2 SPEC. ISS.), 37–50. https://doi.org/10.1016/j.jvolgeores.2005.08.008
dc.relation.referencesOrtega, A. (2014). Modelo de fuentes de anomalías gravimétricas regional y locales del volcán Galeras, asociadas a su estado de actividad entre junio 2008 – abril de 2009. Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/12895
dc.relation.referencesPereiro, O. (2006). Aprendiendo sobre el método de elementos finitos. Facultad de Ingeniería Mecánic, Instituto Superior Politécnico José Antonio Echeverría. Vol 9. No. 3.
dc.relation.referencesProakis, J. & Manolakis, D. (2009). Digital Signal Processing. Printice Hall. 4th edition.
dc.relation.referencesPulgarín, B. (2006). Informe del apoyo en las labores geológicas del volcán Galeras en el periodo del 13 al 17 de junio de 2006 (Erupción del 12 de julio de 2006). INGEOMINAS. Informe interno.
dc.relation.referencesRodgers, M., Rodgers, S., & Roman, D. C. (2015). Peakmatch: A Java program for multiplet analysis of large seismic datasets. Seismological Research Letters, 86(4), 1208–1218. https://doi.org/10.1785/0220140160
dc.relation.referencesRougier, E., & Patton, H. J. (2015). Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions. Journal of Geophysical Research: Solid Earth, 120(5), 3459–3478. https://doi.org/10.1002/2014JB011773
dc.relation.referencesSakuraba, A., Oikawa, J., & Imanishi, Y. (2002). Free oscillations of a fluid sphere in an infinite elastic medium and long-period volcanic earthquakes. Earth Planets Space. 54. 91–106.
dc.relation.referencesSanchez, J., Gomez, D.,Torres, R., Calvache, M., Ortega, A., Ponce, P., Acevedo, A., Gil, F., Londoño, J., Rodriguez, S., Patiño, J. & Bohórquez, O. (2005). Spatial mapping of the b-value at Galeras volcano, Colombia, using earthquakes recorded from 1995 to 2002. Earth Science Research Journal. Vol 9. No 1. 30-66.
dc.relation.referencesSmith, P. (2006). Combining magma flow models with seismic signals. Msc. Thesis. School of Earth and Enviroment The University of Leeds.
dc.relation.referencesSmith, P. J. (2010). Attenuation of Volcanic Seismic Signals. PhD Thesis, School of Earth and Enviroment The University of Leeds.
dc.relation.referencesSpinadel, V. (2002). Geometría fractal y geometría euclideana. Revista educación y pedagogía., Universidad de Antioquia, Facultad de educación. Vol.XV, No 35. Pp. 85-91.
dc.relation.referencesStix, J., Zapata, J., Calvache, M., Cortés, G., Fischer, T., Gómez, D., Narváez, L., Ordoñez, M., Ortega, A., Torres, R. & Williams, S. (1997). A model of vulcanian eruptions at Galeras volcano , Colombia. The Geological Society of America. 77, 285–303.
dc.relation.referencesStix, J., Zapata, J., Calvache, M., Cortés, G., Fischer, T., Gómez, D., Narváez, L., Ordoñez, M., Ortega, A., Torres, R. & Williams, S. (1993). A model of degassing at Galeras Volcano, Colombia, 1988-1993. October 2009, 1988–1993. The Geological Society of America. 21. 963-967. https://doi.org/10.1130/0091-7613(1993)021<0963
dc.relation.referencesSturton, S., & Neuberg, J. (2003). The effects of a decompression on seismic parameter profiles in a gas-charged magma. Journal of Volcanology and Geothermal Research, 128(1–3), 187–199. https://doi.org/10.1016/S0377-0273(03)00254-3
dc.relation.referencesSturton, S., & Neuberg, J. (2006). The effects of conduit length and acoustic velocity on conduit resonance: Implications for low-frequency events. Journal of Volcanology and Geothermal Research, 151(4), 319–339. https://doi.org/10.1016/j.jvolgeores.2005.09.009
dc.relation.referencesTibaldi, A., & Romero, J. (2000). Morphometry of late Pleistocene-Holocene faulting and volcanotectonic relationship in the southern Andes of Colombia. Tectonics, 19(2), 358–377. https://doi.org/10.1029/1999TC900063
dc.relation.referencesTorres, R. (2012). Modelo 3D del volcán Galeras utilizando tomografía sísmica. Universidad Nacional de Colombia. http://bdigital.unal.edu.co/9836/
dc.relation.referencesTuffen, H. (2003). Repeated fracture and healing of silicic magma generate flow banding and earthquakes ?. Geological Society of America, Vol 31. No 12. 1089–1092.
dc.relation.referencesVargas, C. A., Duran, J. P., & Pujades, L. G. (2006). Coda Q tomography at the Galeras volcano, Colombia. Universidad Nacional de Colombia. Departamento de Geociencias.
dc.relation.referencesWatts, R., Herd, R., Sparks, J. & Young, S. (2002). Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat. Geological Society of London. Vol 21. https://doi.org/10.1144/GSL.MEM.2002.021.01.06
dc.relation.referencesZimanowski, B. (1998). Phreatomagmatic explosions. In Freudt, A. & Rossi, M., From magma to tephra: modelling physical processes of explosive volcanic eruptions. Elsevier, Amsterdam.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembVolcanoes
dc.subject.lembVolcanes
dc.subject.lembSeismology
dc.subject.lembSismología
dc.subject.lembSeismic zones
dc.subject.lembZonas de actividad sísmica
dc.subject.proposalVolcán Galeras
dc.subject.proposalGaleras volcano
dc.subject.proposalSismos largo periodo
dc.subject.proposalLong period seismicity
dc.subject.proposalConduit resonance
dc.subject.proposalResonancia de conductos
dc.title.translatedLP seismicity source models for the activity of the Galeras volcano 2004-2010 (Colombia)
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito