Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSaavedra Trujillo, Carlos Humberto
dc.contributor.authorPeña Mejia, Yerson Gerardo
dc.date.accessioned2022-02-14T21:33:44Z
dc.date.available2022-02-14T21:33:44Z
dc.date.issued2022-02-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80981
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractInfecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021. Objetivos Investigar la prevalencia de coinfección y/o infección secundaria en pacientes hospitalizados con coronavirus 2 (SARS-CoV-2) y síndrome respiratorio agudo severo confirmado. Métodos Se realizó un estudio observacional retrospectivo de pacientes hospitalizados con SARS-CoV-2 confirmado por PCR y antígeno (marzo-2020 a marzo 2021). En el Hospital Universitario Nacional de Colombia (HUN) se recibieron en total 3793 casos presuntivos IRA Grave por COVID-19(SARS CoV-2) de los cuales 1206 (32%) se confirmaron positivos, 1189 (31%) fueron negativos y 1398 (36%) no tenían datos completos por lo que fueron excluidos; de los anteriores cumplieron criterios de inclusión 952 pacientes se hizo un muestreo probabilístico por conveniencia con una muestra representativa de 161 pacientes, se analizaron los datos demográficos, microbiológicos y los resultados clínicos de los pacientes. Resultado Se incluyeron 952 pacientes hospitalizados con diagnostico confirmado de COVID-19 en hospitalización general y/o UCI durante el periodo de marzo 2020 a marzo 2021, se documentaron 389 casos de infección bacteriana secundaria (IBS) confirmadas, en la UCI 318 (40.77%) mientras que en Hospitalización General 71(41.52%); de los aislamientos que se interpretaron como procesos infecciosos encontramos en primer lugar enterobacterias con más frecuencia K.pneumoniae (n:193), E.coli (n:105), entre otras; en segundo lugar los bacilos gramnegativos no fermentadores P.aeruginosa (n:80); en tercer lugar S. aureus (n: 58). El 42.2% de los aislamientos eran multiresistentes con prevalencia betalactamasas tipo AMPc (13%).La mortalidad general fue del 26.7%. Conclusiones Encontramos alta prevalencia de IBS 40.8% en los pacientes con COVID-19 y se presentó de manera igual en pacientes críticamente enfermos hospitalización en UCI que en los no críticamente enfermos en hospitalización general con COVID-19; se documentaron 43.75 % de neumonías asociadas a la ventilación mecánica (NAV), así como también se evidenciaron 29.17% de bacteriemias asociadas a dispositivo, un dato que supone una estrecha relación de dispositivos invasivos con la presentación eventos infecciosos y mortalidad, sin embargo el diagnóstico de IBS no tuvo influencia en la supervivencia de los pacientes. Palabras llave: Coinfección bacteriana, infección bacteriana secundaria; Coronavirus, SARS-CoV-2. (Texto tomado de la fuente)
dc.description.abstractInfections associated with COVID-19 in hospitalized patients. 2021. Objectives: To investigate the prevalence of coinfection and/or secondary infection in patients hospitalized with confirmed coronavirus 2 (SARS-CoV-2) and severe acute respiratory syndrome. Methods: A retrospective observational study of hospitalized patients with SARS-CoV-2 confirmed by PCR and antigen was conducted (March-2020 to March 2021). In the National University Hospital of Colombia (HUN) a total of 3,793 presumptive cases of Severe ARI due to COVID-19 (SARS CoV-2) were received, of which 1,206 (32%) were confirmed positive, 1,189 (31%) were negative, and 1,398 (36%) did not have complete data so they were excluded; Of the above, 952 patients met the inclusion criteria. A probabilistic convenience sampling was carried out with a representative sample of 161 patients. The demographic, microbiological and clinical results of the patients were analyzed. Results: 952 hospitalized patients with a confirmed diagnosis of COVID-19 in general hospitalization and/or ICU were included during the period from March 2020 to March 2021, 389 cases of confirmed secondary bacterial infection (SBI) were documented, in the ICU 318 (40.77% ) while in General Hospitalization 71 (41.52%); Of the isolates that were interpreted as infectious processes, we first found Enterobacteriaceae, most frequently K.pneumoniae (n:193), E.coli (n:105), among others; in second place the non-fermenting gram-negative bacilli P.aeruginosa (n:80); in third place S. aureus (n: 58). 42.2% of the isolates were multiresistant with a prevalence of cAMP-type beta-lactamases (13%). Overall mortality was 26.7%. Conclusions: We found high prevalence of IBS 40.8% in patients with COVID-19 and it was presented in the same way in critically ill patients hospitalized in the ICU as in non-critically ill patients in general hospitalization with COVID-19; 43.75% of pneumonia associated with mechanical ventilation (NAV) were documented, as well as 29.17% of device-associated bacteremia, a fact that implies a close relationship of invasive devices with the presentation of infectious events and mortality, however the diagnosis of IBS had no influence on patient survival. Keywords: Bacterial coinfection, bacterial secondary infection; Coronavirus, SARS-CoV-2.
dc.format.extentxviii, 49 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleInfecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021
dc.typeTrabajo de grado - Especialidad Médica
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Medicina Interna
dc.contributor.datacuratorEnciso Olivera Leonardo Jose
dc.contributor.projectmemberGarcía Moncayo Andrea Lorena
dc.contributor.researcherPeña Mejia Zaira Alejandra
dc.description.degreelevelEspecialidades Médicas
dc.description.degreenameEspecialista en Medicina Interna
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Medicina Interna
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Rodriguez-Morales A, Bonilla-Aldana D, Tiwari R, Sah R, Rabaan A, Dhama K. COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. Journal of Pure and Applied Microbiology [Internet]. 2020;14(1):05-12. Available from: https://doi.org/10.22207/JPAM.14.1.02
dc.relation.references2. Zhou, P., Yang, XL., Wang, XG. et al. Un brote de neumonía asociado con un nuevo coronavirus de probable origen en murciélagos. Nature 579, 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-7
dc.relation.references3. Rojas DJPM, Loría DMQ, Sánchez DMG, Chinchilla DAS. SARS CoV-2, manifestaciones clínicas y consideraciones en el abordaje diagnóstico de COVID- 19. Rev Auspiciada Por El Hosp Dr Rafael Ángel Calderón Guard. 2020;86(629). Disponible en: http://revistamedicacr.com/index.php/rmcr/article/view/287
dc.relation.references4. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085-6.doi: 10.1001 / jama.2020.6266
dc.relation.references5. Xing Q, Li G, Xing Y, Chen T, Li W, Ni W, et al. Precautions are Needed for COVID-19 Patients with Coinfection of Common Respiratory Pathogens. medRXiv. 2020, http://dx.doi.org/10.1101/2020.02.29.20027698
dc.relation.references6. Rubin R. What Happens When COVID-19 Collides With Flu Season? JAMA. 2020;324(10):923-925. doi: 10.1001 / jama.2020.15260
dc.relation.references7. Aguilera-Calzadilla Y, Diaz-Morales Y, Ortiz-Díaz L, Gonzalez--Martínez O, Lovelle-Enríquez O, Sánchez-Álvarez M. Infecciones bacterianas asociadas a la COVID-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar. 2020; 49 (3). Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/793
dc.relation.references8. Rodríguez-Morales, Álvarez Moreno, Saavedra Trujillo. Consenso Colombiano SARS-CoV-2/COVID-19. Asociación Colombiana de Infectología (ACIN) 2021, Tercera edición. Pag:17-18
dc.relation.references9. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–70.
dc.relation.references10. MacIntyre CR, Chughtai AA, Barnes M, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis 2018; 18: 637
dc.relation.references11. Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest 2011;139:555e62.
dc.relation.references12. Rice TW, Rubinson L, Uyeki TM, Vaughn FL, John BB, Miller RR, et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med 2012;40:1487e98
dc.relation.references13. Shah NS, Greenberg JA, McNulty MC, Gregg KS, Riddell J, Mangino JE, et al.Bacterial and viral co-infections complicating severe influenza: incidence and impact among 507 US patients, 2013e14. J Clin Virol 2016;80:12e9.
dc.relation.references14. Johns Hopkins, University of Medicine. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. 2021 [citado 7 de febrero de 2021]. Disponible en: https://coronavirus.jhu.edu/map.html
dc.relation.references15. Instituto Nacional de Salud Colombia. Noticias coronavirus-casos [Internet]. COVID-19 en Colombia. 2021 [citado 7 de enero de 2021]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx
dc.relation.references16. Rivero V, Alberto J, Ledezma R, Carlos J, Pacheco H, Iván, et al. La salud de las personas adultas mayores durante la pandemia de COVID-19. J Negat No Posit Results. 2020;726-39. https://dx.doi.org/10.19230/jonnpr.3772.
dc.relation.references17. King A, Lefkowitz E, Adams M, Carstens E. Virus Taxonomy; 9th Report of the International Committee on Taxonomy of Viruses. 1st ed. San Diego, EEUU: Elsevier; 2012.
dc.relation.references18. Fehr A, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H, Bickerton E. Coronaviruses: Methods and Protocols. New York, NY: Springer New York; 2015.
dc.relation.references19. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613-620.
dc.relation.references20. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology. 2020;17(6):621-630. Available from: https://doi.org/10.1038/s41423-020-0458-z.
dc.relation.references21. Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.Available from:https://doi.org/10.1126/science.abb2507.
dc.relation.references22. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections. 2020;9(1):382-385.
dc.relation.references23. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. Available from: https://doi.org/10.1038/s41586-020-2180-5.
dc.relation.references24. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-574.
dc.relation.references25. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. Available from: https://doi.org/10.1038/s41586-020-2179-y.
dc.relation.references26. B.J. Langford et al. Bacterial co-infection and secondary infection in patients with COVID19: a living rapid review and meta-analysis. Clinical Microbiology and Infection (2020). doi.org/10.1016/j.cmi.2020.07.016
dc.relation.references27. Wu CP et al. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Cleveland Clinic Journal of Medicine. 2020, 87 (11) 659-663; DOI: https://doi.org/10.3949/ccjm.87a.ccc015
dc.relation.references28. Song W, Jia X, Zhang X, Ling Y, Yi Z. Co-infection in COVID-19, a cohort study. J Infect. 2021;82(3):414-51. https://doi.org/10.1016/j.jinf.2020.10.006
dc.relation.references29. Griffiths, EC, Pedersen, AB, Fenton, A. y Petchey, OL (2011). Naturaleza y consecuencias de la coinfección en humanos. The Journal of Infection , 63 (3), 200-206. https://doi.org/10.1016/j.jinf.2011.06.005
dc.relation.references30. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H ali abraham, Jeda AS, et al. Bacterial co‐infections with SARS‐CoV‐2. Iubmb Life. 2020;10.1002/iub.2356. https://doi.org/10.1002/iub.2356
dc.relation.references31. Fattorini, L., Creti, R., Palma, C., Pantosti, A., Unit of Antibiotic Resistance and Special Pathogens, & Unit of Antibiotic Resistance and Special Pathogens of the Department of Infectious Diseases, Istituto Superiore di Sanità, Rome (2020). Bacterial coinfections in COVID-19: an underestimated adversary. Annali dell'Istituto superiore di sanita, 56(3), 359–364. https://doi.org/10.4415/ANN_20_03_14
dc.relation.references32. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus research, 285, 198005. https://doi.org/10.1016/j.virusres.2020.198005.
dc.relation.references33. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3
dc.relation.references34. Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. The Journal of infection, 81(2), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046.
dc.relation.references35. De Francesco MA, Poiesi C, Gargiulo F, Bonfanti C, Pollara P, Fiorentini S, et al. Co-infection of chlamydia pneumoniae and mycoplasma pneumoniae with SARS-CoV-2 is associated with more severe features. J Infect. abril de 2021;82(4):e4-7. https://doi.org/10.1016/j.jinf.2021.01.009.
dc.relation.references36. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8.. https://doi .org/10.1164/rccm.202002-0445OC.
dc.relation.references37. Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P, Dubert M, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care.2020;10:119. PMC7475952.
dc.relation.references38. Garcia-Vidal C et al., Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study, Clinical Microbiology and Infection, https://doi.org/10.1016/j.cmi.2020.07.041.
dc.relation.references39. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2021 DOI: 10.1056/NEJMoa2116044.
dc.relation.references40. Mahase E. Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical research ed.). 2021; 375, n2713. https://doi.org/10.1136/bmj.n2713
dc.relation.references41. Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clinical Microbiology and Infection. 2021; 27(4), 646-647. https://doi.org/10.1016/j.cmi.2020.09.055.
dc.relation.references42. Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. :1-2. doi: 10.1017 / ice.2020.381).
dc.relation.references43. Zavala-Flores E, Salcedo-Matienzo J. Medicación prehospitalaria en pacientes con COVID-19 de un hospital público de Lima-Perú. Acta Med Perurana. 2020; 37(3), 393 - 395. https://doi.org/10.35663/amp.2020.373.1277.
dc.relation.references44. Peckham H, de Gruijter N, Raine C, Radziszewska A, Ciurtin C, Wedderburn L et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications. 2020;11(1).doi.org/10.1038/s41467-020-19741-6.
dc.relation.references45. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Características, evolución clínica y factores asociados a la mortalidad en UCI de los pacientes críticos infectados por SARS-CoV-2 en España: estudio prospectivo, de cohorte y multicéntrico. Rev Esp Anestesiol Reanim. 2020;67(8):425-37. DOI: org/10.1016/j.redar.2020.07.003
dc.relation.references46. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2021). Decreasing mortality rates in ICU during the COVID-19 pandemic. Anaesthesia, 76 Suppl 3, 10. https://doi.org/10.1111/anae.15230.
dc.relation.references47. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2020). Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia, 75(10), 1340–1349. https://doi.org/10.1111/anae.15201.
dc.relation.references48. Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the emerging literature. Pipetius Quah1 , Andrew Li1 and Jason Phua1,2 https://doi.org/10.1186/s13054-020-03006-1.
dc.relation.references49. Algarín-Lara, E. Guevara-Romero, E. Osorio-Rodríguez et al., Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia, Acta Colombiana de Cuidado Intensivo, https://doi.org/10.1016/j.acci.2021.07.002.
dc.relation.references50. Saavedra C, López V, Linares P, Romero P, Solórzano C, Mora J, et al. Prevalencia de factores de riesgo para infección por Klebsiella pneumoniae resistente a carbapenémicos en adultos en un Hospital de cuarto nivel, Bogotá D.C. REC. 2018; 24: 13-9.
dc.relation.references51. Giovanetti Y, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Medicina& Laboratorio 2017; 23:387-398-http://docs.bvsalud.org/biblioref/2018/05/883698/resistencia-bacteriana.pdf
dc.relation.references52. Gómez-González JF, Sánchez-Duque JA. Perfil microbiológico y resistencia bacteriana en una unidad de cuidados intensivos de Pereira, Colombia, 2015. MÉD. UIS. 2018;31(2):9-15. Páginas. DOI: 10.18273/revmed.v31n2-2018001.
dc.relation.references53. Furukawa D, Graber CJ. Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin Infect Dis. 2021 May 18;72(10):e542-e544. doi: 10.1093/cid/ciaa1273. PMID: 32857832; PMCID: PMC7665318.
dc.relation.references54. Huttner BD, Catho G, Pano-Pardo JR, Pulcini C, Schouten J. COVID-19: don't neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020 Jul;26(7):808-810. doi: 10.1016/j.cmi.2020.04.024. Epub 2020 Apr 30. PMID: 32360446; PMCID: PMC7190532.
dc.relation.references55. Yam ELY. COVID-19 will further exacerbate global antimicrobial resistance. J Travel Med. 2020 Sep 26;27(6):taaa098. doi: 10.1093/jtm/taaa098. PMID: 32539142; PMCID: PMC7313869.
dc.relation.references56. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2013;368(23):2159-68.DOI: org/10.1056/nejmoa1214103.
dc.relation.references57. Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76(6):448-54. PMID: 20473258.
dc.relation.references58. Maes M, Higginson E, Pereira-Dias J, Curran MD, Parmar S, Khokhar F, et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit Care. 2021;25(1):25. DOI: org/10.1186/s13054-021-03460-5.
dc.relation.references59. Luyt C-E, Bouadma L, Morris AC, Dhanani JA, Kollef M, Lipman J, et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020;1-16. DOI:10.1016/j.immuni.2017.06.021.
dc.relation.references60. Roquilly A, McWilliam HEG, Jacqueline C, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity. 2017;47(1):135-147.e5. doi:10.1016/j.immuni.2017.06.021.
dc.relation.references61. Ayzac L, Girard R, Baboi L, Beuret P, Rabilloud M, Richard JC, et al. Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med. 2016;42(5):871-8. DOI:org/10.1007/s00134-015-4167-5.
dc.relation.references62. Arulkumaran N, Routledge M, Schlebusch S, Lipman J, Conway Morris A. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46(2):225-35. DOI: org/10.1007/s00134-020-05929-3.
dc.relation.references63. Alvarez Castaño VH, Guavita Cuta L, Ayala DA, Torres AL. VIGILANCIA DEMOGRÁFICA DE LA MORTALIDAD POR COVID-19 EN COLOMBIA 2020 [Internet]. Bogotá, D.C, Colombia: Ministerio de Salud; 2021 [citado 1 de enero de 2022] p. 1-31. (Infografía COVID-19). Reporte No.53. Disponible en: www.minsalud.gov.co%2Fsites%2Frid%2FLists%2FBibliotecaDigital%2FRIDE%2FVS%2FED%2FVSP%2Fvigilancia-demografica-mortalidad-covid-19-colombia2020.pdf&clen=7347860
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsVirus del SRAS
dc.subject.decsSARS Virus
dc.subject.decsCoronavirus Infections
dc.subject.decsCOVID-19
dc.subject.decsInfecciones por coronavirus
dc.subject.proposalCoinfección bacteriana
dc.subject.proposalBacterial coinfection
dc.subject.proposalinfección bacteriana secundaria
dc.subject.proposalbacterial secondary infection
dc.subject.proposalCoronavirus
dc.subject.proposalSARS-CoV-2
dc.title.translatedInfections associated with COVID-19 in hospitalized patients. 2021
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito