Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorParra Suescún, Jaime
dc.contributor.advisorJurado Gámez, Henry
dc.contributor.authorFajardo Argoti, Ivonne Catalina
dc.date.accessioned2022-03-14T21:23:11Z
dc.date.available2022-03-14T21:23:11Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81212
dc.description.abstractEl actual interés entorno a la microbiota intestinal está impulsando al desarrollo de investigaciones que puedan demostrar la existencia de microorganismos beneficiosos para el control de microorganismos potencialmente nocivos asociados a problemas de salud pública como las toxiinfecciones alimentarias (TIA’s), en este sentido, una estrategia para favorecer su viabilidad y supervivencia es la microencapsulación con materiales que ejerzan un papel de material de pared y termoprotector. El objetivo de la presente investigación fue evaluar el efecto de Lactobacillus gasseri y Lactobacillus plantarum microencapsulados sobre los patógenos Escherichia coli O157:H7, Staphylococcus aureus, Listeria monocytogenes asociados a la incidencia de TIA’s e infecciones en las producciones pecuarias. Para esto se realizaron cinéticas de fermentación (consumo de azúcares (mg/L), producción de proteínas (mg/L), medición del crecimiento microbiano, determinación de pH, cuantificación de ácido láctico (%)) cada 2 horas y 50 minutos por 24 h. Se propusieron dos medios de cultivo que consistieron en un medio comercial MRS (De Man, Rogosa & Sharpe) y un medio no comercial denominado PRO. Posteriormente, se microencapsularon las cepas lácticas por secado por aspersión en una matriz de maltodextrina e inulina al 15%. Luego se determinó su viabilidad (UFC/mL) y caracterización física en condiciones de almacenamiento (20±2°C) a los 8, 15, 20, 30, y 45 días. Enseguida, se identificó morfológicamente por microscopia electrónica (SEM) el material microencapsulado. Posteriormente, L. gasseri y L. plantarum microencapsulados se evaluaron en condiciones gastrointestinales simuladas. A continuación, se determinó su concentración mínima inhibitoria (CMI) en concentraciones de 80, 90, 100, 120, 125 y 150 µL y se verificó la producción de exopolisacáridos (EPS). Se encontró que L. plantarum y L. gasseri alcanzaron su fase exponencial a las 11:50 (3,0x1011) y 8:50 horas (3,0x1012). El análisis estadístico de medidas repetidas mostró que no existen diferencias significativas entre los medios (p>0,05). El consumo de azúcar fue de 6,98 y 5,90 mg/L y 3,14 y 3,30 mg/L y valores de proteína de 4,88 y 4,53 y 7,32 y 6,42 mg/L respectivamente. Se encontró ácido láctico (10,9 y 8,4 g/L) y un péptido conformado por VAL-TIR-VAL. Los microorganismos probióticos microencapsulados presentaron una adecuada viabilidad al someterlos a las diferentes condiciones encontradas en el TGI y por tanto pueden ejercer sus múltiples efectos en el hospedero, generando alimentos libres de residuos de medicamentos, hecho importante en la seguridad alimentaria del consumidor y en las producciones pecuarias. (Texto tomado de la fuente)
dc.description.abstractThe current interest in the intestinal microbiota is driving the development of research that can demonstrate the existence of beneficial microorganisms for the control of potentially harmful microorganisms associated with public health problems such as foodborne infections (TIA's), in this sense, a strategy to promote their viability and survival is microencapsulation with materials that exert a role of wall material and thermoprotector. The objective of this research was to evaluate the effect of microencapsulated Lactobacillus gasseri and Lactobacillus plantarum on the pathogens Escherichia coli O157:H7, Staphylococcus aureus, Listeria monocytogenes associated with the incidence of TIA's and infections in livestock production. Fermentation kinetics (sugar consumption (mg/L), protein production (mg/L), microbial growth measurement, pH determination, lactic acid quantification (%)) every 2 hours and 50 minutes for 24 h were performed. Two culture media were proposed consisting of a commercial medium MRS (De Man, Rogosa & Sharpe) and a non-commercial medium named PRO. Subsequently, lactic acid strains were microencapsulated by spray drying in a 15% maltodextrin and inulin matrix. Viability (CFU/mL) and physical characterization were then determined under storage conditions (20±2°C) at 8, 15, 20, 20, 30, and 45 days. Then, the microencapsulated material was identified morphologically by electron microscopy (SEM). Subsequently, microencapsulated L. gasseri and L. plantarum were evaluated under simulated gastrointestinal conditions. Their minimum inhibitory concentration (MIC) was then determined at concentrations of 80, 90, 100, 120, 125 and 150 µL and the production of exopolysaccharides (EPS) was verified. L. plantarum and L. gasseri were found to reach their exponential phase at 11:50 (3.0x1011) and 8:50 hours (3.0x1012). Repeated measures statistical analysis showed that there were no significant differences between means (P>0.05). Sugar consumption was 6.98 and 5.90 mg/L and 3.14 and 3.30 mg/L and protein values were 4.88 and 4.53 and 7.32 and 6.42 mg/L respectively. Lactic acid (10.9 and 8.4 g/L) and a peptide made up of VAL-TIR-VAL were found. The microencapsulated probiotic microorganisms presented adequate viability when subjected to the different conditions found in the TGI and therefore can exert their multiple effects on the host, generating food free of drug residues, an important fact in the food safety of the consumer and in livestock productions
dc.format.extentxiii, 155 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.titleMicroencapsulación de Lactobacillus gasseri y Lactobacillus plantarum bajo condiciones gastrointestinales simuladas y su efecto sobre patógenos asociados a toxiinfectacoines alimentarias (TIA’s)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupBiodiversidad y Genética molecular "BIOGEM"
dc.contributor.researchgroupProcesos biotecnológicos aplicados a la producción animal-Forrajes y apicultura “PROBIOTEC-FORAPIS”
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.researchareaProducción animal y gestión ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Producción Animal
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAldana, AS., Sandoval, ER., Aponte, AA. (2004). Encapsulación de Aditivos para la Industria de Alimentos. Ingenieria y Competitividad; 5:73–83.
dc.relation.referencesAmaral, C. (2008). Analisis de patentes, herramientas para la determinacion de lineas de investigacion sobre probioticos en Cuba. http://www.dynamics.unam.edu/alci/files/docs/articulos/Ponencia-11 AmaralCintia.pdf
dc.relation.referencesAnnan, N.T., Borza, A. D., Truelstrup, L. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentes 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41(2): pp. 184-193
dc.relation.referencesArakawa, K., Kawai, Y., Ito,Y., Nakamura, K., Chujo, T., Nishimura, J., Kitazawa, H., Saito, T. (2010). HPLC purification and re-evaluation of chemical identity of two circular bacteriocins, gassericin A and reutericin 6 Lett. Appl. Microbiol., 50, pp. 406-411
dc.relation.referencesAyadi, F., Bayer, I. S., Marras, S., & Athanassiou, A. (2016). Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release. Carbohydrate Polymers, 136, 282–291
dc.relation.referencesAzcarate-Peril, M. A., E. Altermann, Y. J. Goh, R. Tallon, R. B. Sanozky-Dawes, E. A. Pfeiler, S. O’Flaherty, B. L. Buck, A. Dobson, T. Duong, M. J. Miller, R. Barrangou, and T. R. Klaenhammer. (2008). Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl. Environ. Microbiol. 74:4610–4625.
dc.relation.referencesAllaire, JM., Crowley, SM., Law, HT., et al. (2018). The intestinal epithelium: central coordination of mucosal immunity. Trends Immunol. 39:677---96, http://dx.doi.org/10.1016/j.it.2018.04.002
dc.relation.referencesAbalco, AT. (2020). Caracterización fitoquímica del aceite esencial de Orégano (O. vulgare L.) por cromatografía de gases procedentes de dos porvincias del Ecuador. In. Quito: Universidad Central del Ecuador - Facultad de Ciencias Quimicas
dc.relation.referencesAcevedo, D., Rodríguez, A., & Fernández, A. (2010). Efecto de las variables de proceso sobre la cinética de acidificación, la viabilidad y la sinéresis del suero costeño Colombiano. Informacion Tecnologica, 21(2), 29–36. https://doi.org/10.1612/inf.tecnol.4159it.09
dc.relation.referencesAltiok, D. (2004). Kinetic Modelling of Lactic Acid Production from Whey. Master of Science, Izmir Institute of Technology, Food Engineering, Izmir, Turkey.
dc.relation.referencesAmorocho, CC. (2011). Caracterización y potencial probiótico de bacterias lácticas aisladas de leche de oveja Guirra. España: Universitat Politècnica de València.
dc.relation.referencesArakawa, K., Y. Kawai, K. Fujitani, J. Nishimura, H. Kitazawa, K. Komine, K. Kai, and T. Saito. (2008). Bacteriocin production of probiotic Lactobacillus gasseri LA39 isolated from human feces in milk-based media. Anim. Sci. J. 79:634–640.
dc.relation.referencesAvonts, L., Uytven, EV y Vuyst, LD (2004). Crecimiento celular y producción de bacteriocina de cepas probióticas de Lactobacillus en diferentes medios. International Dairy Journal, 14 (11), 947–955. doi: 10.1016 / j.idairyj.2004.04.003
dc.relation.referencesAhmed M., Akter, M., Lee, J.C.,Eun, J.B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT- Food Science and Technology. 43:1307-1312.
dc.relation.referencesAlves, N.N., Messaoud, G.B., Desobry, S., Costa, J.M.C., Rodrigues, S. (2016). Effect 450 of drying technique and feed flow rate on bacterial survival and physicochemical properties of a non-dairy fermented probiotic juice powder. Journal of Food 452 Engineering, 189, pp.45-54
dc.relation.referencesArepally, D., Sudharshan, R., Tridib, R., Goswami, K. (2020). Studies on survivability, storage stability of encapsulated spray dried probiotic powder, Current Research in Food Science, Volume 3, 2020, Pages 235-242, ISSN 2665-9271, https://doi.org/10.1016/j.crfs.2020.09.001.
dc.relation.referencesArgyri, A. A., Zoumpopoulou, G., Karatzas, K. A., Tsakalidou, E., Nychas, G. J., Panagou, E. Z., Tassou, C.C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33:282–291. https://doi.org/10.1016/ j.fm.2012.10.005
dc.relation.referencesAbid, Y., Azabou, S., Blecker, C., Gharsallaoui, A., Corsaro, M. M., Besbes, S., et al. (2021). Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate Polymers, 256, 117523. https://doi.org/10.1016/j.carbpol.2020.117523
dc.relation.referencesAbriouel H, Herrmann A, Sta¨rke J, Yousif N.M.K, Wijaya A, Tauscher B, Holzapfel W, Franz C.M.A.P (2004). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70:603–606
dc.relation.referencesAlhaj, O. A., Metwalli, A. A., Ismail, E. A., Ali, H. S., Al-Khalifa, A. S., & Kanekanian, A. D. (2018). Angiotensin converting enzyme-inhibitory activity and antimicrobial effect of fermented camel milk (Camelus dromedarius). International Journal of Dairy Technology, 71(1), 27–35.
dc.relation.referencesAlmutairi, A.M., Alarjani, K.M., AlQahtany, FS., Soundharrajan, I. (2021). Methicillin and multidrug resistant pathogenic Staphylococcus aureus associated sepsis in hospitalized neonatal infections and antibiotic susceptibility, Journal of Infection and Public Health. doi: https://doi.org/10.1016/j.jiph.2021.08.031
dc.relation.referencesAltamura, F., Maurice, C.F & Castagner, B. (2020). Drugging the gut microbiota: toward rational modulation of bacterial composition in the gut, Curr. Opin. Chem. Biol. 56, 10–15
dc.relation.referencesAmmor, M. S., Flórez, A. B., & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24(6), 559–570.
dc.relation.referencesAmmor, M.S & Mayo, B. (2007). Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76:138–146
dc.relation.referencesAnnou, S., Maqueta, M., Martínez-Bueno, M., Valdivia, E. (2007). Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Appl Microbiol 1:475–486
dc.relation.referencesAssefa, A., Regassa, F., Ayana, D., Amenu, K., Abunna, F. (2019). Prevalence and antibiotic susceptibility pattern of Escherichia coli O157:H7 isolated from harvested fish at Lake Hayq and Tekeze dam, Northern Ethiopia, Heliyon, Volume 5, Issue 12, e02996, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2019.e02996.
dc.relation.referencesBadel, S., Bernardi, T., & Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29, 54–66.
dc.relation.referencesBlajman, J., Gaziano, C., Zbrun, M.V., Soto, L., Astesana, D., Berisvil, A., Romero, A., Signorini, M. & Frizzo L. (2015). In vitro and in vivo screening of native lactic acid bacteria toward their selection as a probiotic in broiler chickens. Research in Veterinary Science. 101: 50-56.
dc.relation.referencesBogovic-Matijasić, B & Rogelj, I. (2000). Lactobacillus K7—A new candidate for a probiotic strain Food Technol. Biotechnol., 38 (2000), pp. 113-119
dc.relation.referencesBañuelos, O., Fernández, L., Corral, J. M., Valdivieso-Ugarte, M., Adrio, J. L., & Velasco, J. (2008). Metabolism of prebiotic products containing beta(2-1) fructan mixtures by two Lactobacillus strains. Anaerobe, 14(3), 184–189. https://doi.org/10.1016/j.anaerobe.2008.02.002
dc.relation.referencesBelal, JM., Hussein, LA, Hana, K., Nameer, KM., Nazamid, S., Zaiton, H., Anis, MH. (2020). Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize sedes. Food Control, Volume 109,106898, ISSN 0956-7135, https://doi.org/10.1016/j.foodcont.2019.106898.
dc.relation.referencesBen, W., Champagne, C.P., Makhloufa, J., Bazineta, L. (2008). Utilization of tofu whey pre-treated by electromembrane process as a growth medium for Lactobacillus plantarum LB17. Desalination 2008; 229: 192-203.
dc.relation.referencesBorrero, J., Jiménez, J. J., Gútiez, L., Herranz, C., Cintas, L. M., and Hernández, P. E. (2011). Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J. Biotechnol. 156:76-86
dc.relation.referencesBertrand, C., et al. (2003). Evolution of β-lactoglobulin and α-lactoalbumin content during yogurt fermentation
dc.relation.referencesBao, Y., Y. Zhang, Y., Zhang, Y., Liu, S., Wang, X., Dong, Y., Wang., Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009 .10.010
dc.relation.referencesBegley, M., Hill, C., & Gahan, G. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72, 1729–1738.
dc.relation.referencesBron, P. A., Molenaar, D., de Vos, W. M., & Kleerebezem, M. (2006). DNA micro-arraybased identification of bile-responsive genes in Lactobacillus plantarum. Journal of Applied Microbiology, 100, 728–738.
dc.relation.referencesBrusch, G. & Záchia, M. (2011). Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt, J Food Eng, 103, 123-128.
dc.relation.referencesBustamante, M., Oomah, B.D., Rubilar, M., Shene, C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying, Food Chemistry, Volume 216, Pages 97-105, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2016.08.019.
dc.relation.referencesBustos, A. Y., Saavedra, L., de Valdez, G. F., Raya, R. R., & Taranto, M. P. (2012). Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnology letters, 34(8), 1511–1518. https://doi.org/10.1007/s10529-012-0932-5
dc.relation.referencesBertsch, D., Muelli, M., Weller, M., Uruty, A., Lacroix, C., & Meile, L. (2014). Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes. Microbiology Open, 3(1), 118–127.
dc.relation.referencesBomfim, V.B., Neto, J. H. P. L., Leite, K. S., Vieira, E. A., Iacomini, M., Silva, C. M., et al. (2020). Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 127, Article 109349. https://doi.org/ 10.1016/j.lwt.2020.109349
dc.relation.referencesBurns, P., Vinderola, G., Reinheimer, J., Cuesta, I., De Los Reyes-Gavilan, C.G., Ruas-Madiedo, P. (2011). Technological characterization and survival of the exopolysaccharide-producing strain Lactobacillus delbrueckii subsp. lactis 193 and its bile-resistant derivative 193 þ in simulated gastric and intestinal juices, J. Dairy Res. 78, 357e364.
dc.relation.referencesCabezos Oria, E. (2018). Toxiinfecciones alimentarias en la región de Murcia, un estudio de corte transversal (2010-2015).
dc.relation.referencesCamean, A y Repetto, M. (2012). Toxicología alimentaria., Madrid., Ediciones Díaz de Santos, S.A. ISBN: 978-84-9969-208-1.p. 260
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). Características generales del Staphylococcus aureus. Revista latinoamericana de patología clínica y medicina de laboratorio, 61(1), 28-40.
dc.relation.referencesChampagne, C. P & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion Biotechnol 18(2): pp. 184-190.
dc.relation.referencesChapman, PA., Siddons, CA., Malo, ATC., Harkin, MA. (1997). A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol Infect; 119: 245–50.
dc.relation.referencesCharlier-Woerther, C & Lecuit, M. (2014). Listeriosis and pregnancy. Presse Med. (France). 43(6):676- 682.Charlier-Woerther, C & Lecuit, M. (2014). Listeriosis and pregnancy. Presse Med. (France). 43(6):676- 682.
dc.relation.referencesCossio, D. S., Hernández, Y. G., & Mendoza, J. D. (2018). Development of probiotics for animal production. Experiences in Cuba Desarrollo de probióticos destinados a la producción animal: experiencias en Cuba. Cuban Journal of Agricultural Science, 52(4), 1.
dc.relation.referencesCrespo, M., Vélez, J., Castañeda, C., Hoyos, F., López, M., Salazar, J. (1999). Aislamiento de Listeria monocytogenes en un hospital de tercer nivel. Col. Médica (Colombia). 30(2):89-98
dc.relation.referencesCrittenden, R., Weerakkody, R., Sanguansri, L., Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl Environm Microbiol 72(3): pp. 2280-2282.
dc.relation.referencesCzuprynski, C.J., Kathariou, S., Poulsen, K. (2010). Listeria. En: Gyles, C.L.; Prescott, J.F.; Songer, J.G.; Thoen, C.O. (eds). Pathogenesis of Bacterial Infections in Animals. Ed. Wiley-Blackwell (USA). p.167-187.
dc.relation.referencesCabeza Herrera, EA. (2006). Bacterias ácido-lácticas (BAL): aplicaciones como cultivos estárter para la industria láctea y cárnica. 10.13140/2.1.2241.2169
dc.relation.referencesCai, Y., Benno, Y., Nakase, T., Oh, T. (1998). Specific probiotic characterization of Weissellahellenica DS-12 isolated from flounder intestine. J Gen Appl Microbiol. 44(5): 311-316
dc.relation.referencesCai, Y., Suyanandana, P., Saman, P., Benno, Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol. 1999. 45(4): 177-184. https://doi.org/10.2323/jgam.45.177
dc.relation.referencesCalpa Yamá FY & Chaspuengal Tulcán, AM. (2013). Evaluación in vitro de Lactobacillus casei con características probióticas sobre Yersinia pseudotuberculosis. Trabajo de grado Zootecnista. San Juan de Pasto: Universidad de Nariño. Facultad de Ciencias Pecuarias.107 p.
dc.relation.referencesCastañeda, MT. (2019). Estequiometría y cinética del crecimiento microbiano. Catedra de biotecnología. UNIVERSIDAD TECNOLÓGICA NACIONAL- FACULTAD REGIONAL LA PLATA. http://sedici.unlp.edu.ar/bitstream/handle/10915/89651/Apunte_de_c%C3%A1tedra.pdf-PDFA.pdf?isAllowed=y&sequence=1
dc.relation.referencesChafla, A. L., Espin, J. M., Jara, M., & Peñafiel, S. E. (2015). Caracterización de proteína microbiana obtenida a partir de residuos agroindustriales. Revista Amazónica Ciencia y Tecnología, vol. 4, no 2, p. 143.
dc.relation.referencesChristensen, J. E., Dudley, E. G., Pederson, J. A., Steele, J. L. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217-246.
dc.relation.referencesCrueger, W. y Crueger, A. (1989). Industrial microbiology manual. España: Acribia
dc.relation.referencesCrueger, W., & Crueger, A. (1993). Biotecnología: Manual de Microbiología Industrial. Traducido por Paloma Liras Padín. 3 ed. Madrid. España: Ed. Acribia, p.118.
dc.relation.referenceshttps://doi.org/10.1007/s10529-012-0932-5 Cano-Chauca, M., Stringheta, P.C., Ramos, A.M., Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies ; 6 (4):420–428
dc.relation.referencesCasiraghi, M. C., Canzi, E., Zanchi, R., Donati, E., Villa, L. (2007). Effects of a symbiotic milk product on human intestinal Ecosystem, J Appl Microbiol, 103, p. 499-506.
dc.relation.referencesCeballos, A.M., Giraldo, G.I., Orrego, C.E. (2012). Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. Journal of Food Engineering ; 111: 360–365
dc.relation.referencesChávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. del C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185–189. doi:10.1016/j.ijfoodmicro.2010.06
dc.relation.referencesCherbut C. (2002). Inulin and oligofructose in the dietary fibre concept. Brit J Nutr. 87(Suppl.2):S159-62. DOI: 10.1079/ BJN2002532
dc.relation.referencesCorcoran, B.M., Ross, R.P., Fitzgerald, G.F., S. (2004). Comparative survival of probiotic lactobacilli spray-dried in the present of prebiotic substances. J Appl Microbiol. 96 (5): 1024-1039.
dc.relation.referencesCrueger, W., & Crueger, A. (1993). Biotecnología: Manual de Microbiología Industrial. Traducido por Paloma Liras Padín. 3 ed. Madrid. España: Ed. Acribia, p.118.
dc.relation.referencesCaggianiello, G., Kleerebezem, M & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms, Appl. Microbiol. Biotechnol. 100, 3877e3886
dc.relation.referencesCameron, D., Hock, Q.S., Musal Kadim, N.M., Ryoo, E., Sandhu,, B., Yamashiro, Y., et al.,(2017). Probiotics for gastrointestinal disorders: proposed recommendations for children of the Asia-Pacific region, World J. Gastroenterol. 23 (45), 7952
dc.relation.referencesCampana, R., van Hemert, S & Baffone, W. (2017). Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion, Gut Pathog. 9 (1),12
dc.relation.referencesCasarotti, S. N., Carneiro, B. M., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301
dc.relation.referencesChoi, J.G., Kang, O.H., Chae, H.S., Obiang-Obounou, B., Lee, Y.S., Oh, Y.C., et al. (2010). Antibacterial activity of hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus, Appl. Biochem. Biotechnol. 160, 2467–2474.
dc.relation.referencesCiszek-Lenda, M., Strus, M., Gorska-Fraczek, S., Targosz-Korecka, M., Srottek, M., Heczko, P.B., Gamian, A., Szymonski, M., Marcinkiewicz, J. (2011). Strain specific immunostimulatory potential of lactobacilli-derived exopolysaccharides, Centr Eur. J. Immunol. 36, 121e129.
dc.relation.referencesCLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). 2012. Performance standards for antimicrobial susceptibility testing; approved standard. Twenty-second informational supplement. CLSI Document M100-S22. Wayne, PA.
dc.relation.referencesCLINICAL AND LABORATORY STANDARS INSTITUTE (CLSI). 2007. Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth informational supplement. M100-S17.1(27).
dc.relation.referencesConter M., Paludi D., Zanardi E., Ghidini S., Vergara A., Ianieri A. (2009). Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. International Journal of Food Microbiology 128 497–500.
dc.relation.referencesDal Bello, F., & C. Hertel. (2006). Oral cavity as natural reservoir for intestinal lactobacilli. Syst. Appl. Microbiol. 29:69–76.
dc.relation.referencesDe Lange, C., Pluske, J., & Nyachoti, C. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. https://www.researchgate.net/publication/228829237_Strategic_use_of_feed_ingredients_and_feed_additives_to_stimulate_gut_health_and_development_in_young_pigs
dc.relation.referencesDinges MM, Orwin PM, Schlievert PM. (2000).Exotoxins of Staphylococcus aureus. Clin Microbiol Rev; 13:16-34
dc.relation.referencesDjossou, O., Perraud-Gaime, I., Lakhal Mirleau, F., Rodriguez-Serrano, G., Karou, G., Niamke, S., Ouzari, I., Boudabous, A., Roussos, S. (2011). Robusta coffee beans postharvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius. Anaerobe
dc.relation.referencesDrogoz, A., Munier, S., Verrier, B., David, L., Domard, A., & Delair, T. (2008). Towards biocompatible vaccine delivery systems: Interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules, 9, 583–591
dc.relation.referencesDuboc, P & Mollet, B. (2001). ApIications of exopo- Iysaccharides in the dairy industry” InternationaI Dairy JournaI. voI. 11 p. 759-768.
dc.relation.referencesDahl, TA., Midden, WR., Hartman, PE. (1989). Comparison of Killing of Gram-negative and Gram-positive Bacteria by Pure Singlet Oxygen. J Bacteriol. 171(4): 2188-2194
dc.relation.referencesDeegan, LH., Cotter, PD., Hill, C., Ross, P. (2006). Bacteriocins: biological tools for biopreservation and shelf-life extension. Int. Dairy J. 16:1058-1071.
dc.relation.referencesDeMan, J., Rogosa, M. y Scharpe, M.E. (1972). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23, 130–135.
dc.relation.referencesDevlieghere, F., Vermeiren, L., Debevere, J. (2004). New preservation technologies: possibilities and limitations. Int. Dairy J. 14:273-285
dc.relation.referencesDoeven, M. K., Kok, J., Poolman, B. (2005). Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol. Microbiol. 57:640-649
dc.relation.referencesDuBois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Anal Chem. 28(3): 350-356. https://pubs.acs.org/doi/pdfplus/10.1021/ac60111a017
dc.relation.referencesDadashi, M., Nasiri, M.J., Fallah, F., Owlia, P., Hajikhani, B., Emaneini, M., et al. (2018). Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis, Journal of Global Antimicrobial Resistance 12, 96–103.
dc.relation.referencesDahiya, R.S, Speck, M.L. (1968) Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci 51:1569–1572
dc.relation.referencesDe Vuyst, L & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria, FEMS Microbiol. Rev. 23 (1999) 153e177
dc.relation.referencesDevi, S. M., Kurrey, N.K., & Halami, P.M. (2018) . In vitro anti-inflammatory activity among probiotic Lactobacillus species isolated from fermented foods. J. Funct. Foods 47:19–27. https://doi.org/ 10.1016/j.jff.2018.05.036.
dc.relation.referencesDongarrà, M. L., V. Rizzello, L. Muccio, W. Fries, A. Cascio, I. Bonaccorsi, and G. Ferlazzo. (2013). Mucosal immunology and probiotics. Curr. Allergy Asthma Rep. 13:19–26. https://doi.org/10.1007/ s11882-012-0313-0.
dc.relation.referencesEckert, C., G., Serpa, V., Felipe Dos Santos, A. C., et al. (2017). Microencapsulation Of Lactobacillus Plantarum ATCC 8014 Through Spray Drying And Using Dairy Whey As Wall Materials. Lwt - Food Science And Technology, V. 82, P. 176–183.
dc.relation.referencesEUROPEAN FOOD SAFETY AUTHORITY AND EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL. (2018). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. https://ecdc.europa.eu/sites/portal/files/documents/AMR-zoonotic-bacteria-humans-animals-food 2016_Rev3.pdf
dc.relation.referencesEkinci, F & Gurel, M. (2007). Effect of using propionic acid bacteria as an adjunct culture in yogurt production. Journal dairy science. Vol 91,p. 892-889.
dc.relation.referencesEscobar, J. C., Rojas, C. A., Giraldo, G. G. A. y Padilla-Sanabria, L. (2010). “Evaluación del crecimiento de Lactobacillus casei y producción de ácido láctico usando como sustrato el suero de leche vacuno”. En: Rev. Invest. Univ. Quinidío. 20: 42-49.
dc.relation.referencesEsquivel-González, B.E., Ochoa Martínez, L.A., Rutiaga-Quiñones, O.M. (2015). Microencapsulación mediante secado por aspersión de compuestos bioactivos Revista Iberoamericana de Tecnología Postcosecha, vol. 16, núm. 2. pp. 180-192 Asociación Iberoamericana de Tecnología Postcosecha, S.C. Hermosillo, México
dc.relation.referencesFagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, et al. (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298: 1424–1427.
dc.relation.referencesFAO (Food and Agriculture Organization of the United Nations). (2016). Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. Rome.
dc.relation.referencesFritzen-Freire, CB., Prudêncio, ES., Amboni, RD., Pinto, SS., Negrão-Murakami, AN., Murakami, FS. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International; 45: 06–312.
dc.relation.referencesFujiwara S, Seto Y, Kimura A, Hashiba H (2001). Establishment of orally-administered Lactobacillus gasseri SBT2055SR in the gastrointestinal tract of humans and its influence on intestinal microflora and metabolism. J Appl Microbiol 90, 343–352.
dc.relation.referencesFurukawa, I., Suzuki, M., Masaoka, T., Nakajima, N., Mitani, E., Tasaka, M., Teranishi, H., Matsumoto, Y., Koizumi, M., Ogawa, A., Oota, Y., Homma, S., Sasaki, K., Satoh, H., Sato, K., Muto, S., Anan, Y., Kuroki, T. (2018) ‘Outbreak of Enterohemorrhagic Escherichia coli O157:H7 Infection Associated with Minced Meat Cutlets Consumption in Kanagawa, Japan’ Japanese Journal of Infectious Diseases, 71(6), pp. 436-441.
dc.relation.referencesFAO, “Escherichia coli,” Bol. enfermedades Transfront. los Anim., p. 39, 2011
dc.relation.referencesFeng Hang, YJ., Liwen Yan, QH., Wenwei Lu, JZ., Hao Zhang, WC. (2020). Preliminary study for the stimulation effect of plant-based meals on pure culture Lactobacillus plantarum growth and acidification in milk fermentation, Journal of Dairy Science, Volume 103, Issue 5, Pages 4078-4087,ISSN 0022-0302, https://doi.org/10.3168/jds.2019-17200. (https://www.sciencedirect.com/science/article/pii/S0022030220301466)
dc.relation.referencesFitzgerald, R. & Murray, B. A. (2006). Bioactive peptides and lactic fermentations. International Journal of Dairy Technology 59, 118-125.
dc.relation.referencesFranz, C. M., Huch, M., Abriouel, H., Holzapfel, W., and Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 151:125-40
dc.relation.referencesFerrari, C., Marconi, S., Aguirre, J. (2012). Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology: 30:154-163.
dc.relation.referencesFreudig, B., Hogekamp, S., Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing ; 38:525–532
dc.relation.referencesFritzen-Freire, C. B., Prudencio, E. S. R., Amboni, D.M.C., Pinto, S. S., Muñoz, I. B. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments, LWT-FOOD SCI TECHNOL, 50, 39-44.
dc.relation.referencesFritzen-Freire, CB., Prudêncio, ES., Amboni, RD., Pinto, SS., Negrão-Murakami, AN., Murakami, FS. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International; 45: 06–312.
dc.relation.referencesFeriala, A.A., Abo, Saif., Ebtehag, A.E., Sakr. (2020). Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE., Bioactive Carbohydrates and Dietary Fibre, Volume 24,100231, ISSN 2212-6198, https://doi.org/10.1016/j.bcdf.2020.100231.
dc.relation.referencesFernández, M.F., Boris, S & Barbes, C. (2003). Propiedades probióticas de cepas de lactobacilos humanos para uso en el tracto gastrointestinal. Revista de microbiología aplicada , 94 (3), 449-455.
dc.relation.referencesFoster, T.J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 41, 430–449.
dc.relation.referencesGalvez, H. et aI. (2007). Bacteriocin-based strategies for food biopreservation, InternationaI JournaI of Food MicrobioIogy.voI. 120, pp.51-70
dc.relation.referencesGao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J. & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 5: 91-104
dc.relation.referencesGarcía, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Nuñez O., Albelo N. & Halaihel N. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science. 108: 125-132.
dc.relation.referencesGarrote, A & Bonet, R. (2017). Probióticos. Rev. Farmacia profesional. Vol 31, Número 2, pag 13-16. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-probioticos-X0213932417608720.
dc.relation.referencesGoderska, K & Czarnecki, Z. (2008). Influence of micronecapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Polish J Microbiol 7(2): pp. 135-140.
dc.relation.referencesGorska, S., Hermanova, P., Ciekot, J., Schwarzer, M., Srutkova, D., Brzozowska, E., Gamian, A. (2017). Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology,27, 275–277
dc.relation.referencesGullian-Klanian, M., & Sánchez-Solis, M.J. (2018). Growth kinetics of Escherichia coli O157:H7 on the epicarp of fresh vegetables and fruits. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].
dc.relation.referencesGálvez, A., López, R. L., Abriouel, H., Valdivia, E., Omar, N. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28:125-152.
dc.relation.referencesGálvez, H. et al. (2007). Bacteriocin based strategies for food biopreservation, international journal of food microbiology. Vol. 120, pp. 51-70.
dc.relation.referencesGarcía, C, Arrázola Paternina, G., Durango, A. (2017). Producción de ácido láctico por vía biotecnológica.https://repositorio.unicordoba.edu.co/bitstream/handle/ucordoba/431/676-1274-1-PB.pdf?sequence=1&isAllowed=y
dc.relation.referencesGiraud, E., Champalier, A., Raimbault, M. (1994). Degradation the raw starch by a wild amylolytic strain of Lactobacillus plantarum. Appl Enviro Microb. 60 [12]: 4319-4323.
dc.relation.referencesGonzález-Olivares, L.G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., & García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista mexicana de ingeniería química, 10(2), 179-188. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382011000200004&lng=es&tlng=es
dc.relation.referencesGopal, R., Altaf, MD., Naveena, B., Venkateshwar, M., Vijay Kumar E. (2008). Amylolytic bacterial lactic acid fermentation -A review. Biotechnology Advances 26 (1): 22-24
dc.relation.referencesGuerrero, M., Guzmán, S., Yandar, N., Pazos, A. (2002). Efecto inhibitorio de lactobacillus acidophilus sobre el enteropatogeno vibrio cholerae 01 ogawa, in vitro. Universidad Y Salud, 1(3). http://revistas.udenar.edu.co/index.php/usalud/article/view/314
dc.relation.referencesGündüz, M. (2005). Lactic acid production by Lactobacillus casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. Tesis de Master of Science, Izmir Institute of Technology, Izmir
dc.relation.referencesGutiérrez-Sarmiento, W., Ventura-Canseco, L., Gutiérrez-Miceli, F., Luján-Hidalgo, M., Abud-Archila, M., Ruíz-Valdiviezo, V. (2020). OPTIMIZATION OF BIOMASS PRODUCTION, LACTIC ACID, AND GASTROINTESTINAL SIMULATION SURVIVAL OF Lactobacillus plantarum BAL-03-ITTG CULTURED IN STIRRED TANK BIOREACTOR. Agrociencia. 54. 147-162.
dc.relation.referencesGútiez Sainz-Pardo, L. (2013) Desarrollo de estrategias moleculares que permitan el uso de las bacterias lácticas (BAL) como factorías celulares de producción de péptidos bioactivos de interés en la industria alimentaria. [Tesis doctoral]. Universidad complutense de Madrid. https://eprints.ucm.es/id/eprint/23437/
dc.relation.referencesGarcía-Godos P. (2006). Evaluación de bacterias lácticas con capacidad antagónica frente a cepas patógenas aislada a partir de chicha de molle. Presentado en VII Congreso Nacional de Biología. Ayacucho, Perú
dc.relation.referencesGharsallaoui, A., Roudaut, G., Chambin O., Voilley, A., Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International. 40:1107-1121
dc.relation.referencesGismondo, M. R., Drago, L., Lombardi, A. (1999). Review of probiotics available to modify gastrointestinal flora. Int J Antimicrobial Agents 12(4): pp. 287- 292.
dc.relation.referencesGómez Arciniegas, J. (2016). Caracterización granulométrica de un producto comercial en polvo (suplemento dietario) y evaluación de la capacidad de dispersión en agua. Tesis grado para optar por título de quimico farmmaceutico. Universidad ICESI. https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/81963/1/TG01475.pdf
dc.relation.referencesGonzález, R. E., J. Mendoza., L. B. Morón. (2015). Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados, Inf Tecnol, 26(5), 11-16.
dc.relation.referencesGotteland, M & Brunser, O. (2006). Efecto de un yogur con inulina sobre la función intestinal de sujetos sanos o constipados. Rev Chil Nutr. 33(3):553-60. DOI: 10.4067/S0717-75182006000500012
dc.relation.referencesGuo, C.F., Zhang, S., Yuan, Y.H., Yue, T.L., Li, J.Y. (2015). Comparison of lactobacilli isolated from Chinese suan-tsai and koumiss for their probiotic and functional properties. J. Funct. Foods 12:294–302. https://doi.org/10.1016/j.jff.2014.11.029
dc.relation.referencesGao, K., C. Wang, L. Liu, X. Dou, J. Liu, L. Yuan, W. Zhang, & H. Wang. (2017). Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J. Microbiol. Immunol. Infect. 50:700–713. https://doi.org/10.1016/j.jmii.2015 .05.002
dc.relation.referencesGaredew L., Taddese A., Biru T., Nigatu S., Kebede S., Ejo M., Fikru A., & Birhanu T. (2015) Prevalence and antimicrobial susceptibility profile of listeria species from ready-to-eat foods of animal origin in Gondar Town, Ethiopia. BMC Microbiology 15:100. DOI 10.1186/s12866-015-0434-4.
dc.relation.referencesGeorgieva, R., Yocheva, L., Tserovska, L., Zhelezova, G., Stefanova, N., Atanasova, A, et al. (2015). Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip; 29:84e91
dc.relation.referencesGuimaríes, D., et al. (1999). Optimización de la síntesis de dextrano e hidrólisis ácida mediante análisis de respuesta de superficie. Revista Brasileña de Ingeniería Química, v. 16, no. 2, p.129-139, 1999. http://dx.doi.org/10.1590/S0104-66321999000200004
dc.relation.referencesGunyakti, A & Asan-Ozusaglam, M. (2018). Investigation of the potential use of Lactobacillus gasseri originated from human breast milk as food additive, LWT, Volume 93, Pages 613-619, ISSN 0023-6438, https://doi.org/10.1016/j.lwt.2018.04.020.
dc.relation.referencesHamad EM, Sato M, Uzu K, Yoshida T, Higashi S, Kawakami H et al. (2009). Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr 101, 716–724.
dc.relation.referencesHancock, DD., Besser, TE., Rice, DH., Ebel, ED., Herriott, DE., Carpenter, LV. (1998). Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern United States. Preventive Veterinary Med; 35: 11–19.
dc.relation.referencesHarata G, He F, Kawase M, Hosono A, Takahashi K, et al. (2009) Differentiated implication of Lactobacillus GG and L. gasseri TMC0356 to immune responses of murine Peyer’s patch. Microbiol Immunol 53: 475–480.
dc.relation.referencesHernández, F. J. S. (2016). LISTERIA MONOCYTOGENES: UN RETO PARA LA SEGURIDAD ALIMENTARIA/Listeria Monocytogenes: A Challenge for Food Safety. FarmaJournal, 1(2), 157.
dc.relation.referencesHiramatsu, K.; Cui, L.; Kuroda, M.; Ito, T. (2001). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9:486-93.
dc.relation.referencesHoffmann S., Batz, MB., Morris. JG. (2012). Annual Cost of Illness and Quality-Adjusted Life Year Losses in the United Due to 14 Foodborne Pathogens. Journal of Food Protection; 75(7): 1292-1302
dc.relation.referencesHou, Z. Q., Gao, Y. X., Yuan, F., Liu, Y. W., Li, C. L., & Xu, D. X. (2010). Investigation into the physicochemical stability and rheological properties of beta-carotene emulsion stabilized by soybean soluble polysaccharides and chitosan. Journal of Agriculture and Food Chemistry, 58, 8604–8611
dc.relation.referencesHernandez, D., Cardell, E., Zarate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology 99, 77-84.
dc.relation.referencesHernández, V. et al. (2007). Preparation of a whey-bases probiotic producto with Lactobacillus reuteri and Bifidobacterium bifibum. Journal Food Techonology Biotechnological. Vol 45, p. 27-31.
dc.relation.referencesHernandez-Ledezma, B., Amigo, L., Ramos, M., Recio, I. (2004). Angiotensin converting enzyme inhibitory activity in commercial fermented products formation of peptides under simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry 52, 1504- 1510.
dc.relation.referencesHoda, S., El-Sayed, M., El-Sayed, Ahmed M. Youssef. (2021). Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt, Food Chemistry, Volume 365, 130513, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2021.130513. (https://www.sciencedirect.com/science/article/pii/S0308814621015193)
dc.relation.referencesHofvendahl, K & Hägerdal, B. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology 26(2- 4): 87-107.
dc.relation.referencesHussein, LA., Belal, JM. (2000). Novel peptides contribute to the antimicrobial activity of camel milk fermented with Lactobacillus plantarum IS10. Food Control, Volume 126, 108057, ISSN 0956-7135, https://doi.org/10.1016/j.foodcont.2021.108057. (https://www.sciencedirect.com/science/article/pii/S095671352100195X)
dc.relation.referencesHamon, E., Horvatovich, P., Lzquierdo, E., Bringel, F., Marchioni, E., & Ennahar, S. (2011). Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiology, 11, 1–11.
dc.relation.referencesHossain, M.I., Rahaman, Mizan, F., Kumar, Roy, P., Nahar, S., Hossen Toushik, S., Ashrafudoulla, M., Kabir Jahid, I., Lee, J., Ha, S.D. (2021). Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2, Food Research International, Volume 148, 110595,ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2021.110595
dc.relation.referencesHummel, A. S., Hertel, C., Holzapfel, W. H., & Franz, C. M. (2007). Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Applied and Environmental Microbiology, 73(3), 730–739.
dc.relation.referencesHussein, L., Algboory, Belal., Muhialdin, J. (2021). Novel peptides contribute to the antimicrobial activity of camel milk fermented with Lactobacillus plantarum IS10, Food Control, Volume 126, 108057, ISSN 0956-7135, https://doi.org/10.1016/j.foodcont.2021.108057
dc.relation.referencesIshii, S. & Sadowsky, M.J. (2008). Escherichia coli in the environment: implications for water quality and human health. Microbes Environ; 23 (5): 101-108.
dc.relation.referencesIzquierdo, M. (2004). Un nuevo enfoque de la enseñanza de la química: contextualizar y modelizar. The Journal of the Argentine Chemical Society 92 (4/6), 115-136.
dc.relation.referencesInglin, R.C., Stevens, M.J., Meile, L., Lacroix, C., Meile, L. (2015). Highthroughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J Microbiol Methods; 114:26e9
dc.relation.referencesJaramillo D, Meléndez A, Sánchez O. (2010). Evaluación de la producción de bacteriocinas a partir de Lactobacilos y Bifidobacterias. Rev Ven Cien y Tec Alimentos; 1 (2): 193-209.
dc.relation.referencesJurado-Gámez, H., Castaño, D. & Ramírez, C. (2011). Evaluación de Lactobacillus plantarum en intestino grueso de lechones por microscopía electrónica y química sanguínea. Revista MVZ Córdoba, 16(2): 2538–2548, ISSN: 0122-0268.
dc.relation.referencesJurado-Gámez, H., Jarrín, V., y Parreño, J. (2015). Crecimiento De L. Plantarum Y Efecto Sobre E. Coli, S. Typhimurium, C. Perfringens, Y S. aureus. Biotecnología en el Sector Agropecuario y Agroindustrial Vol 13, No. 2 (57-66)
dc.relation.referencesJack, RW., Tagg, J.R., Ray, B. (1995). Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59:171200
dc.relation.referencesJurado Gámez, H. (2010). Evaluación de bacterias ácido-lácticas con características probióticas en la alimentación de lechones en fase de precebo como alternativa al uso de antibióticos. Trabajo de Grado para optar por el título de Doctor. Santiago de Cali: Universidad del Valle. Escuela de Ingeniería de Alimentos. 85 p
dc.relation.referencesJurado, HD., Aguirre, D., Ramírez, C. (2009). Caracterización de bacterias probióticas aisladas del intestino grueso de cerdos como alternativa al uso de antibióticos. Revista MVZ Córdoba 14(2): 1723-1735. https://doi.org/10.21897/rmvz.356
dc.relation.referencesJurado-Gámez, HA, Romero-Benavides, DA., Morillo-Garcés, JA. (2016). INHIBICIÓN DE Lactobacillus gasseri SOBRE Yersinia pseudotuberculosis BAJO CONDICIONES IN VITRO. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 63(2), 95-112. https://doi.org/10.15446/rfmvz.v63n2.59357
dc.relation.referencesJurado-Gámez, H., Ramírez, C., Martínez, J. (2013). Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Revista MVZ Córdoba.
dc.relation.referencesJurado-Gámez, H., Martínez-Benavides, J., Romero-Benavides, DA., Morillo-Garcés, J.A., Orbes-Villacorte, AE., Mesías-Pantoja, LN. (2016). Cinética de fermentación, pruebas de desafío in vitro y efecto de inhibición de Lactobacillus gasseri ATCC 19992. Revista Veterinaria y Zootecnia, v. 10, n. 2, p. 72-89. DOI: 10.17151/vetzo.2016.10.2.7
dc.relation.referencesJurado-Gámez, H.; Ramírez, C.; Aguirre, D. (2013). Cinética de fermentación de Lactobacillus plantarum en un medio de cultivo enriquecido como potencial probiótico. Veterinaria y Zootecnia, v.7, n.2, p.37-53.
dc.relation.referencesJiménez, M. L. (2010). Microorganismos probióticos encapsulados en polímeros microbianos: evaluación de la capacidad protectora de la encapsulación para su administración oral. Tesis en opción al grado de Doctor, Facultad de Farmacia, Universidad de Granada, España.
dc.relation.referencesJia, L., Zhao, J., Yang, C., Liang, Y., Long, P., Liu, X., et al. (2019). Severe pneumonia caused by coinfection with influenza virus followed by methicillin-resistant Staphylococcus aureus induces higher mortality in mice, Front. Immunol. 9
dc.relation.referencesJiage, M., Wan, W., Changbao, S., Liya, G., Zhijing, L., Wei, Y., Lijun, C., Zhanmei, J., Juncai, H. (2020). Effects of environmental stresses on the physiological characteristics, adhesion ability and pathogen adhesion inhibition of Lactobacillus plantarum KLDS 1.0328, Process Biochemistry, Volume 92, Pages 426-436, ISSN 1359-5113, https://doi.org/10.1016/j.procbio.2020.02.001
dc.relation.referencesJiang, Y., L. Li, H. Sun, Y. Shan, Y. Liu, L. Li, B. Qu & C. Man. (2016). Induction of cytokines via NF-κB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo. J. Funct. Foods 20:215–225. https://doi.org/10.1016/j.jff.2015.10.027.
dc.relation.referencesKadooka, Y., Tominari, K., Sakai, F., Yasui, H. (2012). Prevention of rotavirusinduced diarrhea by preferential secretion of IgA in breast milk via maternal administration of Lactobacillus gasseri SBT2055. J Pediatr Gastroenterol Nutr.55: 66–71.
dc.relation.referencesKaper, J.B. (2005). Pathogenic Escherichia coli. Int. J. Medical Microbiol; 295 (1): 355-356
dc.relation.referencesKarmali, MA., Steele, BT., Petric, M., Lim, C. (1983). Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet; i: 619–20.
dc.relation.referencesKawai, Y., Saitoh, B., Takahashi, O., Kitazawa, H., Saito,T., Nakajima,H., Itoh, T.(2000). Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055 Biosci. Biotechnol. Biochem. 64, pp. 2201-2208.
dc.relation.referencesKeene, WE., Sazie, E., Kok, J., et al. (1997). An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA; 277: 1229–31.
dc.relation.referencesKhan, NH., Korber, DR., Low, NH., Nickerson, MT. (2013). Development of extrusion-based legume protein isolate– alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Research International; 54: 730–737.
dc.relation.referencesKhem, S., Small, DM., May, BK. (2016). The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food chemistry 2016; 190:717–723.
dc.relation.referencesKullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C. (2002). Two antioxidative lactobacilli strains as promising probiotics. International J Food Microbiol 72 (3): pp. 215-224.
dc.relation.referencesKuroda M, Ohta T, Uchiyama I, Baba T. (2001). Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet ; 357: 1225-1240
dc.relation.referencesKafley, S., Kim, WS., Kumura, H., Shimazaki, K. (2010). Growth performance of whey protein hydrolysates in the media on different strains of probiotic bacteria. Milchwissenschaft 65:245–248.
dc.relation.referencesKailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yogurth. LWT. Vol 39, p. 1221-1227.
dc.relation.referencesKaroviéová, J & Kohajdová, Z. (2003). “Lactic acid fermented vegetable juices”. En: Horticultural Science. 30, 152-158.
dc.relation.referencesKawase, M., Hashimoto, H., Hosoda, M., Morita, H., Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. Journal of Dairy Science 83, 255-263.
dc.relation.referencesKlaenhammer, T. R. (1993). Genetic of bacteriocin produced by lactic acid bacteria. FEMS Microbiol. Rev. 12:39-86.
dc.relation.referencesKato, S., Tobe, H., Matsubara, H., Sawada, M., Sasaki, Y., Fukiya, S., Morita, N., Yokota,A. (2019). The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131T, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Volume 1864, Issue 3, Pages 403-412, ISSN 1388-1981, https://doi.org/10.1016/j.bbalip.2018.06.004
dc.relation.referencesKearney, N., Meng, X.C., Stanton, C., Kelly, J., Fitzgerald, G.F., Ross, R.P. (2009). Development of a spray dried probiotic yoghurt containing Lactobacillus 523 paracasei NFBC 338. International Dairy Journal, 19(11), pp.684-689. 524
dc.relation.referencesKimoto-Nira, H., Kobayashi,M., Nomura, M., Sasaki, K., Suzuki, C. (2009). Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media, Int. J. Food Microbiol. 131.183–188
dc.relation.referencesKlindt-Toldam, S., Larsen, S.K., Saaby, L., Olsen, L.R., Svenstrup, G., Müllertz, A.,Knøchel, S., Heimdal, H., Nielsen, D.S., Zielińska, D. (2016). Survival of Lactobacillus acidophilus NCFM® and Bifidobacteriumlactis HN019 527 encapsulated in chocolate during in vitro simulated passage of the upper 528 gastrointestinal tract. LWT-Food Science and Technology, 74, pp.404-410
dc.relation.referencesKoç, B., Sakin-Yılmazer, M., Kaymak-Ertekin, F. et al. (2014). Propiedades físicas del yogur en polvo producido por secado por atomización. J Food Sci Technol 51, 1377-1383. https://doi.org/10.1007/s13197-012-0653-8
dc.relation.referencesKullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C. (2002). Two antioxidative lactobacilli strains as promising probiotics. International J Food Microbiol 72 (3): pp. 215-224
dc.relation.referencesKumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F.F., Jain, S., Yadav, H. (2012). Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases, Exp. Diabetes Res. 902917, doi:10.1155/2012/902917.
dc.relation.referencesKhen, B. K., Lynch, O. A., Carroll, J., Mcdowell, D. A. & Duffy, D. A. (2015). Occurrence, Antibiotic Resistance and Molecular Characterization of Listeria monocytogenes in the Beef Chain in the Republic of Ireland. Zoonoses and Public Health. 62, 11–17
dc.relation.referencesKirby, W., Bauer, A., Sherris, J., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 45(4): 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
dc.relation.referencesKot, B., Wierzchowska, K., Piechota, M., Gruzewska, A. (2020). Antimicrobial resistance patterns in methicillin-resistant Staphylococcus aureus from patients hospitalized during 2015-2017 in hospitals in Poland, Med. Princ. Pract. 29, 61–68.
dc.relation.referencesLamont, R.F., Sobel, J.D., Akins, R.A., Hassan, S.S., Chaiworapongsa,T., Kusanovic, J.P., Romero, R. (2011). The vaginal microbiome: New information about genital tract flora using molecular based techniques BJOG, 118 (2011), pp. 533-549
dc.relation.referencesLee, I. C., Caggianiello, G., van Swam, I. I., Taverne, N., Meijerink, M., Bron, P. A., Kleerebezem, M. (2016). Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions. Applied and Environmental Microbiology, 82, 3959–3970.
dc.relation.referencesLimoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3.
dc.relation.referencesLowy FD. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Infect; 111: 1265-1273.
dc.relation.referencesLanara, L. (1981). Métodos microbiológicos. 3ªed Brasilia: Ministerio de Agricultura
dc.relation.referencesLeBlanc, A. D., Matar, C., LeBlanc, N., Perdigon, G. (2005) Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Research 7, R477-R486
dc.relation.referencesLeBlanc, J. G., Matar, C., Valdez, J. C. Leblanc, ´ J. y Perdigon, G. (2002). Immunomodulatory ´ effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science 85, 2733-2742.
dc.relation.referencesLevenspiel, O. (2004). Ingeniería de las reacciones químicas (3a. Ed.). Limusa Wiley
dc.relation.referencesLlacsa, J., Cucho, A. (2019). Cinética de fermentación de la chicha de quinua evaluado en tres variedades de quinua (Chenopodium quinoa Willd.) [Tesis, Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/handle/UNAP/13456
dc.relation.referencesLorenzen, PC & Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. International Journal of Dairy Technology 58, 119-124.
dc.relation.referencesLowry, O. H., Rosebrough, NJ., Farr, A.L., Randall, RJ. (1951). Protein measurement with the Folin-Phenol reagents. J. Biol. Chem. 193: 265-275.
dc.relation.referencesLydersen, B., Delia, N., Nelson, K. (1994). Bioprocess engineering: systems, equipment and facilities", John Wiley & Sons
dc.relation.referencesLambert, J. M., Bongers, R. S., de Vos, W. M., & Kleerebezemm, M. (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Applied and Environmental Microbiology, 74, 4719–4726
dc.relation.referencesLapsiri, W., Bhandari., B & Wanchaitanawong, P. (2012) Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage, Drying Technology, 30:13, 1407-1412, DOI: 10.1080 / 07373937.2012.684226
dc.relation.referencesLee, N.K., Han, K. J., Son, S.H., Eom, S. J., Lee, S.K., Paik, H.D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. Lebensm. Wiss. Technol. 64:1036–1041. https://doi.org/10.1016/j.lwt.2015.07.019
dc.relation.referencesLABORCLIN. 2013. Manual de antibiograma. https://docplayer.com.br/12054382-Antibiograma-rev-07-03-2013-laborclin-produtos-para-laboratorios-ltda-rua-cassemiro-de-abreu-521-cep-83-321-210-0800-410027-sac-laborlcin-com.html
dc.relation.referencesLee, K.A., Moon, S.H., Lee, J.Y., Kim, K.T., Park, Y.S., Paik, H.D. (2013). Antibacterial activity of a novel flavonoid, 7-O-butyl naringenin, against methicillin-resistant Staphylococcus aureus (MRSA), Food Science and Biotechnology 22, 1725–1728
dc.relation.referencesLi, L., Y. J. Jiang, X. Y. Yang, Y. Liu, J. Y. Wang & C. X. Man. (2014). Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM. Food Funct. 5:3261–3268. https://doi.org/10.1039/C4FO00565A
dc.relation.referencesLiu, C.T., Chu, F.J., Chou, C.C., Yu, R.C. (2011). Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01, Mutat. Res. 721, 157e162
dc.relation.referencesMajhenic, A.C., Venema, K., Allison, G.E., Matijasić, B.B., Rogelj, I., Klaenhammer, T.R. . (2004). DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lactobacillus gasseri LF221 Appl. Microbiol. Biotechnol., 63, pp. 705-714
dc.relation.referencesManojlović, V., Nedovic´, V.A., Kailasapathy, K., And Zuidam, N.J. (2010). Encapsulation of Probiotics for use in Food Products, In: Encapsulation Technologies for Active Food Ingredients and Food Processing. [ZUIDAM, N.J., NEDOVIC´, V.A], © Springer New York Dordrecht Heidelberg London. ISBN 978-1-4419-1007-3, Capítulo 10, 269-302.
dc.relation.referencesMartin, MJ., Lara-Villoslada, F., Ruiz, M., Morales, ME. (2013). Effect of unmodified starch on viability of alginateencapsulated Lactobacillus fermentum CECT5716. LWT. Food Science and Technology; 53:480– 486.
dc.relation.referencesMatsumiya, Y., N. Kato, K. Watanabe, and H. Kato. (2002). Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J. Infect. Chemother. 8:43–49.
dc.relation.referencesMcLinden, T. (2013). A Scoping Review of Component Costs of Foodborne Illness and Analysis of the Association Between Study Methodologies and Component Costs to the Cost of a Foodborne Illness. A Thesis presented to The University of Guelph. In partial fulfillment of requirements for the degree of Master of Science in Population Medicine. Guelph, Ontario, Canada. August, 2013. Disponible en: https://dspace.lib.uoguelph.ca/.../McLinden_Taylor.
dc.relation.referencesMcLinden, T., Sargeant, JM., Thomas, MK., Papadopoulos, A., Fazil, A. (2014). Component costs of foodborne illness: a scoping review. BMC Public Health; 14: 509 doi: 10.1186/1471-2458-14-509. Disponible en: www.biomedcentral.com/1471-2458/14/509
dc.relation.referencesMonroy, DMC., Castro, BT., Fernández, PFJ., Mayorga, RL. (2009) Revisión bibliográfica: Bacteriocinas producidas por bacterias probióticas. ContactoS 73: 63-72
dc.relation.referencesMoreillon P, Que Y, Glauser M. (2005). Staphylococcus aureus. In Mandell GL, Bennett JE, Olin R. Principles and practice of infectious diseases. 6a ed. Philadelphia, Churchill Livingston.
dc.relation.referencesMadigan, MT., Martinko, JM. y Parker, J. (2009) Brock, Biología de los Microorganismos (12ª Ed.) Pearson Prentice Hall
dc.relation.referencesMayeux, JV., Sandine, WE., Elliker PR. (1962). A selective medium for detecting Leuconostoc organims in mixed-strain starter cultures. Journal of Dairy Science, 45, 665.
dc.relation.referencesMesías Pantoja, N & Orbes Villacorte, A. (2016). EVALUACIÓN in vivo DE Lactobacillus plantarum ATCC® 8014 Y Lactobacillus casei ATCC® 334 CON CARACTERÍSTICAS PROBIÓTICAS EN LA ALIMENTACIÓN DE CUYES (Cavia porcellus) EN FASE DE LEVANTE COMO ALTERNATIVA AL USO DE ANTIBIÓTICOS. Trabajo de grado Zootecnista. San Juan de Pasto: Universidad de Nariño. Facultad de Ciencias Pecuarias
dc.relation.referencesMignone, C., Yantorno, O. y Ertola, R. (1994). Microbiología industrial. Buenos Aires, Argentina: Organización de Estados Americanos – OEA.
dc.relation.referencesMontes, A., Santacruz, A., Sañudo, J. (2003). Efecto in vitro de Lactobacillus casei subsp. rhamnosus sobre el crecimiento de un aislado de Helicobacter pylori. San Juan de Pasto, Colombia: Universidad de Nariño. 85p. Trabajo de grado (Biólogo).
dc.relation.referencesMorales-Erazo, L., González-Cárdenas, I., Abella-Gamba, J., Ahumada-Forigua, D. (2019). Técnicas de titulación ácido-base: consideraciones metrológicas Revista Colombiana de Química, vol. 48, núm. 1, Universidad Nacional de Colombia, Colombia.
dc.relation.referencesMadrigal, L & Sangronis, E. (2007). La inulina y derivados como ingredientes claves en alimentos funcionales. Arch Latinoam Nutr. 57(4):387-96.
dc.relation.referencesMargolles, A & Yokota. (2011). Bile acid stress in lactic acid bacteria and bifidobacteria, in: K. Sonomoto, A. Yokota (Eds.), Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research, Caister Academic Press, Norfolk, UK, pp. 111–142.
dc.relation.referencesMartín, M. J., Morales, M. E., Gallardo, V., Ruiz, M. A. (2009). Técnicas de micro-encapsulación: una propuesta para microencapsular probióticos. Ars Pharm 50 (1): pp. 43-50.
dc.relation.referencesMedina-Torres, L., García-Cruz, E., Calderas, F., González-Laredo, R., Sánchez-Olivares, G., Gallegos-Infante, J., Rocha-Guzmán, N., Rodríguez-Ramírez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT Food
dc.relation.referencesMishra, A., & Athmaselvi, K. A. (2016). Stress tolerance and physicochemical properties of encapsulation processes for Lactobacillus rhamnosus in pomegranate (Punica granatum L.) fruit juice. Food science and biotechnology, 25(1), 125–129. https://doi.org/10.1007/s10068-016-0019-5
dc.relation.referencesMohammad, J., Khazaei, N, Rezaei, F., Taghavian-Saeid, R. (2021). Production of synbiotic freeze-dried yoghurt powder using microencapsulation and cryopreservation of L. plantarum in alginate-skim milk microcapsules, International Dairy Journal,Volume 122, 105133, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2021.105133.
dc.relation.referencesMuhammad, Z., Ramzan, R., Huo, G., Tian, H., Bian, X. (2017). Integration of polysaccharide-thermoprotectant formulations for microencapsulation of Lactobacillus plantarum, appraisal of survivability and physico-biochemical properties during storage of spray dried powders, Food Hydrocolloids, Volume 66. Pages 286-295, ISSN 0268-005X, https://doi.org/10.1016/j.foodhyd.2016.11.040.(https://www.sciencedirect.com/science/article/pii/S0268005X16308918)
dc.relation.referencesMachura, E., Mazur, B., Kwiecień, J & Karczewska, K. (2007). Intracellular production of IL-2, IL-4, IFN-γ, and TNF-α by peripheral blood CD3 + and CD4 + T cells in children with atopic dermatitis. Eur. J. Pediatr. 166:789–795. https://doi.org/10.1007/s00431 -006-0319-5
dc.relation.referencesMarin, M. L., Lee, J.H., Murtha, J., Ustunol, Z & Pestka, J.J. (1997). Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J. Dairy Sci. 80:2713–2720. https://doi.org/10.3168/jds.S0022-0302(97)76232-5.
dc.relation.referencesMarkowiak, P & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health, Nutrients 9 (9) (2017) 1021
dc.relation.referencesMartínez-Cañavate, A., S. Sierra, F. Lara-Villoslada, J. Romero, J. Maldonado, J. Boza, J. Xaus & M. Olivares. (2009). A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy. Pediatr. Allergy Immunol. 20:592–600. https:// doi.org/10.1111/j.1399-3038.2008.00833.x
dc.relation.referencesMessens, W & De Vuyst, L. (2002). Inhibitory substances produced by lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43
dc.relation.referencesMu, Q., Tavella, V.J. & Luo, X.M. (2018). Role of Lactobacillus reuteri in human health and diseases, Front. Microbiol. 9,757.
dc.relation.referencesNakamura, K., Arakawa,K., Kawai, Y., Yasuta,N., Chujo,T., Watanabe, M. Iioka, H., Tanioka, M., Nishimura,J., Kitazawa,H., Tsurumi, K., Saito,T. (2013). Food preservative potential of gassericin A-containing concentrate prepared from a cheese whey culture supernatant from Lactobacillus gasseri LA39 Anim. Sci. J., 84 (2013), pp. 144-149
dc.relation.referencesNakanishi Y, Hosono A, Hiramatsu Y, Kimura T, Nakamura R, et al. (2005) Characteristic Immune Response in Peyer’s Patch Cells Induced by Oral Administration of Bifidobacterium Components. Cytotechnology 47: 69–77
dc.relation.referencesNataro, J.P., & Kaper, J.B. (1998). Diarrheagenic Escherichia coli. Clin Microbiol Reviews; 11 (1): 142-201
dc.relation.referencesNguyen, T.D.T., Kang, J.H., Lee, M.S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology. 113, 358-361
dc.relation.referencesNag, A. (2011). Development of microencapsulation technique for probiotic bacteria Lactobacillus casei 431 using a proteinpolysaccharide complex. Thesis for the grade of Masters in Food Technology, Massey University, New Zealand.
dc.relation.referencesNallala, V., V. Sadishkumar., K. Jeevaratnam. (2017). Molecular characterization of antimicrobial Lactobacillus isolates and evaluation of their probiotic characteristics in vitro for use in poultry. Food Biotechnol. 31:20–41. https://doi.org/10.1080/08905436 .2016.1269289.
dc.relation.referencesNehal, F., Sahnoun, M., Smaoui, S., Jaouadi, B., Bejar, S., & Mohammed, S. (2019). Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microbial Pathogenesis, 132, 10–19. https://doi.org/ 10.1016/j.micpath.2019.04.018
dc.relation.referencesO’Bryan CA, Crandall PG, Ricke SC, Ndahetuye JB (2015) 7 - Lactic acid bacteria (LAB) as antimicrobials in food products: Analytical methods and applications. En Handbook of Natural Antimicrobials for Food Safety and Quality. Woodhead. Oxford, RU. pp. 137-151
dc.relation.referencesOlveira, G., & González-Molero, I. (2016). Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinología y Nutrición, 63(9), 482–494.doi:10.1016/j.endonu.2016.07.006.
dc.relation.referencesOrganización Mundial de Gastroenterología. Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. Guías Mundiales la WGO Probióticos y prebióticos. (2011). http://www.worldgastroenterology. org/UserFiles/file/guidelines/probiotics-spanish-2011.pdf.
dc.relation.referencesOrndorff, S.V.S., Hanrick, T.S., Smoak, I.W., Havell, E.A. (2006). GráfHost and bacterial factors in listeriosis pathogenesis. Vet. Microb. (USA). 114(1- 2):1-5. Paloma Liras Padín. 3 ed. Madrid. España: Ed. Acribia, 1993, p.118. ISBN: 8420007439, 9788420007434.
dc.relation.referencesOromí Durich., J. (2002). Las toxiinfecciones alimentarias como problema de salud pública. Medicina Integral. Vol. 40. Núm. 1. Junio 2002, páginas 1-36.
dc.relation.referencesOrozco Murillo, MP & Solarte, JA. (2003). Búsqueda del mejor medio de cultivo y modelamiento cinético para la obtención del ácido láctico a partir de glucosa por vía fermentativa. [Trabajo de grado para optar al título de Ingeniero químico]. [Manizales, Colombia]. Universidad Nacional de Colombia. Sede Manizales. Facultad de Ingeniería y Arquitectura. Ingeniería Química.
dc.relation.referencesOda, Y., Saito, K., Yamauchi, H., Mori, M. (2002) Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr Microbiol 45:1–4
dc.relation.referencesOh, N. S., J. Y. Joung, J. Y. Lee, and Y. Kim. (2018). Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLoS One 13:e0192021. https://doi.org/10.1371/journal.pone.0192021.
dc.relation.referencesOkwu, M.U., Olley, M., Akpoka, A.O., Izevbuwa, O.E. (2019). Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: a brief review, Aims Microbiology 5,117–137.
dc.relation.referencesOsama, D. M., Elkhatib, W. F., Tawfeik, A. M., Aboulwafa, M. M., & Hassouna, N. A. H. (2017). Antimicrobial, antibiofilm and immunomodulatory activities of Lactobacillus rhamnosus and Lactobacillus gasseri against some bacterial pathogens. International Journal of Biotechnology for Wellness Industries, 6(1), 12-21
dc.relation.referencesParrilla-Cerrillo, M., Vázquez, J., Saldate, E., Nava, L. (1993). BROTES DE TOXIINFECCIONES ALIMENTARIAS DE ORIGEN MICROBIANO Y PARASITARIO Salud Pública de México, vol. 35, núm. 5, septiembre-octubre, 1993, pp. 456-463 Instituto Nacional de Salud Púbica. https://www.redalyc.org/pdf/106/10635505.pdf
dc.relation.referencesPedroza-Islas, R. (2002). Alimentos Microencapsulados: Particularidades de los procesos para la microencapsulación de alimentos para larvas de especies acuícolas. En: Cruz- Suárez, L. E.; Ricque, D.; Tapia, M., Gaxiola, M. G.; Simoes, N. (Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. Cancún, Quintana Roo, México.
dc.relation.referencesPeighambardoust, S., Golshan, A., Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review, Trends Food Sci Tech., 22, 215-224.
dc.relation.referencesPereira-Victorio, C., Almar Marqués, E., Pedregal Castillo, F., Mateos Ramos, A., Cruz de Julián, I., Gómez Martinez, A., Vázquez Molinero, A., & Joseph, J. (2016). Brote de toxiinfección alimentaria por Norovirus: estudio epidemiológico y medidas sanitarias aplicadas para evitar su recurrencia. Revista Clínica de Medicina de Familia, 9(1), 8-15. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699695X2016000100003&lng=es&tlng=es
dc.relation.referencesPérez-Leonard, H., Bueno-García, G., Brizuela-Herrada, M., Tortoló-Cabañas, K., Gastón-Peña, C. (2013). Microencapsulación: una vía de protección para microorganismos probióticos ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 47, núm. 1, enero-abril, pp. 14-25 Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar Ciudad de La Habana, Cuba.
dc.relation.referencesPérez-Leonard, H., Bueno-García, G., Brizuela-Herrada, M., Tortoló-Cabañas, K., Gastón-Peña, C. (2013). Microencapsulación: una vía de protección para microorganismos probióticos ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 47, núm. 1, enero-abril, pp. 14-25 Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar Ciudad de La Habana, Cuba.
dc.relation.referencesPui, CF., Wong, WC., Chai, LC., Tunung, R., Jeyaletchumi, P., Noor Hidayah, MS., Ubong, A., Farinazleen, MG., Cheah, YK., Son, R. (2011). Salmonella: A foodborne pathogen. Review Article. International Food Research Journal; 18: 465-473.
dc.relation.referencesPanesar, P., Kennedy, J., Gandh, D., Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry 105(1): 1–14
dc.relation.referencesPlessas, S., Bosnea, L., Psarianos, C., Koutinas, A., Marchant, R., Banat, I. (2008). Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology 99 (13) 5951–5955
dc.relation.referencesPlumed-Ferrer, C., Koistinen, K.M., Tolonen, T.L., Lehesranta, S.J., Kärenlampi, S.O., Mäkimattila, E., Joutsjoki, V., Virtanen, V., von Wright, A. (2008). Comparative Study of Sugar Fermentation and Protein Expression Patterns of Two Lactobacillus plantarum Strains Grown in Three Different Media. Applied and Environmental Microbiology. 74, 5349-5358.
dc.relation.referencesPrescott, MI, Harle, JD, Klein, DA. (2002). Microbiology of Food. 5th ed.McGraw-Hill Ltd, New York, USA. pp. 964-976
dc.relation.referencesPaul, S., Alegre, K.O., Holdsworth, S.R., Rice, M., Brown, J.A., McVeigh, P., Kelly, S.M., Law, C.J. (2014). A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress, Mol. Microbiol. 92. 872–884.
dc.relation.referencesPeighambardoust, S.H., Tafti, A.G., Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci. Technol. 22 (5), 215–224
dc.relation.referencesPicot, A & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J, 14: pp. 505-515.
dc.relation.referencesParveen Rani, R., Anandharaj, M & Ravindran, A.D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties, International Journal of Biological Macromolecules, Volume 109,Pages 772-783, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2017.11.062.
dc.relation.referencesQuinlan, JJ. (2013). Foodborne Illness Incidence Rates and Food Safety Risks for Populations of Low Socioeconomic Status and Minority Race/Ethnicity: A Review of the Literature. Int. J. Environ. Res. Public Health; 10: 3634-3652; doi:10.3390
dc.relation.referencesQuigley, E. M. (2010). Prebiotics and probiotics; modifying and mining the microbiota, Alimentary Pharmabiotic Centre, University College Cork: 6, 213–218.
dc.relation.referencesQuigley, E.M. (2020). Nutraceuticals as modulators of gut microbiota: role in therapy, Br. J. Pharmacol. 177 (6), 1351–1362
dc.relation.referencesRiley, LW ., Remis, RS., Helgerson, SD., McGee, HB., Wills, JG., Davis, BR. et al. (1983). Hemorrhagic colitis associated with a rareEscherichia coli serotype. N Engl J;308 681-685
dc.relation.referencesRodríguez H., Barreto, G., Sedrés, M., Guevara, G., Bertot, J. (2013). Los cárnicos: vehículos principales en los brotes de enfermedades alimentarias bacterianas en Camagüey, Cuba (Meat products: main vehicles of the bacterial foodborne outbreaks in Camagüey, Cuba). REDVET. Revista electrónica de Veterinaria. Vol. 14 Nº 3, Marzo/2013. http://www.veterinaria.org/revistas/redvet/n030313/031307.pdf
dc.relation.referencesRokka, S & Rantamäki, P. (2010). Protecting probiótica bacteria by microencapsulation: challengues for industrial applications. Eur. Food Technol. 231: pp. 1-12.
dc.relation.referencesRolfe, D.R. (2000). The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130:396.
dc.relation.referencesRosmini, M. R., Sequeira, G. J., Guerrero Legarreta, I., Martí, L. E., Dalla Santina, R., Frizzo, L., Bonazza, J.C. (2004). Producción de prebióticos para animales de abasto: importancia del uso de la microbiota intestinal indígena Revista Mexicana de Ingeniería Química, vol. 3, núm. 2, pp. 181-191 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México.
dc.relation.referencesRamírez-López, C & Vélez-Ruiz, JF. (2016). Aislamiento, Caracterización y Selección de Bacterias Lácticas Autóctonas de Leche y Queso Fresco Artesanal de Cabra. Información tecnológica, 27(6), 115-128. https://dx.doi.org/10.4067/S0718-07642016000600012
dc.relation.referencesReddy, R.S., Ramachandra, C.T., Hiregoudar, S., Nidoni, U., Ram, J. and Kammar, M. (2014). Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Ruminant Research, 119(1-3), pp.130-137
dc.relation.referencesRoberfroid, M. (2005). Inulin-Type Fructans: Functional Food Ingredients. Boca Raton, USA: CRC Press. 370 pp.
dc.relation.referencesRobitaille, GV & Champagne, CP. (2014). Growth-promoting effects of pepsin- and trypsin-treated caseinomacropeptide from bovine milk on probiotics. J. Dairy Res. 81:319–324
dc.relation.referencesRodríguez González, María. (2009). Aislamiento y selección de cepas del género Lactobacillus con capacidad probiótica e inmunomoduladora. [Bellaterra]: Universitat Autònoma de Barcelona, 2009. ISBN 978-84-692-7246-6. Tesis doctoral - Universitat Autònoma de Barcelona. Facultat de Biociències, Departament de Genètica i Microbiologia. https://ddd.uab.cat/record/63896
dc.relation.referencesRodríguez-León, J., Bueno, G., Rodríguez, D., Delgado, G., Serrano, P., Brizuela, M. (2003) Rendimiento verdadero y aparente y coeficiente de mantenimiento y su importancia en la cinética de la fermentación. (Eds) New Horizons in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0203-4_15
dc.relation.referencesRogosa, M., Mitchel, J.A., y Wiseman, R.F. (1951). A selective medium for the isolation of oral and faecal Lactobacilli. Journal of Bacteriology, 62, 132–133.
dc.relation.referencesRojan, P., Anisha, G., Madhavan, K. y Pandey, A. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances 27(2): 145–152.
dc.relation.referencesRokka, T., Syvaoja, E. L., Tuominen, J. y Korhonen, H. (1997). Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft 52, 675-678.
dc.relation.referencesRajam, R & Anandharamakrishnan, C. (2015). Spray freeze drying method for microencapsulation of Lactobacillusplantarum, J Food Eng, 166, 95-103.
dc.relation.referencesRajam, R., Karthik, P., Parthasarathi, S., Joseph, G.S., Anandharamakrishnan, C. (2012). Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods 4, 891–898. https://doi.org/10.1016/j.jff.2012.06.006
dc.relation.referencesRodriguez, S., Montes R. L. M. y Ramires D. d. J. (2012). Microencapsulación de probióticos mediante secado por aspersión en presencia de prebióticos, Vitae, 19, 186-188.
dc.relation.referencesRodriguez-Barona, S., Giraldo, G., Montes, L. (2016). Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebióticos. Inf. tecnol.,La Serena,v. 27, n. 6, p. 135-144. http://dx.doi.org/10.4067/S0718-07642016000600014
dc.relation.referencesRodríguez-González M. (2009). Aislamiento y selección de cepas del género Lactobacillus con capacidad probiótica e inmunomoduladora. [Tesis Ph.D. en Ciencias]. Universitat Autònoma de Barcelona: Barcelona, España; https://www.tdx.cat/bitstream/handle/10803/3931/mrg1de1.pdf
dc.relation.referencesRuas-Madiedo, P., Gueimonde, M., Arigoni, F., de los Reyes-Gavilán, C.G., Margolles, A. (2009). Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis, Appl. Environ. Microbiol. 75. 1204–1207
dc.relation.referencesRuiz, L., Zomer, A., O'Connell-Motherway, M., van Sinderen, D., Margolles, A. (2012).Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics, Appl. Environ. Microbiol. 78.1123–1131
dc.relation.referencesRamírez-Ramírez, J., Rosas-Ulloa, P., Velásquez., González, M., Ulloa, J.A., Arce-Romero, F. (2011). Bacterias lácticas: importancia en alimentos y sus efectos en la salud. Rev Fuente. 2(7): 1-16.
dc.relation.referencesRay, B. (2004). Fundamental food microbiology. CRC Press, Boca Raton
dc.relation.referencesRipari, V. (2019). Techno-functional role of exopolysaccharides in cereal-based, yogurtlike beverages. Beverages, 5, 16. https://doi.org/10.3390/beverages5010016
dc.relation.referencesSabikhi, L., Babu, R., Thompkinson, D. K., Kapila, S. (2010). Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol. 3: pp. 586-593
dc.relation.referencesSavadogo, A. et aI. (2006). Bacteriocins and lactic acid bacteria - a minireview. African JournaI of Biote- chnoIogy. VoI. 5, p. 678-683.
dc.relation.referencesScaletsky, I. C. A., Aranda, K. R. S., Souza, T. B., Silva, N. P. (2010). Adherence factors in atypical Enteropathogenic Escherichia coli strains expressing the localized adherence-like pattern in HEp-2 cells. J Clin Microbiol ; 48 (1): 302–306
dc.relation.referencesScharff RL. (2012). Economic Burden from Health Losses Due to Foodborne Illness in the United States. Journal of Food Protection, 75(1): 123-131
dc.relation.referencesScheutz, F., Teel, L. D., Beutin, L., Piérard, D., Buvens, G., Karch, H., et al. (2012). Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 50, 2951–2963 10.1128/JCM.00860-12
dc.relation.referencesSelle, K., & Klaenhammer, T. R. (2013). Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol. Rev. 37:915–935
dc.relation.referencesShopsin, B., & Kreiswirth, B. N. (2001). Molecular epidemiology of methicillin-resistant Staphylococcus aureus. Emerging infectious diseases, 7(2), 323–326. doi:10.3201/eid0702.010236.
dc.relation.referencesSiamansouri, M., Mozaffari, S., Alikhani, F. (2013) Bacteriocins and lactic acid bacteria. J. Biol. Today’s World 2: 227-234.
dc.relation.referencesSzajewska, H., Mrukowicz, JZ. (2001). Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr; 33 Suppl 2: S17-25.
dc.relation.referencesSánchez Martínez, JI. (2005). Potencial biotecnológico de bacterias lácticas silvestres en productos lácteos fermentados: Actividad metabólica y producción de exopolisacáridos. (Tesis de doctorado, Universidad de Oviedo).
dc.relation.referencesSánchez, L; Omura, M; Lucas, A; Pérez, T; Llanes, M; De Luce, C. (2015).Cepas de Lactobacillus spp. Con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. (En línea). La Habana, CU. Consultado, 17 de feb. 2018. Disponible en: http://scielo.sld.cu
dc.relation.referencesSánchez, T.G & Rázuri, V.R. (2017). Obtención de aceite esencial a partir de Orégano (Origanum vulgare L.) cultivado en la costa Ecuatoriana y su evaluación como Fitofármaco. In. Guayaquil: Universidad de Guayaquil - Facultad de Ciencias Quimicas. p. 26-27.
dc.relation.referencesSavagodo, A. et aI. (2006). Bacteriocins and Iactic acid bacteria - a minireview. African JournaI of Biote- chnoIogy. VoI. 5, p. 678-683
dc.relation.referencesSavijoki, K., Ingmer, H., Varmanen, P. (2006). Proteolytic systems of lactic acid bacterias. Appl.Microbiol. Biotechnol., Vol. 71, N° 4, 394-406.
dc.relation.referencesSchlegel, HG & Zaborosch, C. (1997). Fermentación láctica y Lactobacteriáceas. Microbiología General, 7a Ed., Ed. Omega, 302-309.
dc.relation.referencesSettanni, L & Moschetti, G. (2010) Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol 27:691–697
dc.relation.referencesSharma, A., Mukherjee, S., Reddy Tadi, S.R., Ramesh, A., Sivaprakasam, S., Kinetics of growth, plantaricin and lactic acid production in whey permeate based medium by probiotic Lactobacillus plantarum CRA52. (2021). LWT - Food Science and Technology, Volume 139,110744, ISSN 0023-6438https://doi.org/10.1016/ j.lwt.2020.110744.
dc.relation.referencesShulter, ML., & Kargi, F. (2000). Bioprocess engineering basic concept. New Delhi: ParenticeHall of India Pvt Ltd.
dc.relation.referencesSkaugen, M., Cintas, L. M. y Nes, I. F. (2003). Genetics of bacteriocin production in lactic acid bacteria. En Genetics of Lactic Acid Bacteria, pp. 225-260. Editado por: Wood, B. J. B. y Warner, P. Kluwer Academic/Plenum Publishers. Estados Unidos
dc.relation.referencesSmit, G., Smit, B. A., and Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. Rev. 29:591-610.
dc.relation.referencesSun, AN., Camilli, A., Portnoy, DA. (1990). Isolation of Listeria monocytogenes small plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 58: 3770-3778.
dc.relation.referencesSwanson, JA & Baer, SC. (1995). Phagocytosis by zippers and triggers. Trends Cell Biol. 5: 89-93
dc.relation.referencesSandoval, A., Rodríguez, E., Ayala, A. (2004). Encapsulación de Aditivos para la Industria de Alimentos. Ingeniería y Competitividad 5 (2): pp. 73-83.
dc.relation.referencesSansone, F., T. Mencherini, P. Picerno, M. d’Amore, R. Aquino, and M.R. Lauro. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of food engineering. 105:468-476
dc.relation.referencesSantivarangkna, C., Higl, B., and Foerst, P. (2008). Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures, Food Microbiology, vol. 25, no. 3, pp. 429–441. http://dx.doi.org/10.1016/j.fm.2007.12.004 181, 188, 189, 190
dc.relation.referencesSeddik, H. A., Bendal, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrobial Proteins, 9, 111–122
dc.relation.referencesSemyonov D., Ramon O., Kaplun Z., Levin-Brener L., Gurevich N., Shimoni E. (2010). Microencapsulation of Lactobacilllus paracasei by spray freeze drying. Food Research International. 43: 193- 202.
dc.relation.referencesTakeda, S., Takeshita, M., Kikuchi, Y., Dashnyam, B., Kawahara, S., Yoshida, H., Watanabe, W., Muguruma, M., Kurokawa, M. (2011). Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. International Immunopharmacology. 11, 1976-1983
dc.relation.referencesTodorov, S.D & Franco, B.D. (2010). Lactobacillus plantarum: Characterization of the Species and Application in Food Production. Food Reviews International
dc.relation.referencesTreven,P., Turkova,K., Trmčić, A., Obermajer,T.,Rogelj, I., Matijašić, B.B. (2013). Detection and quantification of probiotic strain Lactobacillus gasseri K7 in faecal samples by targeting bacteriocin genes Folia Microbiol. (Praha), 58, pp. 623-630
dc.relation.referencesTripathi, M & Giri, SK. (2014). Probioticmsf functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods; 9:225–241
dc.relation.referencesTahara, T., Yoshioka, S., Utsumi, R., Kanatani, K. (1997). Isolation and partial characterization of bacteriocins produced by Lactobacillus gasseri JCM 2124. FEMS Microbiology Letters, Volume 148, Issue 1, Pages 97-100, ISSN 0378-1097, https://doi.org/10.1016/S0378-1097(97)00019-0
dc.relation.referencesTamine, AY., Saarela, M., Sondergaard, AK., Mistry, VV., Shah, NP. (2005) Producción y viabilidad de microorganismos probióticos en productos lácteos . En: Productos lácteos probióticos , págs. 39 - 72 . AY Tamine ed. Oxford.
dc.relation.referencesTerzaghi, BE & Sandine, WE. (1975). Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology, 29, 807–813.
dc.relation.referencesTaranto, M.P., Fernandez, M.L, Murga, Lorca, G., de Valdez, G.F. (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri, J. Appl. Microbiol. 95. 86–91
dc.relation.referencesTeijeiro, M., Pérez, P.F., De Antoni, G.L., Golowczyc, M.A. (2018). Suitability of kefir powder production using spray drying, Food Research International, Volume 112, Pages 169-174, ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2018.06.023
dc.relation.referencesTonon, R., Brabet, C., Hubinger, M-D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying, Journal of Food Engineering, Volume 88, Issue 3, Pages 411-418, ISSN 0260-8774, https://doi.org/10.1016/j.jfoodeng.2008.02.029.
dc.relation.referencesTroxler R., Von Graevenitz, A., Funke, G., Wiedemann, B., Stock, I. (2000). Natural antibiotic susceptibility of Listeria species: L. grayi, L.innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clinical Microbiology and Infection.;6:525.
dc.relation.referencesVanegas, L.M.C., Martinez, L.A.J., Botina, B.L.(2007). Detección por PCR de Listeria monocytogenes en productos cárnicos distribuidos en Bogotá. Rev. U.D.C.A Act. & Div. Cient. 9(2):149-156.
dc.relation.referencesVelázquez-Meza ME. (2005). Surgimiento y diseminación de Staphylococcus aureus meticilinoresistente. Salud Pública Méx ; 47:381-7.
dc.relation.referencesVillanueva Flores, R. (2015). Probióticos: una alternativa para la industria de alimentos Ingeniería Industrial, núm. 33, enero-diciembre, pp. 265-275 Universidad de Lima Lima, Perú
dc.relation.referencesVoulgari, K., Hatzikamari, M., Delepoglou, A., Georgakopoulos, P., Litopoulou-Tzanetaki, E., Tzanetakis, N. (2010). Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Control. 21, 136-142.
dc.relation.referencesVargas, E., Gómez, C., Parra, M., Romero, M. (2004). Producción de microorganismos probióticos como aditivo para alimentos concentrados para ganado vacuno (primera parte). Rev Ing Univ de Los Andes. 20: 23-33
dc.relation.referencesVijayakumar, J., Aravindan, R., Viruthagiric, T. (2008). Recent Trends in the Production, Purification and Application of Lactic Acid. Chemical and Biochemical Engenniering 22(2): 245-264.
dc.relation.referencesValero-Cases, E & Frutos, M.J. (2015). Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion, LWT - Food Science and Technology, Volume 64, Issue 2, Pages 824-828, ISSN 0023-6438, https://doi.org/10.1016/j.lwt.2015.06.049.
dc.relation.referencesVasiljevic, T & Shah, N. P. (2008). Probiotics—From Metchnikoff to bioactives, Int Dairy J, 18(7), 714-728
dc.relation.referencesValente, G.L.C., Acurcio, L.B., Freitas, L.P.V., Nicoli, J.R., Silva, A.M., Souza, M.R., Penna, C.F.A.M. (2019). Short communication: In vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1 isolated from Minas artisanal cheese, Journal of Dairy Science, Volume 102, Issue 7,, Pages 5957-5961, ISSN 0022-0302, https://doi.org/10.3168/jds.2018-15938.
dc.relation.referencesVasquez, E.C., Pereira, T., Peotta, V.A., Baldo, M.P., Campos-Toimil, M. (2019). Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress, Oxid. Med. Cell. Longev. 2019.
dc.relation.referencesWall, R., G. Fitzgerald, S. Hussey, T. Ryan, B. Murphy, P. Ross, and C. Stanton. (2007). Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol. Ecol. 59:127–137.
dc.relation.referencesWorld Health Organization (WHO). (2012). Reducing foodborne diseases by educating consumers. Geneva: World Health Organization. Disponible en: http://www.who.int/foodsafety/en/.
dc.relation.referencesWorld Health Organization. (‎2005)‎. Manual de bioseguridad en el laboratorio, 3a ed. Orgnización Mundial de la Salud. https://apps.who.int/iris/handle/10665/43255.
dc.relation.referencesWu X, Wu Y, He L, et al. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer. 9:2510---7, http://dx.doi.org/10.7150/jca.25324, eCollection 2018.
dc.relation.referencesWang, G., Huang, W., Xia, Y., Xiong, Z., & Ai, L. (2019). Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol dietinduced hypercholesterolemic mice. Food and Function, 10(3), 1684–1695.
dc.relation.referencesWorld Health Organization. (‎2005)‎. Manual de bioseguridad en el laboratorio, 3a ed. Orgnización Mundial de la Salud. https://apps.who.int/iris/handle/10665/43255
dc.relation.referencesWalsh, D., Duffy, G., Sheridan, J.J., Blair, I.S & Mcdowell, D.A. (2001). Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. Journal of Applied Microbiology, 90: 517–522. doi: 10.1046/j.1365- 2672.2001.01273.x
dc.relation.referencesWassmann, C.S., Lund, L.C., Thorsing, M., Lauritzen, S.P., Kolmos, H.J., Kallipolitis, B. H., et al., (2018). Molecular mechanisms of thioridazine resistance in Staphylococcus aureus, PloS One 13.
dc.relation.referencesYanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S, et al. (2009) Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem 73: 372–377.
dc.relation.referencesYang, E.J & Chang, H.C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology. 139, 56-63
dc.relation.referencesYasuta, N., Arakawa,K., Kawai,Y., Chujo,T., Nakamura,K., Suzuki, H., Ito, Y., Nishimura,J., Makino,Y., Shigenobu,S., Saito, T. (2014). Genetic and biochemical evidence for gassericin T production from Lactobacillus gasseri LA158 Milk Sci., 63, pp. 9-17
dc.relation.referencesYoha, K.S., Moses, J.A., Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083)
dc.relation.referencesYang H., Neogic S., Mo Z., Guan W., Shend Z., Zhangd S., Li L., Yamasaki S., Shi L., Zhong N. (2010). Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005–2007. Disponible en: < http://www.sciencedirect.com/science/article/pii/S0168160510005672
dc.relation.referencesZaporozhets, T., & Besednova, N. (2016). Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: Review. Pharmaceutical Biology, 54, 3126–3135.
dc.relation.referencesZapata, S., Muñoz, J., Ruiz, O., Montoya, O., Gutiérrez, P. (2009). Aislamiento de Lactobacillus plantarum LPBM10 y caracterización parcial de su bacteriocina. (En línea). Medellin, CO. Formato PDF. Disponible en: http://www.scielo.org
dc.relation.referencesZaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., Liu, W., Tromp, R.H. (2020). Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation, Food Structure, Volume 25, 100147, ISSN 2213-3291, https://doi.org/10.1016/j.foostr.2020.100147.
dc.relation.referencesZhao, R., Sun, J., Torley, P., Wang, D., Niu, S. (2008). Measurement of particle diameter of Lactobacillus acidophilus mirocapsule by spray drying and analysis on its microstructure. World J. Microbiol. Biotechnol. 24: pp. 1349-1354.
dc.relation.referencesZhu, Z., He, J., Liu, G., Barba, F., Kouba, M., Ding, L., et al. (2016). Recent insights for the green recovery of inulin from plant foodmaterials using non-conventional extraction technologies: A review. Innov Food Sci Emerg Tech. 33:1-9. DOI: 10.1016/j. ifset.2015.12.023
dc.relation.referencesZhang, Z., Lv, J., Pan, L., & Zhang, Y. (2018). Roles and applications of probiotic Lactobacillus strains. Applied Microbiology and Biotechnology, 102(19), 8135–8143
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.subject.armarcFood - microbiology
dc.subject.lembMicrobiología de alimentos
dc.subject.lembHigiene de los alimentos
dc.subject.proposalInocuidad alimentaria
dc.subject.proposalFood safety
dc.subject.proposalProbióticos
dc.subject.proposalProbiotics
dc.subject.proposalSalud animal y humana
dc.subject.proposalAnimal and human health
dc.title.translatedMicroencapsulation of lactobacillus gasseri and lactobacillus plantarum on simulated gastrointestinal conditions and their effect on pathogens associated with alimentary toxiinfections (ati´s)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito