Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorMacías Quiroga, Iván Fernando
dc.contributor.authorMora Bonilla, Karla Yaneth
dc.date.accessioned2022-03-09T16:29:27Z
dc.date.available2022-03-09T16:29:27Z
dc.date.issued2021-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81167
dc.descriptiongráficos, tablas.
dc.description.abstractLos colorantes azoicos representan cerca del 70% de la producción mundial de colorantes. Estos se caracterizan por tener uno o varios grupos cromóforos de tipo -N=N- unidos a anillos de benceno o naftaleno con grupos -OH y -SO3H, características que los hacen muy estables químicamente y resistentes a la biodegradación. El rojo allura (C18H14N2Na2O8S2) es un colorante azoico ampliamente usado en las industrias alimentaría, farmacéutica y cosmética. Los Procesos de Oxidación Avanzados (POAs) basados en la activación del H2O2 han mostrado excelentes resultados en el tratamiento de aguas coloreadas . En el presente trabajo se utilizó una tecnología emergente (Co2+/NaHCO3/H2O2) para la degradación del colorante rojo allura en solución acuosa, donde el H2O2 es activado con NaHCO3 y el cobalto en solución (Co2+) actúa como catalizador para la descomposición del peróxido de hidrógeno. Para la evaluación y optimización del proceso de oxidación del colorante se utilizó la Metodología de Superficie de Respuesta (MSR), basada en un Diseño Central Compuesto (DCC). En el diseño experimental se estudiaron cuatro variables independientes (concentraciones de H2O2, NaHCO3, cobalto y colorante) y las variables de respuesta fueron decoloración y remoción de nitrógeno total (NT). Bajo las condiciones óptimas de reacción: 49.47 mg/L de rojo allura, 4.53 mM de H2O2, 8.45 μM de Co2+ y 2.00 mM de NaHCO3, se logró una decoloración total y remoción de NT de 55.3±0.53%. Adicionalmente, se encontró que un incremento en la temperatura del sistema de 25 a 45 °C aceleró la decoloración total de la muestra, pasando de 20 a 10 minutos de reacción. Con el fin de abordar la contaminación colateral asociada al cobalto utilizado en la descomposición catalítica del peróxido de hidrógeno, en este trabajo se utilizó una arcilla tipo bentonita para remover los iones de cobalto que quedaron en solución después del proceso de oxidación. Para evaluar el potencial del sistema Co2+/NaHCO3/H2O2 en la degradación de colorantes, se trató una muestra de agua real proveniente de una industria de alimentos de la ciudad de Manizales a las condiciones óptimas obtenidas en el diseño experimental, obteniéndose una decoloración del 96.4±0.34%, y remoción de NT del 17.23±0.12%. Los anteriores resultados sugieren que el sistema Co2+/NaHCO3/H2O2 es eficiente para la degradación de soluciones acuosas que contienen colorantes azoicos, y este es el primer trabajo que establece las condiciones óptimas para la degradación del rojo allura basado en la metodología de superficie de respuesta. Además, se propone un proceso de adsorción al final del POA, que permite reducir la concentración de cobalto a valores por debajo del límite de detección de la técnica de medición (< 0.01 mg/L, absorción atómica de llama) (Texto tomado de la fuente)
dc.description.abstractAzoic dyes represent about 70% of the world’s production of dyes. They are characterized by having one or more chromophore groups of the -N=N- type attached to benzene or naphthalene rings with -OH and -SO3H groups, these characteristics make them chemically stable and resistant to biodegradation. Allura red (C18H14N2Na2O8S2) is an azoic dye widely used in food, pharmaceutical and cosmetic industries. Advanced Oxidation Processes (AOPs) based on the activation of H2O2 have shown excellent results in the treatment of colored discharges. In the present work, an emerging technology (Co2+/NaHCO3/H2O2) was used for the degradation of the allura red dye in an aqueous solution, where H2O2 is activated with NaHCO3 and the cobalt in solution (Co2+) acts as a catalyst for the decomposition of peroxide hydrogen. For the evaluation and optimization of the dye oxidation process, the Response Surface Methodology (RSM) was used, based on a Central Composite Design (CCD). In the experimental design, four independent variables were studied (concentrations of H2O2, NaHCO3, cobalt and dye) and the response variables were decolorization and removal of total nitrogen (TN). Under optimal reaction conditions: 49.47 mg/L of allura red, 4.53 mM of H2O2, 8.45 μM of Co2+ and 2.00 mM of NaHCO3, a total decolorization was achieved and a TN removal of 55.3±0.53%. Additionally, it was found that an increase in the temperature in the system from 25 to 45 °C, accelerated the total decolorization of the sample, going from 20 to 10 minutes of reaction. In order to address the collateral contamination associated with the cobalt used in the catalytic decomposition of hydrogen peroxide, a bentonite-type clay was used in this work to remove the cobalt ions remaining in the solution after the oxidation process. To evaluate the potential of the Co2+/NaHCO3/H2O2 system in the dyes’ degradation, a real water sample taken from a food industry in Manizales city was treated under the optimal conditions obtained in the experimental design, obtaining 96.4±0.34% of decolorization, and 17.23±0.12%. of TN removal. The above results suggest that the Co2+/NaHCO3/H2O2 system is efficient for the degradation of aqueous solutions containing azo dyes, and this is the first research study that establishes the optimal conditions for the degradation of allura red based on Response Surface Methodology. In addition, an adsorption process is proposed at the end of the AOP, which allows to reduce the cobalt concentration to values below the detection limit of the measurement technique (< 0.01 mg/L, flame atomic absorption).
dc.format.extentxi, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.titleDegradación del colorante rojo Allura en solución acuosa mediante un proceso avanzado de oxidación.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicos
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Ingeniería Ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Química
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesZaruma Arias, P.; Proal Nájera, B.; Chaires Hernández, I.; Salas Ayala, H. (2018). Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Revista de la Facultad de Ciencias Químicas, 19: p. 38-47.
dc.relation.referencesTkaczyk, A.; Mitrowska, K.; Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717: p. 137222-137241.
dc.relation.referencesJawad, A.; Chen, Z.; Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.
dc.relation.referencesXu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt(II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.
dc.relation.referencesUNESCO. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2017. Aguas residuales: El recurso desaprovechado, Organización de las Naciones Unidas para la Educación: Paris - Francia. p. 202.
dc.relation.referencesKobylewski, S.; Jacobson, M. (2010). Food Dyes: A Rainbow of Risks. 1 ed, Center for Science in the Public Interest: Washington, D.C. p. 68.
dc.relation.referencesEspinoza, F.; Maza, M. (2018). Remoción de colorantes azoicos rojo allura (R40) mediante el uso de perlas de quitosano magnetizadas en medio acuoso. Sociedad Química del Perú, 84(1): p. 18-26.
dc.relation.referencesBelhouchat, N.; Zaghouane, H.; Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 135: p. 9-15.
dc.relation.referencesVillada, Y.; Hormaza, A. (2015). Simultaneous analysis of the removal of brilliant blue and red 40 through spectrophotometric derivative. Ingeniería y Desarrollo, 33(1): p. 38-58.
dc.relation.referencesPiccin, J.; Vieira, M.; Gonçalves, J.; Dotto, G.; Pinto, L. (2009). Adsorption of FD&C red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering, 95(1): p. 16-20.
dc.relation.referencesAnjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. (2005). Decolourization of industrial effluents – Available methods and emerging technologies – A review. Reviews in Environmental Science and Bio/Technology, 4(4): p. 245-273.
dc.relation.referencesDomènech, X.; Jardim, W.; Litter, M. (2001). Capitulo 1. Procesos avanzados de oxidación para la eliminación de contaminantes. In: Eliminación de Contaminantes por Fotocatálisis Heterogénea, Blesa, M. A. (Ed.), Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo - CYTED: La Plata - Argentina. p. 3-26.
dc.relation.referencesMacías-Quiroga, I. F.; Rojas-Mendez, E. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2020). Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief, 30: p. ID 105463.
dc.relation.referencesPan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. (2020). Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. ID 127332.
dc.relation.referencesYang, Z.; Wang, H.; Chen, M.; Luo, M.; Xia, D.; Xu, A.; Zeng, Q. (2012). Fast degradation and biodegradability improvement of reactive brilliant red x-3b by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.
dc.relation.referencesLi, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.
dc.relation.referencesLong, X.; Yang, Z.; Wang, H.; Chen, M.; Peng, K.; Zeng, Q.; Xu, A. (2012). Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003.
dc.relation.referencesLuo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. (2014). The mechanism of bound hydroxyl radical formation and degradation pathway of acid orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.
dc.relation.referencesOlusegun, E.; Olajire, A. (2015). Toxicity of food colours and additives: A review. African Journal of Pharmacy and Pharmacology, 9(36): p. 900-914.
dc.relation.referencesGürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M. (2016). Chapter 2. Dyes and pigments: their structure and properties. In: Dyes and Pigments, Springer, Cham: Jaipur - India. p. 13-30.
dc.relation.referencesBauer, W.; Berneth, H.; Clausen, T.; Engel, A.; Filosa, M.; Gregory, P. (2004). Dyes, general survey. In: Industrial Dyes: Chemistry, Properties, Applications, Klaus, H. (Ed.), Wiley-VCH: Fráncfort - Alemania. p. 1-12.
dc.relation.referencesClarke, E.; Steinle, D. (1995). Health and environmental safety aspects of organic colorants. Reviews on Progress in Coloration and Related Topics, 25(1): p. 1-5.
dc.relation.referencesAmchova, P.; Kotolova, H.; Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology Pharmacology, 73(3): p. 914-922.
dc.relation.referencesBenkhaya, S.; Mrabet, S.; El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115: p. ID 107891.
dc.relation.referencesZaharia, C.; Suteu, D. (2012). Chapter 3. Textile organic dyes – characteristics, polluting effects and separation/elimination procedures from industrial effluents – A critical overview. In: Organic Pollutants Ten Years after the Stockholm Convention – Environmental and Analytical Update Puzyn, D. T. (Ed.), IntechOpen: Rijeka - Croacia. p. 55-87.
dc.relation.referencesMarcano, D. (2018). Introducción a la Química de los Colorantes, Academia de Ciencias Físicas, Matemáticas y Naturales: Caracas - Venezuela. p. 254.
dc.relation.referencesSaratale, R. G.; Saratale, G. D.; Chang, J. S.; Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): p. 138-157.
dc.relation.referencesFeketea, G.; Tsabouri, S. (2017). Common food colorants and allergic reactions in children: Myth or reality?. Food Chemistry, 230: p. 578-588.
dc.relation.referencesClark, M. (2011). Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes, Elsevier (Ed.): Cambridge - United Kingdom. p. 1230.
dc.relation.referencesLehto, S.; Buchweitz, M.; Klimm, A.; Strassburger, R.; Bechtold, C.; Ulberth, F. (2017). Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Additives & Contaminants: Part A., 34(3): p. 335-355.
dc.relation.referencesU.S. Food and Drug Administration - FDA. Title 21 - Food and Drugs. 2019 [cited 22/04/2020]; Available from: https://www.accessdata.fda.gov.
dc.relation.referencesBoyles, C.; Sobeck, S. (2020). Photostability of organic red food dyes. Food Chemistry, 315: p. ID 126249.
dc.relation.referencesHao, O. J.; Kim, H.; Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30(4): p. 449-505.
dc.relation.referencesFood and Agriculture Organization of the United Nations - FAO. Programa conjunto FAO/OMS sobre normas alimentarias. 2001 [cited 05/04/2020]; Available from: http://www.fao.org/3/y0474s/y0474s00.htm#Contents.
dc.relation.referencesU.S. Food and Drug Administration - FDA. Report on the Certification of Color Additives: 2nd Quarter, Fiscal Year 2021, January 1-March 31. 2021 [cited 25/04/2021]; Available from: https://www.fda.gov/industry/color-certification-reports/report-certification-color-additives-2nd-quarter-fiscal-year-2021-january-1-march-31.
dc.relation.referencesSandoval, L. (2013). Evaluación de diferentes procesos de tratamiento para la remoción de colorantes sintéticos utilizados en la industria textil. Secretaría de Medio Ambiente y Recursos Naturales. Ciudad Juárez - México. p. 305.
dc.relation.referencesDonoso, M. (2016). Eliminación de colorantes alimentarios en disolución acuosa mediante procesos químicos y electroquímicos de oxidación avanzada. Tesis de Doctorado en Ingeniería Química. Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Badajoz, p. 354.
dc.relation.referencesCole, J. El teñido de tejidos: el mayor problema de contaminación de la industria de la moda. 2019 [cited 25/02/2021]; Available from: https://www.vogue.es/moda/articulos/tintes-toxicos-ropa-problemas-contaminacion-industria-moda.
dc.relation.referencesMatthews, R. Ten lesser known effects of climate change and environmental abuse. 2014 [cited 16/05/2020]; Available from: https://earthmaven.io.
dc.relation.referencesHernández, M. (2020). Misterioso tono amarillo coloreó el río Medellín. In: El Colombiano. Available from: https://www.elcolombiano.com/antioquia/rio-medellin-presento-extrano-color-amarillo-EF12351984.
dc.relation.referencesGonzáles, M. (2019). ¿Por qué está azul el río Yumbo?, esto dicen las autoridades ambientales. In: El País. Available from: https://www.elpais.com.co/valle/por-que-esta-azul-el-rio-yumbo-esto-dicen-las-autoridades-ambientales.html.
dc.relation.referencesAlzate, M. (2020). El azul de la quebrada Manizales era tinta para dulces. In: La Patria. Available from: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338.
dc.relation.referencesLeguía, C.; Penagos, A.; Robles, G.; Niño, O. (2014). Monitoreo de efluentes de sectores productivos, vertimientos directos a fuentes hídricas superficiales, afluentes del sistema hídrico de la ciudad y pozos de aprovechamiento hídrico subterráneo. Bogotá D.C. - Colombia. p. 1-202.
dc.relation.referencesHofman-Caris, R.; Hofman, J. (2019). Limitations of Conventional Drinking Water Technologies in Pollutant Removal. In: Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, Gil, A.; Galeano, L. A.; Vicente, M. Á. (Eds.), Springer International Publishing, Cham: Milán - Suiza. p. 21-51.
dc.relation.referencesEjder, M.; Gürses, A.; Sharma, S.; Doğar, C.; Açıkyıldız, M. (2015). Green Chemistry for Dyes Removal from Wastewater, Sharma, S. K. (Ed.), Scrivener Publishing LLC: Jaipur - India. p. 1-21.
dc.relation.referencesEren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. Journal of Environmental Management, 104: p. 127-141.
dc.relation.referencesRobinson, T.; McMullan, G.; Marchant, R.; Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77: p. 247-255.
dc.relation.referencesAtalay, S.; Ersöz, G. (2016). Novel Catalysts in Advanced Oxidation of Organic Pollutants, Sharma, S. K. (Ed.), Springer International Publishing: Jaipur - India. p. 1-60.
dc.relation.referencesNidheesh, P.; Zhou, M.; Oturan, M. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: p. 210-227.
dc.relation.referencesChiva, S.; Berlanga, J.; Martínez, R.; Climent, J. (2017). Procesos de Oxidacion Avanzada en el Ciclo Integral del Agua: Provincia de Castellón - España. p. 170.
dc.relation.referencesOturan, M.; Aaron, J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23): p. 2577-2641.
dc.relation.referencesRahim, S.; Abdul , A.; Wan, W. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64: p. 24-35.
dc.relation.referencesVagi, M.; Petsas, A. (2020). Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). Journal of Environmental Chemical Engineering, 8(1): p. ID 102940.
dc.relation.referencesLegrini, O.; Oliveros, E.; Braun, A. (1993). Photochemical processes for water treatment. Chemical Reviews, 93: p. 671-698.
dc.relation.referencesDeng, Y.; Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3): p. 167-176.
dc.relation.referencesLinden, K.; Mohseni, M. (2014). Advanced oxidation processes: Applications in drinking water treatment. In: Comprehensive Water Quality and Purification, Ahuja, Satinder. (Ed), Elsevier: EEUU. p. 148-172.
dc.relation.referencesRibeiro, A.; Nunes, O.; Pereira, M.; Silva, A. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75: p. 33-51.
dc.relation.referencesNeyens, E.; Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3): p. 33-50.
dc.relation.referencesRegino, C.; Richardson, D. (2007). Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 360(14): p. 3971-3977.
dc.relation.referencesWu, C.; Linden, K. G. (2010). Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research, 44(12): p. 3585-3594.
dc.relation.referencesMizrahi, A.; Meyerstein, D. (2019). Chapter Eight - Plausible roles of carbonate in catalytic water oxidation. In: Advances in Inorganic Chemistry, van Eldik, R.; Hubbard, C. D. (Eds.), Academic Press: Nueva York - EEUU. p. 343-360.
dc.relation.referencesLi, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.
dc.relation.referencesXu, A.; Li, X.; Xiong, H.; Yin, G. (2011). Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.
dc.relation.referencesBruland, K. W.; Donat, J. R.; Hutchins, D. A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577.
dc.relation.referencesGuo, X.; Li, H.; Zhao, S. (2015). Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.
dc.relation.referencesBarceloux, D. G.; Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): p. 201-216.
dc.relation.referencesLiang, S.; Zhao, L.; Zhang, B.; Lin, J. (2008). Experimental studies on the chemiluminescence reaction mechanism of carbonate/ bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry, 112(4): p. 618-623.
dc.relation.referencesAl-Shahrani, S. S. (2014). Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Engineering Journal, 53(1): p. 205-211.
dc.relation.referencesGultekin, I.; Ince, N. H. (2004). Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers. Journal of Environmental Science and Health, 39(4): p. 1069-1081.
dc.relation.referencesLee, C.; Sedlak, D. L. (2009). A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. Journal of Molecular Catalysis A: Chemical, 311(1-2): p. 1-6.
dc.relation.referencesHe, J.; Yang, X.; Men, B.; Wang, D. (2016). Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences, 39: p. 97-109.
dc.relation.referencesKan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. ID 115974.
dc.relation.referencesJawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.
dc.relation.referencesSayed, M.; Khan, J. A.; Shah, L. A.; Shah, N. S.; Khan, H. M.; Rehman, F.; Khan, A. R.; Khan, A. M. (2016). Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation. Environmental Science and Pollution Research, 23(13): p. 13155-13168.
dc.relation.referencesBabuponnusami, A.; Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): p. 557-572.
dc.relation.referencesSalem, I. A.; El-Ghamry, H. A.; El-Ghobashy, M. A. (2014). Catalytic decolorization of Acid blue 29 dye by H2O2 and a heterogeneous catalyst. Beni-Suef University Journal of Basic and Applied Sciences, 3(3): p. 186-192.
dc.relation.referencesDe la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L. F.; Pulgarin, C. (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research, 47(15): p. 5836-5845.
dc.relation.referencesShah, N. S.; He, X.; Khan, H. M.; Khan, J. A.; O'Shea, K. E.; Boccelli, D. L.; Dionysiou, D. D. (2013). Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. Journal of Hazardous Materials, 263 p. 584-592.
dc.relation.referencesJavaid, R.; Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11): p. 1-27.
dc.relation.referencesDulman, V.; Cucu-Man, S. M.; Olariu, R. I.; Buhaceanu, R.; Dumitraş, M.; Bunia, I. (2012). A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes and Pigments, 95(1): p. 79-88.
dc.relation.referencesKhan, J. A.; Sayed, M.; Khan, S.; Shah, N. S.; Dionysiou, D. D.; Boczkaj, G. (2020). Advanced oxidation processes for the treatment of contaminants of emerging concern. In: Contaminants of Emerging Concern in Water and Wastewater, Hernandez-Maldonado, A.; Blaney, Lee. (Eds.), Elsevier: Arizona - EEUU. p. 299-365.
dc.relation.referencesYang, H.; Li, G.; An, T.; Gao, Y.; Fu, J. (2010). Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catalysis Today, 153(3-4): p. 200-207.
dc.relation.referencesSantana, C. S.; Nicodemos Ramos, M. D.; Vieira Velloso, C. C.; Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1-16.
dc.relation.referencesRamírez, J. H.; Vicente, M. A.; Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98: p. 10-26.
dc.relation.referencesEl-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A. (2005). Kinetic investigation of the oxidative decolorization of Direct Green 28 and Direct Blue 78 by hydrogen peroxide. Dyes and Pigments, 66(2): p. 161-170.
dc.relation.referencesGemeay, A. H.; Mansour, I. A.; El-Sharkawy, R. G.; Zaki, A. B. (2003). Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. Journal of Molecular Catalysis A: Chemical, 193(1-2): p. 109-120.
dc.relation.referencesSun, S. P.; Li, C. J.; Sun, J. H.; Shi, S. H.; Fan, M. H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3): p. 1052-1057.
dc.relation.referencesYang, P.; Liu, C.; Guo, Q.; Liu, Y. (2021). Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy. Journal of Materials Science & Technology, 72: p. 162-171.
dc.relation.referencesBokare, A.; Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.
dc.relation.referencesZhou, L.; Song, W.; Chen, Z.; Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631 de 2015. Por el cual se establecen los parámetros y valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público. Bogotá D.C.
dc.relation.referencesUddin, M. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: p. 438-462.
dc.relation.referencesTiwari, J.; Mahesh, K.; Le, N.; Kemp, K.; Timilsina, R.; Tiwari, R.; Kim, K. (2013). Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 56: p. 173-182.
dc.relation.referencesMcCabe, W.; Smith, J.; Harriott, P. (1998). Operaciones unitarias en ingeniería química. 4 ed, McGraw-Hill/Interamericana (Ed.): México D.F.
dc.relation.referencesXiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C. W.; Ok, Y. S.; Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252: p. ID 126539.
dc.relation.referencesZhao, Z.; Xiong, Y.; Cheng, X.; Hou, X.; Yang, Y.; Tian, Y.; You, J.; Xu, L. (2020). Adsorptive removal of trace thallium(I) from wastewater: A review and new perspectives. Journal of Hazardous Materials, 393: p. ID 122378.
dc.relation.referencesChiu, H.; Wang, J. (2009). Adsorption thermodynamics of cobalt ions onto attapulgite. Journal of Environmental Protection Science, 3: p. 102 - 106.
dc.relation.referencesSandy; Maramis, V.; Kurniawan, A.; Ayucitra, A.; Sunarso, J.; Ismadji, S. (2012). Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Frontiers of Chemical Science and Engineering, 6(1): p. 58-66.
dc.relation.referencesBhattacharyya, K.; Sen, S. (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Applied Clay Science, 46(2): p. 216-221.
dc.relation.referencesHashemian, S.; Saffari, H.; Ragabion, S. (2014). Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water, Air, & Soil Pollution, 226(1): p. 2212-2222.
dc.relation.referencesAl-Dwairi, R. A.; Al-Rawajfeh, A. E. (2012). Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. Journal of the University of Chemical Technology and Metallurgy, 47(1): p. 69-76.
dc.relation.referencesBhattacharyya, K. (2008). Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 41(1-2): p. 1-9.
dc.relation.referencesBhattacharyya, K. G.; Gupta, S. S. (2008). Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1-3): p. 71-79.
dc.relation.referencesZacaroni, L. M.; Magriotis, Z. M.; Cardoso, M. d. G.; Santiago, W. D.; Mendonça, J. G.; Vieira, S. S.; Nelson, D. L. (2015). Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food Control, 47: p. 536-544.
dc.relation.referencesKubilay, Ş.; Gürkan, R.; Savran, A.; Şahan, T. (2007). Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1): p. 41-51.
dc.relation.referencesYavuz, O.; Altunkaynak, Y.; Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37: p. 948–952.
dc.relation.referencesShavandi, M. A.; Haddadian, Z.; Ismail, M. H. S.; Abdullah, N.; Abidin, Z. Z. (2012). Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43(5): p. 750-759.
dc.relation.referencesMohapatra, M.; Mohapatra, L.; Singh, P.; Anand, S.; Mishra, B. K. (2011). A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. International Journal of Engineering, Science and Technology, 2(8): p. 89-103.
dc.relation.referencesManohar, D. M.; Noeline, B. F.; Anirudhan, T. S. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31(3-4): p. 194-206.
dc.relation.referencesMekhemera, W.; Hefneb, J.; Alandisa, N.; Aldayel, O.; Al-Raddadi, S. (2008). Thermodynamics and kinetics of Co(II) adsorption onto natural and treated bentonite Jordan Journal of Chemistry, 3: p. 409 - 423.
dc.relation.referencesYang, H.; Long, D.; Zhenyu, L.; Yuanjin, H.; Tao, Y.; Xin, H.; Jie, W.; Zhongyuan, L.; Shuzhen, L. (2019). Effects of bentonite on pore structure and permeability of cement mortar. Construction and Building Materials, 224: p. 276-283.
dc.relation.referencesHe, H.; Ma, L.; Zhu, J.; Frost, R.; Theng, B.; Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100: p. 22-28.
dc.relation.referencesZhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123: p. 239-258.
dc.relation.referencesKausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.; Bhatti, H.; Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256: p. 395-407.
dc.relation.referencesMacías-Quiroga, I. F.; Rojas-Mendez, E. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2020). Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief, 30: p. ID 105463.
dc.relation.referencesKarimifard, S.; Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 640-641: p. 772-797.
dc.relation.referencesFogler, H. S. (2001). Elements of Chemical Reaction Engineering, Prentice-Hall: Nueva Jersey - EEUU. p. 1004.
dc.relation.referencesLi, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.
dc.relation.referencesLuo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. (2014). The mechanism of bound hydroxyl radical formation and degradation pathway of acid orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.
dc.relation.referencesGultekin, I.; Ince, N. H. (2004). Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers. Journal of Environmental Science and Health, 39(4): p. 1069-1081.
dc.relation.referencesEl-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A. (2005). Kinetic investigation of the oxidative decolorization of Direct Green 28 and Direct Blue 78 by hydrogen peroxide. Dyes and Pigments, 66(2): p. 161-170.
dc.relation.referencesMacías-Quiroga, I. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: p. ID 5969178.
dc.relation.referencesDay, P. (1965). Particle fractionation and particle-size analysis. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, American Society of Agronomy, Agronomy Monographs: Madison - Wisconsin. p. 1188.
dc.relation.referencesCzitrom, V. (1999). One factor at a time versus designed experiments. The American Statistician, 53: p. 126-131.
dc.relation.referencesCastro Castro, J. D. Study of the removal of chromium on a bentonite clay. Tesis de Maestría en Ingeniería Ambiental, 2019. Departamento de Ingeniería Química, Universidad Nacional de Colombia - Sede Manizales, Manizales, p. 121.
dc.relation.referencesBevziuk, K.; Chebotarev, A.; Snigur, D.; Bazel, Y.; Fizer, M.; Sidey, V. (2017). Spectrophotometric and theoretical studies of the protonation of allura red AC and ponceau 4R. Journal of Molecular Structure, 1144: p. 216-224.
dc.relation.referencesMiller, J. N.; Miller, J. C. (2002). Métodos de calibración en análisis instrumental regresión y correlación. In: Estadística y Quimiometría para Química Analítica, Ed. Pearson Educación, S.A: Madrid - España. p. 286.
dc.relation.referencesKarimifard, S.; Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 640-641: p. 772-797.
dc.relation.referencesAmini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A. A.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials, 154(1-3): p. 694-702.
dc.relation.referencesMartinez, C. (1987). Estadística - Apuntes y 614 problemas resueltos, Gráficas Modernas: Bogotá, D. C. - Colombia. p. 713.
dc.relation.referencesMartínez Ortega, R. M.; Tuya Pendás, L. C.; Martínez Ortega, M.; Pérez Abreu, A.; Cánovas, A. M. (2009). El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas, 8: p. 1-19.
dc.relation.referencesWalpole, R.; Myers, R.; Myers, S.; Ye, K. (2007). Probabilidad & Estadística para Ingeniería y Ciencias. Octava ed, Pearson Educación: Ciudad Juárez - México. 816.
dc.relation.referencesWiner, B. J. (1991). Statistical Principles in Experimental Design. 3 ed, McGraw-Hill: Nueva York - EEUU. p. 1057.
dc.relation.referencesRedlich, O.; Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry A, 63: p. 1024-1026.
dc.relation.referencesLi, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.
dc.relation.referencesZhou, L.; Song, W.; Chen, Z.; Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.
dc.relation.referencesKan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. ID 115974.
dc.relation.referencesBokare, A.; Chikate, R.; Rode, C.; Paknikar, K. (2007). Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation. Environmental Science & Technology, 41: p. 7437-7444.
dc.relation.referencesShu-Xuan Liang; Li-Xia Zhao; Bo-Tao Zhang; Lin, J.-M. (2008). Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry A, 112: p. 618-623.
dc.relation.referencesJawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.
dc.relation.referencesAbou-Gamra, Z. M. (2014). Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 04(03): p. 285-291.
dc.relation.referencesCatrinescua, C.; Teodosiua, C.; Macoveanua, M.; Miehe-Brendle, J.; Dred, R. L. (2003). Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Research, 37: p. 1154 - 1160.
dc.relation.referencesSantana, C. S.; Nicodemos Ramos, M. D.; Vieira Velloso, C. C.; Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1-16.
dc.relation.referencesRamirez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M. L.; López-Peinado, A. J.; Martín-Aranda, R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71(1-2): p. 44-56.
dc.relation.referencesSun, S. P.; Li, C. J.; Sun, J. H.; Shi, S. H.; Fan, M. H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3): p. 1052-1057.
dc.relation.referencesChen, J.; Zhu, L. (2007). Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 126(3-4): p. 463-470.
dc.relation.referencesKim, J.; Gibb, H.; Howe, P. (2006). Cobalt and Inorganic Cobalt Compounds, World Health Organization (Ed.): Milán - Suiza. p. 93
dc.relation.referencesMonnot, A. D.; Kovochich, M.; Bandara, S. B.; Wilsey, J. T.; Christian, W. V.; Eichenbaum, G.; Perkins, L. E. L.; Hasgall, P.; Taneja, M.; Connor, K.; Sague, J.; Nasseri-Aghbosh, B.; Marcello, S.; Vreeke, M.; Katz, L. B.; Reverdy, E. E.; Thelen, H.; Unice, K. (2021). A hazard evaluation of the reproductive/developmental toxicity of cobalt in medical devices. Regulatory Toxicology and Pharmacology, 123: p. ID 104932.
dc.relation.referencesSun, Z.; Gong, C.; Ren, J.; Zhang, X.; Wang, G.; Liu, Y.; Ren, Y.; Zhao, Y.; Yu, Q.; Wang, Y.; Hou, J. (2020). Toxicity of nickel and cobalt in Japanese flounder. Environmental Pollution, 263(Pt B): p. ID 114516.
dc.relation.referencesGarcia, M. D.; Hur, M.; Chen, J. J.; Bhatti, M. T. (2020). Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. American Journal of Ophthalmology Case Reports, 17: p. ID 100606.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631 de 2015. Por el cual se establecen los parámetros y valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público. Bogotá D.C. p. 62.
dc.relation.referencesMnasri-Ghnimi, S.; Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179: p. ID 105151.
dc.relation.referencesIsmadji, S.; Soetaredjo, F. E.; Ayucitra, A. (2015). Natural clay minerals as environmental cleaning agents. In: Clay Materials for Environmental Remediation, Springer International Publishing: Milán - Suiza. p. 5-37.
dc.relation.referencesBergaya, F.; Lagaly, G. (2006). Chapter 1 General introduction: clays, clay minerals, and clay science. In: Developments in Clay Science, Bergaya, F.; Theng, B. K. G.; Lagaly, G. (Eds.), Elsevier: Milán - Suiza. p. 1-18.
dc.relation.referencesClark, J. Cobalt. 2003 [cited 27/07/2021]; Available from: https://www.chemguide.co.uk/inorganic/transition/cobalt.html.
dc.relation.referencesFogler, H. S. (2001). Elements of Chemical Reaction Engineering, Prentice-Hall: Nueva Jersey - EEUU. p. 1004.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembQuímica -- tesis y disertaciones académicas
dc.subject.proposalRojo Allura
dc.subject.proposalProcesos de oxidación avanzada
dc.subject.proposalTratamiento de vertimientos
dc.subject.proposalDiseño central compuesto
dc.subject.proposalAdsorción
dc.subject.proposalArcilla bentonita
dc.subject.proposalAllura red
dc.subject.proposalAdvanced oxidation processes
dc.subject.proposalWastewater treatment
dc.subject.proposalCentral composite design
dc.subject.proposalAdsortion
dc.subject.proposalBentonite-type clay
dc.subject.unescoContaminación del agua
dc.subject.unescoWater pollution
dc.title.translatedDegradation of Allura red in aqueous solution using an advanced oxidation process.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaQuímica Y Procesos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito