Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorToro Betancur, Alejandro
dc.contributor.authorRamos Álvarez, Manuel Alejandro
dc.date.accessioned2022-03-09T21:56:16Z
dc.date.available2022-03-09T21:56:16Z
dc.date.issued2022-03-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81171
dc.descriptionIlustraciones
dc.description.abstractEn la presente investigación se estudió la relación entre la resistencia a la cavitación de recubrimientos a base de WC-Co y los parámetros de proyección de la técnica de HVOF. Los recubrimientos fueron manufacturados con la pistola DJH-2600 la cual funciona con hidrógeno y oxígeno como gases de combustión. El proceso de proyección fue automatizado. Se obtuvieron tres repeticiones para cada condición de proyección para garantizar la repetibilidad de los experimentos. Se evaluó la resistencia a la cavitación mediante la prueba indirecta de la norma ASTM G-32 así como la rugosidad de los recubrimientos, la morfología superficial y la microestructura mediante SEM y microscopía óptica respectivamente. La porosidad de capa fue medida mediante tratamiento digital de imágenes. El análisis de las fases presentes en el recubrimiento fue llevado a cabo mediante XRD. Posteriormente los datos obtenidos se correlacionaron con los parámetros de proyección para así dar con la mejor receta. Se encontró que el parámetro que mayor efecto tuvo sobre todas las propiedades evaluadas fue el flujo total de combustión (FTC), mientras que la relación de combustión (RC) no tuvo un efecto estadísticamente significativo en los niveles evaluados en el plan experimental. Se logró mejorar la resistencia a la cavitación de los recubrimientos a base de WC-Co usando niveles elevados de FTC y una relación de combustión cercana al punto estequiométrico. (texto tomado de la fuente)
dc.description.abstractIn the present work, the relationship between the cavitation resistance of WC-Co based coatings and the thermal spraying parameters of the HVOF process was studied. The coatings were manufactured using DJH-2600 gun, which works with hydrogen and oxygen as combustion gases. The spraying process was automatized. Three repetitions were obtained for each projection condition to verify the experiments’ repeatability. The resistance to cavitation was evaluated by the indirect test of the ASTM G-32 standard. The roughness of the coatings, its surface morphology and microstructure were studied with the aid of contact profilometer, SEM and optical microscopy. The porosity of the coatings was measured by digital image processing and the analysis of the phases present in the coating was carried out by XRD. Subsequently, the data obtained were correlated with the projection parameters to find the best spraying recipe. It was found that the total combustion flux was the parameter that had the strongest effect on every evaluated property, while the combustion ratio (RC) did not have a statistically significant effect on the levels evaluated in the experimental plan. It was possible to improve the cavitation resistance of the WC-Co based coatings using high levels of FTC and a combustion ratio close to the stoichiometric point.
dc.format.extent111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicos
dc.titleMejoramiento de la resistencia a la cavitación de recubrimientos de WC-Co a través del control de parámetros del proceso proyección térmica por High Velocity Oxy-Fuel (HVOF)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo De Tribología y Superficies GTS
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en Ingeniería Materiales y Procesos
dc.description.researchareaDesgaste por abrasión, erosión y cavitación
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] R. Koirala, B. Thapa, H. P. Neopane, and B. Zhu, “A review on flow and sediment erosion in guide vanes of Francis turbines,” Renew. Sustain. Energy Rev., vol. 75, no. August, pp. 1054–1065, 2017, doi: 10.1016/j.rser.2016.11.085.
dc.relation.references[2] V. Katranidis, “Influence of Spray Kinematic Parameters on High Velocity Oxy-Fuel sprayed WC-Co Coatings’ Properties Applied on Complex Geometries,” University of Surrey, 2018.
dc.relation.references[3] J. R. Davis, Handbook of thermal spray technology. 2004.
dc.relation.references[4] K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components. 2006.
dc.relation.references[5] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons, Ltd, 2008.
dc.relation.references[6] A. kumar, A. Sharma, and S. K. Goel, “Erosion behaviour of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying,” Appl. Surf. Sci., vol. 370, pp. 418–426, 2016, doi: 10.1016/j.apsusc.2016.02.163.
dc.relation.references[7] J. A. Arboleda, “Efecto de los parametros de aspersión sobre la microestructura de recubrimientos de Al2O3 + 13%TiO2 aplicados mediante aspersión térmica por combustión.,” Universidad Nacional de Colombia Sede Medellín, 2016.
dc.relation.references[8] S. M. Nahvi and M. Jafari, “Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings,” Surf. Coatings Technol., vol. 286, pp. 95–102, 2016, doi: 10.1016/j.surfcoat.2015.12.016.
dc.relation.references[9] A. S. Kurlov and A. I. Gusev, “Tungsten Carbides: Structure, Properties and Application in Hardmetals,” Springer Ser. Mater. Sci., 2013, doi: 10.1007/978-3-319-00524-9.
dc.relation.references[10] X. Ding, X. D. Cheng, J. Shi, C. Li, C. Q. Yuan, and Z. X. Ding, “Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings,” Int. J. Adv. Manuf. Technol., vol. 96, no. 5–8, pp. 1615–1624, 2018, doi: 10.1007/s00170-017-0795-y.
dc.relation.references[11] X. DING, X. dong CHENG, X. YU, C. LI, C. qing YUAN, and Z. xiong DING, “Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28, no. 3, pp. 487–494, 2018, doi: 10.1016/S1003-6326(18)64681-3.
dc.relation.references[12] S. Kamnis and S. Gu, “Study of in-flight and impact dynamics of nonspherical particles from HVOF guns,” 2010, doi: 10.1007/s11666-009-9382-6.
dc.relation.references[13] E. Dongmo, M. Wenzelburger, and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surf. Coatings Technol., vol. 202, no. 18, pp. 4470–4478, 2008, doi: 10.1016/j.surfcoat.2008.04.029.
dc.relation.references[14] E. Dongmo, R. Gadow, A. Killinger, and M. Wenzelburger, “Modeling of combustion as well as heat, mass, and momentum transfer during thermal spraying by HVOF and HVSFS,” J. Therm. Spray Technol., vol. 18, no. 5–6, pp. 896–908, 2009, doi: 10.1007/s11666-009-9341-2.
dc.relation.references[15] Y. Y. Santana et al., “Characterization and residual stresses of WC-Co thermally sprayed coatings,” Surf. Coatings Technol., vol. 202, no. 18, pp. 4560–4565, 2008, doi: 10.1016/j.surfcoat.2008.04.042.
dc.relation.references[16] M. Punset, “Desarrollo y optimización de recubrimientos HVOF base WC-CoCr para aplicaciones aeronáuticas,” Universidad Politécnica de Catalunya (UPC), 2018.
dc.relation.references[17] S. Al-Mutairi, M. S. J. Hashmi, B. S. Yilbas, and J. Stokes, “Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC-12%Co powders,” Surf. Coatings Technol., vol. 264, pp. 175–186, 2015, doi: 10.1016/j.surfcoat.2014.12.050.
dc.relation.references[18] H. Zhang, X. Chen, Y. Gong, Y. Tian, A. McDonald, and H. Li, “In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings,” Ultrason. Sonochem., 2020, doi: 10.1016/j.ultsonch.2019.104760.
dc.relation.references[19] R. J. K. Wood, “Tribology of thermal sprayed WC-Co coatings,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 1, pp. 82–94, 2010, doi: 10.1016/j.ijrmhm.2009.07.011.
dc.relation.references[20] A. Vackel and S. Sampath, “Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters,” Surf. Coatings Technol., vol. 315, pp. 408–416, 2017, doi: 10.1016/j.surfcoat.2017.02.062.
dc.relation.references[21] B. D. Cullity and S. R. Stock, ELEMENTS OF X-RAY DIFFRACTION - 3 ed. 2014.
dc.relation.references[22] V. Katranidis, S. Gu, D. C. Cox, M. J. Whiting, and S. Kamnis, “FIB-SEM Sectioning Study of Decarburization Products in the Microstructure of HVOF-Sprayed WC-Co Coatings,” J. Therm. Spray Technol., vol. 27, no. 5, pp. 898–908, 2018, doi: 10.1007/s11666-018-0721-3.
dc.relation.references[23] E. RUDY and S. WINDISCH, “Evidence for Zeta Fe2N‐Type Sublattice Order in W2C at Intermediate Temperatures,” J. Am. Ceram. Soc., 1967, doi: 10.1111/j.1151-2916.1967.tb15105.x.
dc.relation.references[24] A. S. Kurlov and A. I. Gusev, “Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W2 C,” Phys. Rev. B - Condens. Matter Mater. Phys., 2007, doi: 10.1103/PhysRevB.76.174115.
dc.relation.references[25] A. S. Kurlov, S. V. Rempel, and A. I. Gusev, “Symmetry analysis of ordered phases of the lower tungsten carbide W2C,” Phys. Solid State, 2011, doi: 10.1134/S1063783411010173.
dc.relation.references[26] C. Liu, “Low Temperature Synthesis and Characterisation of Novel Complex Carbide- and Boride-Based Materials,” University of Exeter, 2019.
dc.relation.references[27] C. J. Li, Y. Y. Wang, G. J. Yang, A. Ohmori, and K. A. Khor, “Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings,” Mater. Sci. Technol., 2004, doi: 10.1179/026708304225019722.
dc.relation.references[28] B. H. Kear, G. Skandan, and R. K. Sadangi, “Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings,” Scr. Mater., vol. 44, no. 8–9, pp. 1703–1707, 2001, doi: 10.1016/S1359-6462(01)00867-3.
dc.relation.references[29] J. Yuan, Q. Zhan, J. Huang, S. Ding, and H. Li, “Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization,” Mater. Chem. Phys., 2013, doi: 10.1016/j.matchemphys.2013.06.052.
dc.relation.references[30] Q. Zhan, L. Yu, F. Ye, Q. Xue, and H. Li, “Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying,” Surf. Coatings Technol., 2012, doi: 10.1016/j.surfcoat.2012.03.091.
dc.relation.references[31] D. A. Stewart, P. H. Shipway, and D. G. McCartney, “Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders,” Acta Mater., 2000, doi: 10.1016/S1359-6454(99)00440-1.
dc.relation.references[32] K. H. Zum Gahr, Microstructure and wear of materials. 1987.
dc.relation.references[33] S. Romo Arango, “Evaluación de la resistencia a erosión por cavitación de superficies texturizadas,” Universidad Nacional de Colombia sede Medellin., 2014.
dc.relation.references[34] A. Karimi and J. L. Martin, “Cavitation erosion of materials,” Int. Met. Rev., vol. 31, no. 1, pp. 1–26, 1986, doi: https://doi.org/10.1179/imtr.1986.31.1.1.
dc.relation.references[35] ASTM International, “ASTM G32-10 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus 1,” ASTM Stand., vol. i, 2010.
dc.relation.references[36] R. E. Kumar, M. Kamaraj, S. Seetharamu, and A. K. S., “A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications,” Mater. Des., vol. 132, pp. 79–95, 2017, doi: 10.1016/j.matdes.2017.06.046.
dc.relation.references[37] S. M. Nahvi and M. Jafari, “Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings,” Surf. Coatings Technol., vol. 286, pp. 95–102, 2016, doi: 10.1016/j.surfcoat.2015.12.016.
dc.relation.references[38] L. ESPITIA SANJUÁN, “Cavitación y erosión por lodos de recubrimientos por aspersión térmica.,” 2007, doi: 10.22517/23447214.5051.
dc.relation.references[39] F. H. Moll, D. E. Manuele, M. G. Coussirat, A. Guardo, and A. Fontanals, “CARACTERIZACIÓN DEL TIPO DE CAVITACIÓN MEDIANTE DINÁMICA COMPUTACIONAL DE FLUIDOS PARA POSTERIORES APLICACIONES AL ESTUDIO EXPERIMENTAL DEL DAÑO POR CAVITACIÓN,” Asoc. Argentina Mecánica Comput., 2011.
dc.relation.references[40] V. Matikainen et al., “Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes,” Surf. Coatings Technol., 2019, doi: 10.1016/j.surfcoat.2019.04.067.
dc.relation.references[41] M. S. Lamana, A. G. M. Pukasiewicz, and S. Sampath, “Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings,” Wear, vol. 398–399, no. May 2017, pp. 209–219, 2018, doi: 10.1016/j.wear.2017.12.009.
dc.relation.references[42] A. Kanno, K. Takagi, and M. Arai, “Influence of chemical composition, grain size, and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings,” Surf. Coatings Technol., vol. 394, 2020, doi: 10.1016/j.surfcoat.2020.125881.
dc.relation.references[43] F. Tarasi, M. S. Mahdipoor, A. Dolatabadi, M. Medraj, and C. Moreau, “HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application,” J. Therm. Spray Technol., 2016, doi: 10.1007/s11666-016-0465-x.
dc.relation.references[44] Y. Wu et al., “Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying,” Int. J. Refract. Met. Hard Mater., 2012, doi: 10.1016/j.ijrmhm.2012.01.002.
dc.relation.references[45] L. Zhao, M. Maurer, F. Fischer, R. Dicks, and E. Lugscheider, “Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr,” Wear, 2004, doi: 10.1016/j.wear.2003.07.002.
dc.relation.references[46] T. Varis et al., “Formation mechanisms, structure, and properties of HVOF-sprayed WC-CoCr coatings: An approach toward process maps,” Journal of Thermal Spray Technology. 2014, doi: 10.1007/s11666-014-0110-5.
dc.relation.references[47] J. A. Picas, M. Punset, M. T. Baile, E. Martín, and A. Forn, “Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC-CoCr coatings,” Surf. Coatings Technol., vol. 205, no. SUPPL. 2, pp. S364–S368, 2011, doi: 10.1016/j.surfcoat.2011.03.129.
dc.relation.references[48] A. S. Praveen, J. Sarangan, S. Suresh, and B. H. Channabasappa, “Optimization and erosion wear response of NiCrSiB/WC-Co HVOF coating using Taguchi method,” Ceram. Int., vol. 42, no. 1, pp. 1094–1104, 2016, doi: 10.1016/j.ceramint.2015.09.036.
dc.relation.references[49] M. Sharma, D. K. Goyal, and G. Kaushal, “Erosive behaviour of HVOF Sprayed Coatings : A Review,” An Int. J. Eng. Sci., vol. 6913, no. 63019, pp. 219–243, 2017.
dc.relation.references[50] Oerlikon Metco, “Material Product Data Sheet Tungsten Carbide – 10 % Cobalt 4 % Chromium Powders,” 2017.
dc.relation.references[51] M. F. Bahbou, P. Nylén, and J. Wigren, “Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating,” J. Therm. Spray Technol., vol. 13, no. 4, pp. 508–514, 2004, doi: 10.1361/10599630421406.
dc.relation.references[52] M. Mellali, A. Grimaud, A. C. Leger, P. Fauchais, and J. Lu, “Alumina grit blasting parameters for surface preparation in the plasma spraying operation,” J. Therm. Spray Technol., vol. 6, no. 2, pp. 217–227, 1997, doi: 10.1007/s11666-997-0016-6.
dc.relation.references[53] A. Valarezo, W. B. Choi, W. Chi, A. Gouldstone, and S. Sampath, “Process control and characterization of NiCr coatings by HVOF-DJ2700 system: A process map approach,” J. Therm. Spray Technol., vol. 19, no. 5, pp. 852–865, 2010, doi: 10.1007/s11666-010-9492-1.
dc.relation.references[54] E. Turunen et al., “On the role of particle state and deposition procedure on mechanical, tribological and dielectric response of high velocity oxy-fuel sprayed alumina coatings,” Mater. Sci. Eng. A, vol. 415, no. 1–2, pp. 1–11, 2006, doi: 10.1016/j.msea.2005.08.226.
dc.relation.references[55] C. Thiruvikraman, V. Balasubramanian, and K. Sridhar, “Developing empirical relationships to estimate adhesion bonding strength and lap shear bonding strength of hvof sprayed wc-crc-ni coatings on aisi 304 l stainless steel,” Indian J. Eng. Mater. Sci., vol. 21, no. 6, pp. 609–620, 2014.
dc.relation.references[56] S. Bouaricha, A. Ouchene, and J. G. Legoux, “Rietveld analysis for studying the decarburisation in HVOF WC–CO coatings,” Surf. Eng., vol. 34, no. 10, pp. 747–754, 2018, doi: 10.1080/02670844.2017.1415737.
dc.relation.references[57] H. Gutiérres Pulido and R. De la Vara Salazar, Análisis y diseño de experimentos. 2008.
dc.relation.references[58] ASTM, “ASTM Standard E1920, 2014. Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings,” ASTM Int., 2016.
dc.relation.references[59] M. F. Smith, D. T. McGuffin, J. A. Henfling, and W. J. Lenling, “A comparison of techniques for the metallographic preparation of thermal sprayed samples,” Journal of Thermal Spray Technology. 1993, doi: 10.1007/BF02650478.
dc.relation.references[60] D. J. Nolan and M. Samandi, “Revealing true porosity in WC-Co thermal spray coatings,” J. Therm. Spray Technol., 1997, doi: 10.1007/s11666-997-0024-6.
dc.relation.references[61] S. A. Speakman, “Fundamentals of Rietveld Refinement I - An Introduction to Rietveld Refinement using PANalytical X’Pert HighScore Plus,” Massachusets Inst. Technol., 2010.
dc.relation.references[62] C. V. Roa, J. A. Valdes, F. Larrahondo, S. A. Rodríguez, and J. J. Coronado, “Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel,” J. Mater. Eng. Perform., vol. 30, no. 10, pp. 7195–7212, 2021, doi: 10.1007/s11665-021-05908-9.
dc.relation.references[63] M. M. Lima, C. Godoy, P. J. Modenesi, J. C. Avelar-Batista, A. Davison, and A. Matthews, “Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings,” Surf. Coatings Technol., vol. 177–178, pp. 489–496, 2004, doi: 10.1016/S0257-8972(03)00917-4.
dc.relation.references[64] X. bin Liu et al., “Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water,” Ocean Eng., vol. 190, no. September, p. 106449, 2019, doi: 10.1016/j.oceaneng.2019.106449.
dc.relation.references[65] Minitab, “¿Qué es el método de la diferencia menos significativa (LSD) de Fisher para comparaciones múltiples?,” 2019. https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/anova/supporting-topics/multiple-comparisons/what-is-fisher-s-lsd-method/.
dc.relation.references[66] C. Verdon, A. Karimi, and J. L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures,” Mater. Sci. Eng. A, vol. 246, no. 1–2, pp. 11–24, 1998, doi: 10.1016/s0921-5093(97)00759-4.
dc.relation.references[67] Q. Wang, Z. Chen, L. Li, and G. Yang, “The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC-12Co coating,” Surf. Coatings Technol., vol. 206, no. 8–9, 2012, doi: 10.1016/j.surfcoat.2011.09.071.
dc.relation.references[68] H. Wang, H. Lu, X. Song, X. Yan, X. Liu, and Z. Nie, “Corrosion resistance enhancement of WC cermet coating by carbides alloying,” Corros. Sci., vol. 147, no. November 2018, pp. 372–383, 2019, doi: 10.1016/j.corsci.2018.11.028.
dc.relation.references[69] J. Liu, X. Bai, T. Chen, and C. Yuan, “Effects of cobalt content on the microstructure, mechanical properties and cavitation erosion resistance of HVOF sprayed coatings,” Coatings, vol. 9, no. 9, 2019, doi: 10.3390/coatings9090534.
dc.relation.references[70] H. Wang, Y. Li, M. Gee, H. Zhang, X. Liu, and X. Song, “Sliding wear resistance enhancement by controlling W2C precipitation in HVOF sprayed WC-based cermet coating,” Surf. Coatings Technol., vol. 387, 2020, doi: 10.1016/j.surfcoat.2020.125533.
dc.relation.references[71] D. A. L. Quiros, “Efecto del acabado superficial sobre la resistencia adhesivo de recubrimientos aplicados por aspersion termica,” Universidad Nacional de Colombia Facultad de Minas, 2017.
dc.relation.references[72] A. Agüero et al., “HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators,” J. Therm. Spray Technol., vol. 20, no. 6, pp. 1292–1309, 2011, doi: 10.1007/s11666-011-9686-1.
dc.relation.references[73] R. K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, and P. Sampathkumaran, “Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings,” J. Therm. Spray Technol., vol. 25, no. 6, pp. 1217–1230, 2016, doi: 10.1007/s11666-016-0427-3.
dc.relation.references[74] S. E. Hankey, “Cavitation erosion of WC-Co.,” University of Cape Town ,Faculty of Engineering & the Built Environment, 1987.
dc.relation.references[75] C. Correa Hernández, “RELACIÓN ENTRE RESISTENCIA A CAVITACIÓN Y PROPIEDADES FÍSICO-QUÍMICAS Y MECÁNICAS DE RECUBRIMIENTOS POLIMÉRICOS PARA APLICACIONES EN TURBINAS HIDRÁULICAS,” 2009.
dc.relation.references[76] M. Szala, D. Chocyk, A. Skic, M. Kamiński, W. Macek, and M. Turek, “Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed stellite 6,” Materials (Basel)., vol. 14, no. 9, 2021, doi: 10.3390/ma14092324.
dc.relation.references[77] M. Duraiselvam, R. Galun, V. Wesling, B. L. Mordike, R. Reiter, and J. Oligmüller, “Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement,” Surface and Coatings Technology, vol. 201, no. 3–4. pp. 1289–1295, 2006, doi: 10.1016/j.surfcoat.2006.01.054.
dc.relation.references[78] G. Gao and Z. Zhang, “Cavitation erosion mechanism of 2Cr13 stainless steel,” Wear, vol. 488–489, no. September 2021, p. 204137, 2022, doi: 10.1016/j.wear.2021.204137.
dc.relation.references[79] M. Gallego, S. C. Chávez, J. de la Roche, and A. Toro, “Effect of heat treatment on the wet abrasion resistance of WC-10Co4Cr coatings deposited onto stainless steel by HVOF,” Tribol. - Mater. Surfaces Interfaces, 2021, doi: 10.1080/17515831.2021.1938869.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembProtective coatings
dc.subject.lembRevestimiento protectores
dc.subject.lembTribologia
dc.subject.proposalProyección térmica por HVOF
dc.subject.proposalRecubrimientos a base de WCCo
dc.subject.proposalCavitación
dc.subject.proposalRefinamiento Rietveld
dc.subject.proposalPorosidad
dc.subject.proposalXRD
dc.subject.proposalHVOF thermal spraying
dc.subject.proposalWC-Co based coatings
dc.subject.proposalCavitation
dc.subject.proposalRietveld refinement
dc.subject.proposalPorosity
dc.title.translatedImprovement of the cavitation resistance of WC-Co coatings by the control of parameters of the thermal spray process High Velocity Oxy-Fuel (HVOF)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle203010022338-DESARROLLO E IMPLEMENTACIÓN DE PROCESOS DE REPARACIÓN Y PROTECCIÓN DE COMPONENTES CRÍTICOS SOMETIDOS A DAÑO SUPERFICIAL EN CENTRALES DE GENERACIÓN TÉRMICA E HIDRÁULICA MEDIANTE TECNOLOGÍAS DE ASPERSIÓN TÉRMICA Y SOLDADURA - EPM
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito