Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMartínez Suárez, Jaime Fernando
dc.contributor.advisorChaves Silva, Diana Carolina
dc.contributor.advisorQuevedo Buitrago, William Giovanni
dc.contributor.authorLugo Vargas, Andrés Felipe
dc.date.accessioned2022-02-23T20:53:03Z
dc.date.available2022-02-23T20:53:03Z
dc.date.issued2022-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81049
dc.descriptionilustraciones, gráficas
dc.description.abstractEn el presente estudio se exploró mediante la técnica de voltamperometría diferencial de pulsos (VDP) la respuesta electroquímica de α-pirrolidinopentiofenona (α-PVP) y 3,4-metilendioximetanfetamina (MDMA) frente a un biosensor electroquímico basado a en la isoforma CYP2D6 del citocromo P450 unida a través de enlace covalente a la superficie de carbono de electrodos serigrafiados (Electrodo de trabajo: C, electrodo auxiliar: C, electrodo de referencia: Ag/AgCl). El biosensor fue caracterizado mediante cupla ferro/ferricianuro de potasio y pruebas de inhibición con quinidina. Como resultado se evidenció una respuesta de los analitos frente al biosensor electroquímico relacionada con la actividad enzima-sustrato, con una respuesta directamente proporcional y con tendencia lineal entre la concentración del analito y la corriente de pico catódico; los límites de deteccion y cuantificación obtenidos para el analito MDMA fueron 0,0085 µM (1,64 ng/mL) y 0,028 µM (5,41 ng/mL) respectivamente, para el analito α-PVP los límites de detección y cuantificación fueron 0,0099 µM (2,2 ng/mL) y 0,033 µM (7,6 ng/mL), respectivamente. Finalmente se estudió la interferencia generada por otra especie diferente al analito de interés en matrices binarias (α-PVP +MDMA, α-PVP + cafeína y MDMA + cafeína) donde se observó que la detección de ambos analitos de interés en una misma matriz no fue posible, sin embargo, la presencia de cafeína no representó una interferencia para el análisis de MDMA. (Texto tomado de la fuente).
dc.description.abstractIn this study, the electrochemical response of α-Pyrrolidinopentiophenone (α-PVP) and 3,4-Methylenedioxymethamphetamine (MDMA) was explored using differential pulse voltammetry against an electrochemical biosensor based on the CYP2D6 isoform of cytochrome P450 bound via covalent bond to the carbon surface of screen-printed electrodes (Working electrode: C, auxiliary electrode: C, reference electrode: Ag/AgCl). The biosensor was characterized by potassium ferro/ferricyanide couple and quinidine inhibition tests. A response of the analytes to the electrochemical biosensor related to the enzyme-substrate activity could be evidenced, with a directly proportional response and with a linear trend between the concentration of the analyte and the cathodic peak current; the detection and quantification limits obtained for the MDMA analyte were 0.0085 μM (1,64 ng/mL) and 0.028 μM (5,41 ng/mL) respectively, for the α-PVP analyte the detection and quantification limits were 0.0099 μM (2,2 ng/mL) and 0.033 μM (7,6 ng/mL), respectively. Finally, the interference generated by another species different from the analyte of interest in binary matrices (α-PVP + MDMA, α-PVP + caffeine and MDMA + caffeine) was studied, where it was observed that the detection of both analytes of interest in the same matrix did not was possible, however, the presence of caffeine did not represent an interference for the analysis of MDMA.
dc.format.extentxxi, 115 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleDetección electroquímica de α-Pirrolidinopentiofenona (α-PVP) Y 3,4-Metilendioximetanfetamina (MDMA) mediante un biosensor electroquímico basado en la isoenzima 2D6 del citocromo P450
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Toxicología
dc.contributor.researchgroupSustancias Psicoactivas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Toxicología
dc.description.researchareaAnálisis toxicológico de laboratorio en sustancias psicoactivas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Toxicología
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesUNODC. INFORME MUNDIAL SOBRE LAS DROGAS 2020 - RESUMEN EJECUTIVO. 2020. p. 1–14.
dc.relation.referencesMendoza-Valencia CY, Mariño Gaviria DJ, Patiño Reyes N, Lopez-Vallejo F, Sarmiento Gutiérrez ÁE, Trespalacios Rodríguez D. Mix of new substances psychoactive, NPS, found in blotters sold in two Colombian cities. Forensic Sci Int. 2019;304.
dc.relation.referencesFeng L, Battulga A, Han E, Chung H. New psychoactive substances of natural origin : A brief review. J food drug Anal. 2017;25:461–71.
dc.relation.referencesCruz SL, Teresa M, García R. Las nuevas drogas : origen , mecanismos de acción y efectos . Una revisión de la literatura. Rev int investig adicciones. 2015;52(55):68–76.
dc.relation.referencesJoão M, Paula V, Pinho G De. Khat and synthetic cathinones : a review. Arch Toxicol. 2014;88:15–45.
dc.relation.referencesCoppola M, Mondola R. Synthetic cathinones : Chemistry , pharmacology and toxicology of a new class of designer drugs of abuse marketed as “ bath salts ” or “ plant food .” Toxicol Lett. 2012;211(2):144–9.
dc.relation.referencesLugo-Vargas A, Chaves-Silva D, Quevedo-Buitrago W, Martínez-Suárez J. Catinonas sintéticas: una revisión del panorama actual y las estrategias de detección analítica. Rev toxicol. 2020;37:31–40.
dc.relation.referencesFelice LJ De, Glennon RA, Negus SS. Synthetic cathinones : Chemical phylogeny , physiology , and neuropharmacology. Life Sci. 2014;97(1):20–6.
dc.relation.referencesEspert R, Pérez J, Gadea M, Oltra-Cucharella J AM. Drogas emergentes: catinonas sintéticas (“sales de baño”). Rev Esp Drog. 2015;40(2):56–71.
dc.relation.referencesGraddy R, Buresh ME, Rastegar DA. New and Emerging Illicit Psychoactive Substances. Med Clin North Am. 2018;102(4):697–714.
dc.relation.referencesValento M, Lebin J. Emerging Drugs of Abuse: Synthetic Cannabinoids, Phenylethylamines (2C Drugs), and Synthetic Cathinones. Clin Pediatr Emerg Med. 2017;18(3):203–11.
dc.relation.referencesProsser JM, Nelson LS. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. J Med Toxicol. 2012;8(1):33–42.
dc.relation.referencesRiley AL, Nelson KH, To P, López-arnau R, Xu P, Wang D, et al. Abuse potential and toxicity of the synthetic cathinones ( i . e ., “ Bath salts ”). Neurosci Biobehav Rev. 2018;(July):1–24.
dc.relation.referencesODC. Sistema de alertas tempranas: Aparición de nuevas sustancias psicoactivas en Colombia. Enero de 2017. 2017.
dc.relation.referencesBanks ML, Worst TJ, Rusyniak DE, Sprague JE. Synthetic cathinones (“Bath Salts”). J Emerg Med. 2014;46(5):632–42.
dc.relation.referencesFerreira C, Vaz AR, Florindo PR, Lopes Á, Brites D, Quintas A. Development of a high throughput methodology to screen cathinones’ toxicological impact. Forensic Sci Int. 2019;298:1–9.
dc.relation.referencesTremeau-Cayel L, Carnes S, Schanfield MS, Lurie IS. A comparison of single quadrupole mass detection and diode array ultraviolet detection interfaced to ultra-high performance supercritical chromatography for the quantitative analysis of synthetic cathinones. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1091(January):96–100.
dc.relation.referencesNóbrega L, Dinis-Oliveira RJ. The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP): pharmacokinetic and pharmacodynamic clinical and forensic aspects. Drug Metab Rev. 2018;50(2):125–39.
dc.relation.referencesSimmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458–70.
dc.relation.referencesRickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol. 2015;25(3):365–76.
dc.relation.referencesDargan PI, Sedefov R, Gallegos A, Wood DM. The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Test Anal. 2011;3(7–8):454–63.
dc.relation.referencesMartínez Clemente J, López-Arnau R, Carbó M, Pubill D, Camarasa J, Escubedo E. Mephedrone pharmacokinetics after intravenous and oral administration in rats : relation to pharmacodynamics . Psychopharmacology (Berl). 2013;229(2):295–306.
dc.relation.referencesEllefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev. 2016;48(2):237–65.
dc.relation.referencesPapaseit E, Pérez-Mañá C, Mateus JA, Pujadas M, Fonseca F, Torrens M, et al. Human pharmacology of mephedrone in comparison with MDMA. Neuropsychopharmacology. 2016;41(11):2704–13.
dc.relation.referencesVignali C, Moretti M, Groppi A, Osculati AMM, Tajana L, Morini L. Distribution of the synthetic cathinone α-pyrrolidinohexiophenone in biological specimens. J Anal Toxicol. 2019;43(1):E1–6.
dc.relation.referencesLópez-arnau R, Martínez-clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives : butylone , mephedrone and methylone. Br J Pharmacol. 2012;167:407–20.
dc.relation.referencesMeyer MR, Maurer HH. Metabolism of Designer Drugs of Abuse : An Updated Review. Curr Drug Metab. 2010;11:468–82.
dc.relation.referencesSilva EA, Martínez JA. Antecedentes del estudio metabólico de MDPV y metilona . Propuesta de un modelo de biotransformación a través de hongos del género Cunninghamella. Rev Colomb Ciencias químico-farmacéuticas. 2016;45(3):484–502.
dc.relation.referencesManier SK, Richter LHJ, Schäper J, Maurer HH, Meyer MR. Different in vitro and in vivo tools for elucidating the human metabolism of alpha-cathinone-derived drugs of abuse. Vol. 10, Drug Testing and Analysis. 2018. 1119–1130 p.
dc.relation.referencesPedersen AJ, Petersen TH, Linnet K. In vitro metabolism and pharmacokinetic studies on methylone. Drug Metab Dispos. 2013;41(6):1247–55.
dc.relation.referencesCalinski DM, Kisor DF, Sprague JE. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology (Berl). 2019;236(3):881–90.
dc.relation.referencesOlesti E, Farré M, Carbó M, Papaseit E, Perez-Mañá C, Torrens M, et al. Dose-Response Pharmacological Study of Mephedrone and Its Metabolites: Pharmacokinetics, Serotoninergic Effects, and Impact of CYP2D6 Genetic Variation. Clin Pharmacol Ther. 2019;106(3).
dc.relation.referencesTyrkko E, Andersson M, Kronstrand R. The toxicology of new psychoactive substances: Synthetic cathinones and phenylethylamines. Ther Drug Monit. 2016;38(2):190–216.
dc.relation.referencesMeyer MR, Wilhelm J, Peters FT, Maurer HH. Beta-keto amphetamines : studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone , butylone , and methylone in urine using gas chromatography – mass spectrometry. Anal Bioanal Chem. 2010;397:1225–33.
dc.relation.referencesStrano-rossi S, Cadwallader AB, Torre X De, Botre F. Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone ( MPDV ) by gas chromatography / mass spectrometry and liquid chromatography / quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:2706–14.
dc.relation.referencesNamera A, Konuma K, Kawamura M, Saito T, Nakamoto A, Yahata M, et al. Time-course profile of urinary excretion of intravenously administered a -pyrrolidinovalerophenone and a -pyrrolidinobutiophenone in a human. Forensic Toxicol. 2013;32(1):68–74.
dc.relation.referencesGerman CL, Fleckenstein AE, Hanson GR. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci. 2014;97(1):2–8.
dc.relation.referencesCarvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, et al. Toxicity of amphetamines: An update. Arch Toxicol. 2012;86(8):1167–231.
dc.relation.referencesCunha-Oliveira T, Rego AC, Carvalho FA, Oliveira CR. Medical Toxicology of Drugs of Abuse. In: Principles of Addiction. 2013. p. 159–75.
dc.relation.referencesRasmussen N. Amphetamine-type stimulants: The early history of their medical and non-medical uses. 1st ed. Vol. 120, International Review of Neurobiology. Elsevier Inc.; 2015. 9–25 p.
dc.relation.referencesChen KK, Schmidt CF. The action of ephedrine, an alkaloid from Ma Huang. Proc Soc Exp Biol Med. 1924;21(6):351–4.
dc.relation.referencesChen KK, Schmidt CF. The action and clinical use of ephedrine: an alkaloid isolated from the chinese drug Ma Huang. JAMA. 1926;87(11):836–42.
dc.relation.referencesEdeleano L. Ueber einige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Berichte der Dtsch Chem Gesellschaft. 1887;20(1):616–22.
dc.relation.referencesStrohl MP. Bradley ’ s Benzedrine Studies on Children with Behavioral Disorders. Yale J Biol Med. 2011;84:27–33.
dc.relation.referencesHeal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine , past and present – a pharmacological and clinical perspective. J Psychopharmacol. 2013; 27(6):479-96.
dc.relation.referencesRoberts C, Andrés. Contribution to the study of the mechanisms of action and neuropsychopharmacological effects of MDMA and new β-ketoamphetamines. Universitat de Barcelona; 2016.
dc.relation.referencesDe La Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M, et al. Human Pharmacology of MDMA: Pharmacokinetics, Metabolism, and Disposition. Ther Drug Monit. 2004;26(2):137–44.
dc.relation.referencesYoung R, Glennon RA. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice. Pharmacol Biochem Behav. 2008;88(3):318–31.
dc.relation.referencesJamali B, Torkamanian M, Badri N, Sheikholeslami B, Ardakani YH, Rouini MR. Assays for MDMA and Its Metabolites. Neuropathol Drug Addict Subst Misuse. 2016;2(November 2018):503–12.
dc.relation.referencesUNODC. World Drug Report 2019: Stimulants. 2019.
dc.relation.referencesUNODC. DRUG MARKET TRENDS : COCAINE AMPHETAMINE- TYPE STIMULANTS. 2021.
dc.relation.referencesODC. Sistema de alertas tempranas: Aparición de nuevas sustancias psicoactivas en Colombia. Septiembre de 2017.
dc.relation.referencesODC. Alerta informativa: comercialización de catinonas sintéticas como éxtasis bajo la presentación de polvo y cristales (Molly y MD). 2020.
dc.relation.referencesChau F, Leung AK. Application of Wavelet Transform in Electrochemical Studies. In: Walczak B, editor. Wavelets in Chemistry. Elsevier Science B.V.; 2000. p. 225–39.
dc.relation.referencesWang J. ANALYTICAL ELECTROCHEMISTRY. 3rd. ed. Hoboken, New Jersey: John Woley & Sons, Inc.; 2006. 1–3 p.
dc.relation.referencesPatel B. Electrochemistry for bioanalysis. 1st Editio. Nueva Delhi, India: Gayathri S; 2021.
dc.relation.referencesDawkins RC, Wen D, Hart JN, Vepsäläinen M. A screen-printed Ag/AgCl reference electrode with long-term stability for electroanalytical applications. Electrochim Acta. 2021;393:139-43.
dc.relation.referencesLi M, Li YT, Li DW, Long YT. Recent developments and applications of screen-printed electrodes in environmental assays-A review. Anal Chim Acta. 2012;734:31–44.
dc.relation.referencesGarcía-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open. 2021;3(February):100032.
dc.relation.referencesSher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. TrAC - Trends Anal Chem. 2021;143:116374.
dc.relation.referencesSimões FR, Xavier MG. Chapter 6 - Electrochemical Sensors. In: Micro and Nano Technologies. Elsevier Inc.; 2017. p. 155–78.
dc.relation.referencesRezaei B, Irannejad N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors. Elsevier Inc.; 2019. 11–43 p.
dc.relation.referencesCompton RG, Banks CE. Understanding Voltammetry. 3rd. Ed. United Kingdom: World Scientific Europe Ltd.; 2018. 1–11 p.
dc.relation.referencesElgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ. 2017;acs.jchemed.7b00361.
dc.relation.referencesMartínez Suárez JF. COMPORTAMIENTO ELECTROQUÍMICO DE COLORANTES ANTRAQUINÓNICOS, AZUL DE METILENO, Y COMPUESTOS AFINES EN SOLUCIÓN DE SOLVENTES NO-ACUOSOS. Universidad Nacional de La Plata; 2017.
dc.relation.referencesMüller M, Agarwal N, Kim J. A cytochrome P450 3A4 biosensor based on generation 4.0 PAMAM dendrimers for the detection of caffeine. Biosensors. 2016;6(44).
dc.relation.referencesShumyantseva V V., Kuzikov A V., Masamrekh RA, Bulko T V., Archakov AI. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron. 2018;121(August):192–204.
dc.relation.referencesYates ND, Fascione MA, Parkin A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem A Eur J. 2018;24(47):12164–82.
dc.relation.referencesArribas LA. Development of electrochemical devices for the determination of drugs of abuse. Universidad de Burgos; 2014.
dc.relation.referencesGilardi G. Cytochromes P450 Redox Activity. Encyclopedia of Interfacial Chemistry. Elsevier; 2018. 90–109 p.
dc.relation.referencesGonzález-Rodríguez JC, Guerra-Rodeiro D. El sistema citocromo P450 y el metabolismo de xenobióticos. Rev Cuba Farm. 2014;48(2):495–507.
dc.relation.referencesEsteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J Xenobiotics. 2021;11(3):94–114.
dc.relation.referencesNebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, et al. The P450 Gene Superfamily: Recommended Nomenclature. DNA. 1987;6(1):1–11.
dc.relation.referencesEnsafi AA. An introduction to sensors and biosensors. In: Electrochemical Biosensors. Elsevier Inc.; 2019. p. 1–10.
dc.relation.referencesThevenot D, Toth K, Durst R, Wilson G, Thevenot D, Toth K, et al. Electrochemical biosensors : Recommended definitions and classification. Biosens Bioelectron. 2001;16(1–2):121–31.
dc.relation.referencesZuccarello L, Barbosa C, Todorovic S, Silveira CM. Electrocatalysis by Heme Enzymes — Applications in Biosensing. Catalysts. 2021; 218 (11).
dc.relation.referencesNavaee A, Salimi A. Chapter 7 - Enzyme-based electrochemical biosensors. Electrochemical Biosensors. Elsevier Inc.; 2019. 167–211 p.
dc.relation.referencesMueller DM, Rentsch KM. Generation of metabolites by an automated online metabolism method using human liver microsomes with subsequent identification by LC-MS(n), and metabolism of 11 cathinones. Anal Bioanal Chem. 2012;402(6):2141–51.
dc.relation.referencesClark LC, Lyons C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann N Y Acad Sci. 1962;102(1):29–45.
dc.relation.referencesYáñez-Sedeño P, Campuzano S, Pingarrón JM. Integrated affinity biosensing platforms on screen-printed electrodes electrografted with diazonium salts. Sensors (Switzerland). 2018;18(2).
dc.relation.referencesBélanger D, Pinson J. Electrografting: A powerful method for surface modification. Chem Soc Rev. 2011;40(7):3995–4048.
dc.relation.referencesLebon F. Nano-composants à base de films minces organiques électrogreffés : Fabrication , caractérisation , étude du transport électronique et intégration Organic electrografted thin films based. l’Université Paris-Saclay. 2019.
dc.relation.referencesHetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces : Application to Biosensors. Biosensors. 2020;10(4).
dc.relation.referencesTehrani Z, Abbasi HY, Devadoss A, Evans JE, Guy OJ. Assessing surface coverage of aminophenyl bonding sites on diazotised glassy carbon electrodes for optimised electrochemical biosensor performance. Nanomaterials. 2021;11(2):1–14.
dc.relation.referencesGui AL, Liu G, Chockalingam M, le Saux G, Luais E, Harper JB, et al. A comparative study of electrochemical reduction of 4-nitrophenyl covalently grafted on gold and carbon. Electroanalysis. 2010;22(16):1824–30.
dc.relation.referencesBart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip. 2009;9(24):3481–8.
dc.relation.referencesSilva WP, Rocha RG, Arantes LC, Lima CD, Melo LMA, Munoz RAA, et al. Development of a simple and rapid screening method for the detection of 1-(3-chlorophenyl)piperazine in forensic samples. Talanta. 2021;233(June):122597.
dc.relation.referencesOiye ÉN, Figueiredo NB de, Andrade JF de, Tristão HM, Oliveira MF de. Voltammetric determination of cocaine in confiscated samples using a cobalt hexacyanoferrate film-modified electrode. Forensic Sci Int. 2009;192(1–3):94–7.
dc.relation.referencesOiye ÉN, Midori Toia Katayama J, Fernanda Muzetti Ribeiro M, de Oliveira MF. Electrochemical analysis of 25H-NBOMe by Square Wave Voltammetry. Forensic Chem. 2017;5:86–90.
dc.relation.referencesAsturias-Arribas L, Asunción Alonso-Lomillo M, Domínguez-Renedo O, Julia Arcos-Martínez M. Cytochrome P450 2D6 based electrochemical sensor for the determination of codeine. Talanta. 2014;129:315–9.
dc.relation.referencesAsturias-arribas L, Alonso-lomillo MA, Domínguez-renedo O, Arcos-martínez MJ. CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta. 2011;685(1):15–20.
dc.relation.referencesAlonso-Lomillo MA, Yardimci C, Domínguez-Renedo O, Arcos-Martínez MJ. CYP450 2B4 covalently attached to carbon and gold screen printed electrodes by diazonium salt and thiols monolayers. Anal Chim Acta. 2009;633(1):51–6.
dc.relation.referencesDelamar M, Hitmi R, Pinson J, Savéant J. Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts. J Am Chem Soc. 1992;114(14):5883–4.
dc.relation.referencesDownard AJ. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis. 2000;12(14):1085–96.
dc.relation.referencesDoppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S. Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chem Mater. 2007;19(18):4570–5.
dc.relation.referencesLacroix JC, Trippe-Allard G, Ghilane J, Martin P. Electrografting of conductive oligomers and polymers using diazonium electroreduction. Adv Nat Sci Nanosci Nanotechnol. 2014;5(1).
dc.relation.referencesPhal S, Shimizu K, Mwanza D, Mashazi P, Shchukarev A, Tesfalidet S. Electrografting of 4-carboxybenzenediazonium on glassy carbon electrode: The effect of concentration on the formation of mono and multilayers. Molecules. 2020;25(19):1–12.
dc.relation.referencesDragan AM, Truta FM, Tertis M, Florea A, Schram J, Cernat A, et al. Electrochemical Fingerprints of Illicit Drugs on Graphene and Multi-Walled Carbon Nanotubes. Front Chem. 2021;9(March):1–10.
dc.relation.referencesMcLaughlin LA, Paine MJI, Kemp CA, Maréchal JD, Flanagan JU, Ward CJ, et al. Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem. 2005;280(46):38617–24.
dc.relation.referencesBerka K, Anzenbacherová E, Hendrychová T, Lange R, Mašek V, Anzenbacher P, et al. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem. 2012;110:46–50.
dc.relation.referencesIwuoha E, Ngece R, Klink M, Baker P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: A selective serotonin reuptake inhibitor. IET Nanobiotechnology. 2007;1(4):62–7.
dc.relation.referencesFranke C, Ajayi RF, Uhuo O, Januarie K, Iwuoha E. Metallodendrimer-sensitised Cytochrome P450 3A4 Electrochemical Biosensor for TB Drugs. Electroanalysis. 2020;32(12):3075–85.
dc.relation.referencesMunyai Vukosi E. Recombinant expression of cytochrome P450-2D6 and its application in tamoxifen metabolism. UNIVERSITY OF WESTERN CAPE; 2018.
dc.relation.referencesIwuoha EI, Smyth MR. Reactivities of organic phase biosensors: 6. Square-wave and differential pulse studies of genetically engineered cytochrome P450cam (CYP101) bioelectrodes in selected solvents. Biosens Bioelectron. 2002;18(2–3):237–44.
dc.relation.referencesdos Santos PR. Development of oxidoreductase based electrochemical biosensors. Universidade Nova de Lisboa; 2013.
dc.relation.referencesCui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. Langmuir. 2014;30(39):11833–40.
dc.relation.referencesShumyantseva V V., Bulko T V., Rudakov YO, Kuznetsova GP, Samenkova NF, Lisitsa A V., et al. Nanoelectrochemistry of cytochrome P450s: Direct electron transfer and electrocatalysis. Biomeditsinskaya Khimiya. 2006;52(5):458–68.
dc.relation.referencesMakhova AA, Shumyantseva V V., Shich E V., Bulko T V., Kukes VG, Sizova OS, et al. Electroanalysis of Cytochrome P450 3A4 Catalytic Properties with Nanostructured Electrodes: The Influence of Vitamin B Group on Diclofenac Metabolism. Bionanoscience. 2011;1(1–2):46–52.
dc.relation.referencesHuang H, Hu N, Zeng Y, Zhou G. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem. 2002;308(1):141–51.
dc.relation.referencesDe Groot MT, Merkx M, Koper MTM. Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction. J Am Chem Soc. 2005;127(46):16224–32.
dc.relation.referencesRougée LRA, Mohutsky MA, Bedwell DW, Ruterbories KJ, Hall SD. The impact of the hepatocyte-to-plasma pH gradient on the prediction of hepatic clearance and drug-drug interactions for CYP2C9 and CYP3A4 substrates. Drug Metab Dispos. 2017;45(9):1008–18.
dc.relation.referencesIngelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13.
dc.relation.referencesde la Torre R, Yubero-Lahoz S, Pardo-Lozano R, Farré M. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: What is clinically relevant? Front Genet. 2012;3(NOV):1–8.
dc.relation.referencesBanks ML, Sprague JE, Kisor DF, Czoty PW, Nichols DE, Nader MA. Ambient temperature effects on 3,4-methylenedioxymethamphetamine-induced thermodysregulation and pharmacokinetics in male monkeys. Drug Metab Dispos. 2007;35(10):1840–5.
dc.relation.referencesBaumann MH, Zolkowska D, Kim I, Scheidweiler KB, Rothman RB, Huestis MA. Effects of dose and route of administration on pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine in the rat. Drug Metab Dispos. 2009;37(11):2163–70.
dc.relation.referencesShima N, Katagi M, Kamata H, Matsuta S, Sasaki K, Kamata T, et al. Metabolism of the newly encountered designer drug α- pyrrolidinovalerophenone in humans: Identification and quantitation of urinary metabolites. Forensic Toxicol. 2014;32(1):59–67.
dc.relation.referencesNegreira N, Erratico C, Kosjek T, van Nuijs ALN, Heath E, Neels H, et al. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem. 2015;407(19).
dc.relation.referencesKatselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S. α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol. 2016;34(1):41–50.
dc.relation.referencesLin LY, Di Stefano EW, Schmitz DA, Hsu L, Ellis SW, Lennard MS, et al. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos. 1997;25(9):1059–64.
dc.relation.referencesCumba LR, Smith JP, Zuway KY, Sutcliffe OB, Do Carmo DR, Banks CE. Forensic electrochemistry: Simultaneous voltammetric detection of MDMA and its fatal counterpart “dr Death” (PMA). Anal Methods. 2016;8(1):142–52.
dc.relation.referencesKatayama JMT, Oiye EN, Ribeiro MFM, Ipólito AJ, De Andrade JF, De Oliveira MF. MDMA electrochemical determination in aqueous media containing illicit drugs and validation of a voltammetric methodology. Drug Anal Res. 2020;4(1):3–11.
dc.relation.referencesTeófilo KR, Arantes LC, Marinho PA, Macedo AA, Pimentel DM, Rocha DP, et al. Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis. Microchem J. 2020;157(April):105088.
dc.relation.referencesMurilo Alves G, Soares Castro A, McCord BR, de Oliveira MF. MDMA Electrochemical Determination and Behavior at Carbon Screen-printed Electrodes: Cheap Tools for Forensic Applications. Electroanalysis. 2021;33(3):635–42.
dc.relation.referencesSmith JP, Metters JP, Khreit OIG, Sutcliffe OB, Banks CE. Forensic electrochemistry applied to the sensing of new psychoactive substances: Electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Anal Chem. 2014;86(19):9985–92.
dc.relation.referencesElbardisy HM, García-Miranda Ferrari A, Foster CW, Sutcliffe OB, Brownson DAC, Belal TS, et al. Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega. 2019;4(1):1947–54.
dc.relation.referencesLima CD, Couto RAS, Arantes LC, Marinho PA, Pimentel DM, Quinaz MB, et al. Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples. Electrochim Acta. 2020;354:136728.
dc.relation.referencesZhang D, Peng Y, Qi H, Gao Q, Zhang C. Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sensors Actuators, B Chem. 2009;136(1):113–21.
dc.relation.referencesFigueroa-Miranda G, Chen S, Neis M, Zhou L, Zhang Y, Lo Y, et al. Multi-target electrochemical malaria aptasensor on flexible multielectrode arrays for detection in malaria parasite blood samples. Sensors Actuators, B Chem. 2021;349(September):130812.
dc.relation.referencesScheel GL, de Oliveira FM, de Oliveira LLG, Medeiros RA, Nascentes CC, Tarley CRT. Feasibility study of ethylone determination in seized samples using boron-doped diamond electrode associated with solid phase extraction. Sensors Actuators, B Chem. 2018;259:1113–22.
dc.relation.referencesTassaneeyakul W, Birkett DJ, McManus ME, Tassaneeyakul W, Veronese ME, Andersson T, et al. Caffeine metabolism by human hepatic cytochromes p450: Contributions of 1A2, 2E1 and 3A isoforms. Biochem Pharmacol. 1994;47(10):1767–76.
dc.relation.referencesAranda J V., Beharry KD. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med. 2020;25(6):101183.
dc.relation.referencesLajin B, Schweighofer N, Goessler W, Obermayer-Pietsch B. The determination of the Paraxanthine/Caffeine ratio as a metabolic biomarker for CYP1A2 activity in various human matrices by UHPLC-ESIMS/MS. Talanta. 2021;234(June):122658.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsAmphetamines
dc.subject.decsAnfetaminas
dc.subject.decsToxicology/methods
dc.subject.decsToxicología/métodos
dc.subject.lembCytochromes
dc.subject.lembCitocromos
dc.subject.proposalTécnicas biosensibles
dc.subject.proposalElectrochemistry
dc.subject.proposalStreet drugs
dc.subject.proposalElectroquímica
dc.subject.proposalAnálisis químico
dc.subject.proposalDrogas de calle
dc.subject.proposalDrogas de diseño
dc.subject.proposalNarcóticos
dc.subject.proposalBiosensing techniques
dc.subject.proposalChemical analysis
dc.subject.proposalDesigner drugs
dc.subject.proposalNarcotics
dc.title.translatedElectrochemical detection of α-Pyrrolidinopentiophenone (α-PVP) and 3,4-Methylenedioxymethamphetamine (MDMA) using an electrochemical biosensor based on cytochrome P450 isoenzyme 2D6
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDETERMINACIÓN DE CATINONAS SINTETICAS EN MATERIAL INCAUTADO EN COLOMBIA MEDIANTE UN BIOSENSOR ELECTROQUÍMICO BASADO EN LA ENZIMA CYP2D6 (código Hermes 48279)
oaire.fundernameVicerrectoría de investigaciones de la sede Bogotá de la Universidad Nacional de Colombia en el marco de la convocatoria de apoyo a proyectos de investigación y creación artística de la sede Bogotá de la Universidad Nacional de Colombia (2019)
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito