Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMoreno Mantilla, Carlos Eduardo
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.authorNiño Casallas, Jorge Andrei
dc.date.accessioned2022-02-21T18:00:21Z
dc.date.available2022-02-21T18:00:21Z
dc.date.issued2021-10-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81026
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLa ecoeficiencia se define como una relación entre el beneficio económico percibido por un sistema productivo y el impacto ambiental generado. Dentro de las metodologías disponibles para el cálculo de este último, está el análisis emergético el cual cuantifica la cantidad de energía directa e indirecta usada para crear un bien o un servicio bajo una misma unidad, evidenciando la inversión hecha por el ecosistema en aquel producto o servicio, lo cual permite integrarse con el análisis de ecoeficiencia. De esta forma, el propósito del presente estudio es implementar el análisis emergético para el cálculo de ecoeficiencia en el proceso de tostación de una planta productora de malta cervecera, donde el consumo energético es considerable. Para el desarrollo se realizó un análisis de entradas y salidas del sistema, se aplicaron transformicidades en cada entrada y se calcularon indicadores emergéticos que caracterizan el sistema. Con estos datos, se cuantificó la emergía total requerida por el sistema y se halló la ecoeficiencia con referencia al ingreso económico, obteniendo un valor de 2.90x10-13 USD/sej, y de 6.43x10-16 ton/sej respecto a la cantidad de malta producida. Con los resultados obtenidos se sugiere reusar la energía en el proceso de calderas y tostación, disminuir el consumo de fuentes no renovables, y disminuir las pérdidas de energía del sistema, en busca de generar un mejor comportamiento ambiental. De acuerdo con esto la implementación del método emergético en el análisis de ecoeficiencia, permite identificar puntos de mejora en la relación económica y ambiental de un sistema industrial. (Texto tomado de la fuente).
dc.description.abstractEco-efficiency is defined as a relationship between economic benefit perceived by a production system and the environmental impact generated. Into the methodologies available for calculating the environmental impact, there is the emergy analysis which quantifies the amount of direct and indirect energy used to create a good or a service under the same unit, determining the investment made by the ecosystem in that product or service, which allows integration with the eco-efficiency analysis. In this way, the purpose of this study is to implement emergy analysis for the calculation of eco-efficiency in the kilning process of a brewing malt production plant, where energy consumption is considerable. For that development, an analysis of inputs and outputs of the system was carried out, transformities were applied in each input and emergy indicators were calculated to characterize the system. With these data, total emergy required by the system was quantified and eco-efficiency was found with reference to economic income, obtaining a value of 2.90x10-13 USD/sej, and 6.43x10-16 ton/sej regarding the quantity of malt produced. According with that, it is suggested to reuse the energy in the boiler and kilning process, reduce the consumption of non-renewable sources, and reduce the energy losses of the system, to generate a better environmental behavior. In this way, the implementation of the emergy method in the eco-efficiency analysis, allows to identify points of improvement in the economic and environmental relationship of an industrial system.
dc.format.extentxxi, 100 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleImplementación del método emergético para el análisis de la ecoeficiencia en el proceso de tostación de una planta de producción de malta cervecera
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Industrial
dc.description.researchareaIngeniería de la productividad
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesACCEFYN. (2003). Factores de emisión de los combustibles colombianos. Informe final, presentado a UPME
dc.relation.referencesAlibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03758
dc.relation.referencesAlizadeh, S., Zafari-koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327
dc.relation.referencesAlkhuzaim, L., Zhu, Q., & Sarkis, J. (2021). Evaluating Emergy Analysis at the Nexus of Circular Economy and Sustainable Supply Chain Management. Sustainable Production and Consumption, 25, 413–424. https://doi.org/10.1016/j.spc.2020.11.022
dc.relation.referencesÁlvarez, S., Lomas, P. L., Martín, B., Rodríguez, M., & Montes, C. (2005). El Sistema de Evaluación Emergética (Emergy Synthesis). Integrando Energía, Ecología y Economía. February 2015.
dc.relation.referencesArnold, M., & Osorio, F. (1998). Introduccion a los conceptos basicos de la teoria general de sistemas. Cinta de Moebio, 27, 157–159. https://www.redalyc.org/pdf/101/10100306.pdf
dc.relation.referencesBakshi, B. R. (2002). A thermodynamic framework for ecologically conscious process systems engineering. Computers and Chemical Engineering, 26(2), 269–282. https://doi.org/10.1016/S0098-1354(01)00745-1
dc.relation.referencesBakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005
dc.relation.referencesBakshi, B. R. (2019). Sustainable Engineering principles and practice. Cambridge University Press. https://doi.org/10.1017/9781108333726
dc.relation.referencesBleier, F. P. (1997). Fan Handbook: Selection, Application, and Design. McGraw-Hill Book Company.
dc.relation.referencesBolanakis, D. E., Kotsis, K. T., & Laopoulos, T. (2015). Temperature influence on differential barometric altitude measurements. Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2015, 1(September), 120–124. https://doi.org/10.1109/IDAACS.2015.7340711
dc.relation.referencesBreedveld, L., Timellini, G., Casoni, G., Fregni, A., & Busani, G. (2007). Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, 15(1), 86–93. https://doi.org/10.1016/j.jclepro.2005.08.015
dc.relation.referencesBriggs, D. E. (1998). Malts and Malting (1st ed.). Springer US.
dc.relation.referencesBrown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9
dc.relation.referencesBrown, Mark T. (2004). A picture is worth a thousand words: Energy systems language and simulation. Ecological Modelling, 178(1–2), 83–100. https://doi.org/10.1016/j.ecolmodel.2003.12.008
dc.relation.referencesBrown, Mark T., Campbell, D. E., De Vilbiss, C., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92–95. https://doi.org/10.1016/j.ecolmodel.2016.03.018
dc.relation.referencesBrown, Mark T., Raugei, M., & Ulgiati, S. (2012). On boundaries and “investments” in Emergy Synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecological Indicators, 15(1), 227–235. https://doi.org/10.1016/j.ecolind.2011.09.021
dc.relation.referencesBrown, Mark T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017
dc.relation.referencesCangrejo Castro, N. (2020). Integración de Economía Circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector. Universidad Nacional de Colombia.
dc.relation.referencesCano. (2018). Sustainability Assessment of Alluvial and Open Pit Mining Systems in Colombia : Life Cycle Assessment , Exergy Analysis , and Emergy Accounting Evaluación de sostenibilidad de los sistemas de extracción aluvial y a cielo abierto en Colombia . Análisis Eme.
dc.relation.referencesCano Londoño, N. A. (2012). Análisis mediante el método emergético de la disposición de los lodos producidos en una planta de tratamiento de aguas residuales. (Aplicación a una PTAR en el Área Metropolitana del Valle de Aburrá). http://www.bdigital.unal.edu.co/8652/1/tesisnataliacano.pdf
dc.relation.referencesCano, N. A., Velásquez, H. I., & McIntyre, N. (2019). Comparing the environmental sustainability of two gold production methods using integrated Emergy and Life Cycle Assessment. Ecological Indicators, 107(July), 105600. https://doi.org/10.1016/j.ecolind.2019.105600
dc.relation.referencesCao, K., & Feng, X. (2007). The emergy analysis of multi-product systems. Process Safety and Environmental Protection, 85(5 B), 494–500. https://doi.org/10.1205/psep07007
dc.relation.referencesCao, L., Zhou, Z., Wu, Y., Huang, Y., & Cao, G. (2019). Is metabolism in all regions of China performing well? – Evidence from a new DEA-Malmquist productivity approach. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105487
dc.relation.referencesCELSIA. (2020). Sistema Interconectado de Energía. https://www.celsia.com/wp-content/uploads/2020/09/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdf
dc.relation.referencesChang, C. S., Ni, S. H., Yang, H. S., & Chou, C. T. (2021). Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. Journal of the Taiwan Institute of Chemical Engineers, 120, 67–76. https://doi.org/10.1016/j.jtice.2021.03.027
dc.relation.referencesChapman, S. J. (2012). Máquinas eléctricas (5ta ed.). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
dc.relation.referencesChen, D., Li, X. C., Luo, Z. H., & Chen, J. (2019). Ecological and economic feasibility analysis of irrigation engineering projects. Applied Ecology and Environmental Research, 17(1), 781–793. https://doi.org/10.15666/aeer/1701_781793
dc.relation.referencesCorcelli, F., Ripa, M., & Ulgiati, S. (2018). Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resources, Conservation and Recycling, 131, 313–328. https://doi.org/10.1016/j.resconrec.2017.11.028
dc.relation.referencesCreswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). SAGE.
dc.relation.referencesDaly, H. E., & Farley, J. (2011). Ecological economics : principles and applications (2nd Editio). Island Press.
dc.relation.referencesDe Clerck, J. (1957). A textbook of brewing: Vol. One. Chapman & Hall LTDA.
dc.relation.referencesde Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of the Total Environment, 726, 138111. https://doi.org/10.1016/j.scitotenv.2020.138111
dc.relation.referencesdos Reis, J. C., Rodrigues, G. S., de Barros, I., Ribeiro Rodrigues, R. de A., Garrett, R. D., Valentim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., Rodrigues-Filho, S., Pimentel, P. E. O., & Smukler, S. (2021). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124580
dc.relation.referencesDyllick, T., & Hockerts, K. (2002). BEYOND THE BUSINESS CASE FOR CORPORATE. 141, 130–141.
dc.relation.referencesEnergy Technology Support Unit. (1986). Heat recovery from a boiler exhaust to pre-heat air to a spray dryer: A Demonstration Project at BIP Chemicals Ltd. Journal of Heat Recovery Systems, 6(1), 25–31.
dc.relation.referencesFan, Y., & Fang, C. (2020). Assessing environmental performance of eco-industrial development in industrial parks. Waste Management, 107, 219–226. https://doi.org/10.1016/j.wasman.2020.04.008
dc.relation.referencesField, B. C., & Field, M. K. (2016). Environmental Economics: An Introduction (Seventh Ed). McGraw-Hill Education.
dc.relation.referencesFlucorrex AG. (2018). Maltings: Heat-Exchanger. https://www.flucorrex.ch/heat-exchanger-e.html
dc.relation.referencesGeng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8
dc.relation.referencesGeng, Y., Zhang, P., Ulgiati, S., & Sarkis, J. (2010). Emergy analysis of an industrial park: The case of Dalian, China. Science of the Total Environment, 408(22), 5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081
dc.relation.referencesGiannetti, B. F. B. F., Agostinho, F., Moraes, L. C., Almeida, C. M. V. B. C. M. V. B., & Ulgiati, S. (2015). Multicriteria cost-benefit assessment of tannery production: The need for breakthrough process alternatives beyond conventional technology optimization. Environmental Impact Assessment Review, 54, 22–38. https://doi.org/10.1016/j.eiar.2015.04.006
dc.relation.referencesHák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003
dc.relation.referencesHau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215–225. https://doi.org/10.1016/j.ecolmodel.2003.12.016
dc.relation.referencesHe, C. (2011). Eco-efficiency evaluation of the water conservancy and hydropower project based on emergy analysis theory. 2011 International Conference on Multimedia Technology, ICMT 2011, 4389–4393. https://doi.org/10.1109/ICMT.2011.6002980
dc.relation.referencesHellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51. https://doi.org/10.2175/106143097x125173
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodologia de la Investigacion (I. EDITORES (ed.); 6th ed.). McGRAW-HILL.
dc.relation.referencesHuguet, J., Woodbury, K., & Taylor, R. (2008). Development of excel add-in modules for use in thermodynamics curriculum: steam and ideal gas properties. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--4023
dc.relation.referencesHuppes, G., & Ishikawa, M. (2007). Eco-efficiency in industry and science (G. Huppes & M. Ishikawa (eds.); 22nd ed.).
dc.relation.referencesIDEAM. (2014). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/
dc.relation.referencesISO. (2006). ISO 14040:2006. https://www.iso.org/obp/
dc.relation.referencesKamp, A., Ambye-Jensen, M., & Østergård, H. (2019). Modelling matter and energy flows of local, refined grass-clover protein feed as alternative to imported soy meal. Ecological Modelling, 410(September 2018), 108738. https://doi.org/10.1016/j.ecolmodel.2019.108738
dc.relation.referencesKamp, A., Morandi, F., & Estergård, H. (2016). Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods. Ecological Indicators, 60, 884–892. https://doi.org/10.1016/j.ecolind.2015.08.011
dc.relation.referencesKunze, W. (2019). Technology Brewing and Malting (O. Hendel (ed.); 6th ed.).
dc.relation.referencesLi, D., Zhu, J., Hui, E. C. M., Leung, B. Y. P., & Li, Q. (2011). An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators, 11(5), 1419–1425. https://doi.org/10.1016/j.ecolind.2011.03.004
dc.relation.referencesLi, H., Yao, X., Tachega, M. A., Ahmed, D., & Ismaail, M. G. A. (2021). Technology selection for hydrogen production in China by integrating emergy into life cycle sustainability assessment. Journal of Cleaner Production, 294, 126303. https://doi.org/10.1016/j.jclepro.2021.126303
dc.relation.referencesLi, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on green power dispatching based on an emergy-based life cycle assessment. Processes, 8(1). https://doi.org/10.3390/pr8010114
dc.relation.referencesLiu, C., Cai, W., Jia, S., Zhang, M., Guo, H., Hu, L., & Jiang, Z. (2018). Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Conversion and Management, 177, 176–189. https://doi.org/10.1016/j.enconman.2018.09.039
dc.relation.referencesLiu, Conghu, Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. Energy, 224, 120170. https://doi.org/10.1016/j.energy.2021.120170
dc.relation.referencesLiu, W., Zhan, J., Li, Z., Jia, S., Zhang, F., & Li, Y. (2018). Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020453
dc.relation.referencesLiu, X., Guo, P., & Guo, S. (2019). Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. Journal of Cleaner Production, 206, 1101–1109. https://doi.org/10.1016/j.jclepro.2018.09.218
dc.relation.referencesLu, F., Ming, Q. Z., Liu, H. F., & Luo, W. H. (2014). Applying eco-efficiency and emergy theory to the quantitative evaluation of tourism industry ecologicalization. In Advanced Materials Research (Vols. 1010–1012). https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.2025
dc.relation.referencesLu, H., Bai, Y., Ren, H., & Campbell, D. E. (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91(12), 2727–2735. https://doi.org/10.1016/j.jenvman.2010.07.025
dc.relation.referencesLu, H., Xu, F. Y., Liu, H., Wang, J., Campbell, D. E., & Ren, H. (2019). Emergy-based analysis of the energy security of China. Energy, 181, 123–135. https://doi.org/10.1016/j.energy.2019.05.170
dc.relation.referencesMallett, J. (2014). Malt: A Practical Guide from Field to Brewhouse. Brewer publications.
dc.relation.referencesMarchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571. https://doi.org/10.1016/j.wasman.2006.04.007
dc.relation.referencesMars, A. (2018). Psychro-chart2d. https://drajmarsh.bitbucket.io/psychro-chart2d.html
dc.relation.referencesMcbride, B., & Gordon, S. (1992). Computer program for calculating and fitting thermodynamic functions. NASA Reference Publication 1271.
dc.relation.referencesMerlin, G., & Boileau, H. (2017). Eco-efficiency and entropy generation evaluation based on emergy analysis: Application to two small biogas plants. Journal of Cleaner Production, 143, 257–268. https://doi.org/10.1016/j.jclepro.2016.12.117
dc.relation.referencesMoran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics (8th ed.). John Wiley & Sons, Inc.
dc.relation.referencesNatural Resources Canada. (2016). INCREASING THE ENERGY EFFICIENCY OF BOILER AND HEATER INSTALLATIONS. https://www.nrcan.gc.ca/energy/publications/efficiency/industrial/cipec/6699
dc.relation.referencesNielsen, S. N., & Bastianoni, S. (2007). A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2(3), 170–185. https://doi.org/10.2495/ECO-V2-N3-170-185
dc.relation.referencesNikodinoska, N., Buonocore, E., Paletto, A., & Franzese, P. P. (2017). Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework. Applied Energy, 186, 197–210. https://doi.org/10.1016/j.apenergy.2016.04.073
dc.relation.referencesNimmanterdwong, P., Chalermsinsuwan, B., Østergård, H., & Piumsomboon, P. (2017). Environmental performance assessment of Napier grass for bioenergy production. Journal of Cleaner Production, 165, 645–655. https://doi.org/10.1016/j.jclepro.2017.07.126
dc.relation.referencesOdum, E. C., Odum, H. T., Fe, S., & College, C. (1980). ENERGY SYSTEMS AND ENVIRONMENTAL EDUCATION Elisabeth C. Odum and Howard T. Odum Santa Fe Community College, Gainesville, FL 32602, U.S.A. University of Florida, Gainesville, FL 32611, U.S.A.
dc.relation.referencesOdum, E. P. (1976). Energy, Ecosystem Development and Environmental Risk. The Journal of Risk and Insurance, 43(1), 1. https://doi.org/10.2307/251605
dc.relation.referencesOdum, H. (1988). Self-Organization, Transformity, and Information. SCIENCE, 24–2.
dc.relation.referencesOdum, H.T. (2002). Folio #2 Emergy global Processes. Handbook of Emergy Evaluation, 4(September), 1–40.
dc.relation.referencesOdum, Howard T. (1995). Environmental Accounting: Emergy and Environmental Decision Making.
dc.relation.referencesOdum, Howard T, Brown, M. T., & Brandt-Williams, S. (2000). Folio #1 Introduction and Global Budget. Handbook of Emergy Evaluation, May, 16. http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_01.pdf
dc.relation.referencesOficina Económica y Comercial de la Embajada de España en Bogotá. (2020). El mercado de las bebidas alcohólicas en Colombia. http://colombia.oficinascomerciales.es/
dc.relation.referencesOggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5), 2842–2854. https://doi.org/10.1016/j.enpol.2011.02.057
dc.relation.referencesPanzieri, M., Marchettini, N., & Bastianoni, S. (2002). A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systems. International Journal of Sustainable Development and World Ecology, 9(1), 1–8. https://doi.org/10.1080/13504500209470097
dc.relation.referencesPorter, M. E., Linde, C. Van Der, & Porter, M. E. (1995). Green and Competitive : Ending the Stalemate Green and Competitive :
dc.relation.referencesRafat, E., Babaelahi, M., & Mofidipour, E. (2019). Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. International Journal of Thermodynamics, 22(3), 118–126. https://doi.org/10.5541/ijot.552938
dc.relation.referencesRen, S., Feng, X., & Yang, M. (2020). Emergy evaluation of power generation systems. Energy Conversion and Management, 211(December 2019), 112749. https://doi.org/10.1016/j.enconman.2020.112749
dc.relation.referencesRodríguez-Ortega, T., Bernués, A., Olaizola, A. M., & Brown, M. T. (2017). Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems. Journal of Cleaner Production, 144, 171–179. https://doi.org/10.1016/j.jclepro.2016.12.089
dc.relation.referencesSmirnov, V. N. (2020). Calculation of strong-collision dissociation rate constants from NASA thermodynamic polynomials. International Journal of Chemical Kinetics, 52(9), 559–579. https://doi.org/10.1002/kin.21369
dc.relation.referencesSong, Q., Wang, Z., Li, J., & Duan, H. (2012). Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 42, 223–231. https://doi.org/10.1016/j.ecoleng.2012.02.016
dc.relation.referencesSu, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119650
dc.relation.referencesTang, M., Hong, J., Wang, X., & He, R. (2020). Sustainability accounting of neighborhood metabolism and its applications for urban renewal based on emergy analysis and SBM-DEA. Journal of Environmental Management, 275(April), 111177. https://doi.org/10.1016/j.jenvman.2020.111177
dc.relation.referencesThiel, D. (2014). Research methods for engineers. Cambridge University Press.
dc.relation.referencesTilley, D. R. (1999). Emergy Basis of Forest Systems. Ph.D., 296. internal-pdf://tilley1999-1031041536/Tilley1999.pdf
dc.relation.referencesUPME. (2021). BALANCE ENERGETICO COLOMBIANO - BECO. https://www1.upme.gov.co/informacioncifras/paginas/balanceenergetico.aspx
dc.relation.referencesVanti, G. (2020). ¿Quiénes somos? https://www.grupovanti.com/conocenos/
dc.relation.referencesWaas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability (Switzerland), 6(9), 5512–5534. https://doi.org/10.3390/su6095512
dc.relation.referencesWagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Maresˇ, R., Oguchi, K., Sato, H., Sto¨cker, I., Sˇifner, O., Takaishi, Y., Tanishita, I., Tru¨benbach, J., & Willkommen, T. (2000). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam . Journal of Engineering for Gas Turbines and Power, 122(1), 150–184. https://doi.org/10.1115/1.483186
dc.relation.referencesXu, Z., Tang, Y., Wang, Q., Xu, Y., Yuan, X., Ma, Q., Wang, G., Liu, M., & Hao, H. (2021). Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production, 297, 126638. https://doi.org/10.1016/j.jclepro.2021.126638
dc.relation.referencesYazdani, S., Salimipour, E., & Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis. Journal of Cleaner Production, 274, 123158. https://doi.org/10.1016/j.jclepro.2020.123158
dc.relation.referencesZhang, J., Ma, L., & Yan, Y. (2020). A dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061781
dc.relation.referencesZhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000-2010. Ecological Indicators, 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004
dc.relation.referencesZhang, X., Wei, Y., Pan, H., Xiao, H., Wu, J., & Zhang, Y. (2015). The comparison of performances of a sewage treatment system before and after implementing the cleaner production measure. Journal of Cleaner Production, 91, 216–228. https://doi.org/10.1016/j.jclepro.2014.12.025
dc.relation.referencesZhao, Z., Chen, J., Bai, Y., & Wang, P. (2020). Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Physics and Chemistry of the Earth, 120(July), 102907. https://doi.org/10.1016/j.pce.2020.102907
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembBrewing industry
dc.subject.lembIndustria cervecera
dc.subject.lembEnergy efficiency
dc.subject.lembRendimiento energético
dc.subject.lembEfficiency
dc.subject.lembEficiencia
dc.subject.proposalMaltería
dc.subject.proposalCebada
dc.subject.proposalMalta
dc.subject.proposalTostación
dc.subject.proposalEmergía
dc.subject.proposalEcoeficiencia
dc.subject.proposalMalt plant
dc.subject.proposalBarley
dc.subject.proposalMalt
dc.subject.proposalKilning
dc.subject.proposalEmergy
dc.subject.proposalEco-efficiency
dc.title.translatedImplementation of emergy method for eco-efficiency analysis in kilning process of a brewing malt production plant
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito