Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.advisorRotach, Mathias
dc.contributor.authorHerrera Mejía, Laura
dc.date.accessioned2022-03-15T15:46:09Z
dc.date.available2022-03-15T15:46:09Z
dc.date.issued2021-08-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81221
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractBoundary-Layer Meteorology refers to the theoretical, numerical, and experimental framework that focuses on studying the interactions between the earth's surface and the lower troposphere. These interactions are crucial for several applications in various temporal and spatial scales. A better understanding of these interactions implies studying the structure and variability of the Atmospheric Boundary-Layer as a result of processes that are better described in the realm of a combination of fluid dynamics and thermodynamics. By definition, the ABL is turbulent, which means that the processes of mixing and exchange of energy, momentum, and scalars from the Surface Layer to the rest of the atmosphere depend on turbulence, both thermal and mechanic. In this sense, the small-scale physical processes depicted by the different terms in Turbulent Kinetic Energy budget equation modulate the characteristics of large-scale phenomena. One of the main challenges in studying the ABL dynamics is the high heterogeneity of the underlying forcing imposed by the earth's surface. Ranging from abrupt changes in orography to a wide variety of land uses and roughness elements, complex terrain is the rule rather than the exception, especially when dealing with processes involving anthropogenic modified environments. Nevertheless, most of our understanding of turbulence in the ABL is based on an idealized picture of real-life scenarios, e.g., horizontally homogeneous and flat terrains, implying that most of the exchange is vertical, and horizontal contributions are small and negligible. The main goal of this work is to identify and gain insight into the main processes between the synoptic- and micro-scale ends of the spectrum of atmospheric motions (including their cross-scale interactions) that modulate the ABL structure and dynamics over a complex and highly urbanized low-latitude valley. The Aburrá Valley is located in the Colombian Andes. The work follows an experimental approach, using multiple data sources, in order to evaluate the potential contribution of these phenomena on the boundary-layer variability in the study area. The intention is to shed some light on open questions regarding boundary-layer characteristics and some of their environmental implications over such complex terrain. The structure of this document was decided considering that, once in final form, Chapters 3, 4 and 5 will be submitted to be considered for publication in peer reviewed journals (Chapter 2 is already published). For this reason, this thesis includes four main self-contained chapters (Chapters 2 to 5) with the results of the evaluation of the boundary-layer dynamics in a highly complex terrain at different spatio-temporal scales and some of the interactions between them.
dc.description.abstractLa Meteorología de la Capa Límite hace referencia al marco teórico, numérico y experimental que se enfoca en estudiar las interacciones entre la superficie terrestre y la tropósfera baja. Estas interacciones son fundamentales para muchas aplicaciones en varias escalas espacio-temporales. Un mejor entendimiento de dichas interacciones implica el estudio de la estructura y variabilidad de la Capa Límite Atmosférica como resultado de procesos que son mejor descritos en el ámbito de una combinación de dinámica de fluidos y termodinámica. Por definición, la Capa Límite es turbulenta, lo cual significa que los procesos de mezcla e intercambio de energía, momentum y escalares, desde la Capa Superficial al resto de la atmósfera, dependen de la turbulencia, tanto térmica como mecánica.En este sentido, los procesos físicos de pequeña escala descritos por los términos en la ecuación de balance de la energía cinética turbulenta modulen las características de los fenómenos a mayor escala. Uno de los más grandes desafíos a la hora de estudiar las dinámicas de la Capa Límite es la alta heterogeneidad de la superficie terrestre, que van desde cambios abruptos en la orografía, hasta una amplia variedad de usos del suelo y elementos rugosos. Así, los terrenos complejos más que la excepción son la regla, especialmente cuando se trabajan con procesos que involucran modificaciones antrópicas al ambiente. Sin embargo, la gran mayoría de nuestro conocimiento en turbulencia en la Capa límite es basado en una imagen idealizada de los escenarios de la vida real, es decir, terrenos planos y horizontalmente homogéneos, lo cual implica que la mayoría de los intercambios aon verticales, y las contribuciones horizontales son pequeñas y pueden ser despreciadas. El principal objetivo de esta investigación es identificar y comprender los principales procesos de las diferentes escalas atmosféricas de movimiento (incluidas las interacciones entre escalas) los cuales modulan la estructura y dinámica de la Capa Límite en el Valle de Aburrá, ell cual es un valle altamente urbanizado ubicado en los Andes Colombianos. El trabajo sigue un enfoque experimental, usando múltiples fuentes de datos, con el objetivo de evaluar la potencial contribución de estos fenómenos en la variabilidad de la Capa límite en la zona de estudio. La intención es dar algo de luz sobre preguntas que siguen abiertas relacionadas con las características de la capa límite y algunas de sus implicaciones ambientales en un terreno tan complejo. (Texto tomado de la fuente)
dc.format.extentviii, 171 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleSpatio-temporal variability of the Atmospheric Boundary Layer in the Aburrá Valley: characterization, processes, multiscale interactions and impacts
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos
dc.coverage.countryValle del Aburrá, Medellín (Colombia)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaMeteorología de capa límite
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAl-Jiboori, M. H., Xu, Y., and Qian, Y. (2002). Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorology, 102(1):63–82.
dc.relation.referencesAllwine, K. J., Shinn, J. H., Streit, G. E., Clawson, K. L., and Brown, M. (2002). Overview of URBAN 2000. Bulletin of the American Meteorological Society, (April):521–536.
dc.relation.referencesAndreas, E. L., Hill, R. J., Gosz, J. R., Moore, D. I., Otto, W. D., and Sarma, A. D. (1998). Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary- Layer Meteorology, 86(3):379–408.
dc.relation.referencesAngevine, W. M. (1999). Entrainment results including advection and case studies from the flatland boundary layer experiments. Journal of Geophysical Research: Atmospheres, 104(D24):30947–30963.
dc.relation.referencesAngevine, W. M., Baltink, H. K., and Bosveld, F. C. (2001). Observations of the morning transition of the convective boundary layer. Boundary-Layer Meteorology, 101:209–227.
dc.relation.referencesAnquetin, S., Guilbaud, C., and Chollet, J.-P. (1998). The Formation and Destruction of Inversion Layers within a Deep Valley. Journal of Applied Meteorology, 37(12):1547–1560.
dc.relation.referencesArnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1):1– 26.
dc.relation.referencesBaars, H., Ansmann, A., Engelmann, R., and Althausen, D. (2008). Continuous monitoring of the boundary-layer top with lidar. Atmospheric Chemistry and Physics, 8(23):7281–7296.
dc.relation.referencesBabic, K. and Rotach, M. W. (2018). Turbulence kinetic energy budget in the stable boundary layer over a heterogeneous surface. Quarterly Journal of the Royal Meteorological Society, 144(713):1045–1062.
dc.relation.referencesBabic, K., Rotach, M. W., and Klaic, Z. B. (2016a). Evaluation of local similarity theory in the wintertime nocturnal boundary layer over heterogeneous surface. Agricultural and Forest Meteorology, 228-229:164 – 179.
dc.relation.referencesBabic, N., Vecenaj, Z., and De Wekker, S. F. (2016b). Flux–Variance Similarity in Complex Terrain and Its Sensitivity to Different Methods of Treating Non-stationarity. Boundary-Layer Meteorology, 159(1):123–145.
dc.relation.referencesBader, D. C. and McKee, T. B. (1985). Effects od shear, stability and valley Characteristics on the destruction of temperature inversions. Journal of climate and applied meteorology.
dc.relation.referencesBaklanov, A., Grimmond, C., Carlson, D., Terblanche, D., Tang, X., Bouchet, V., Lee, B., Langendijk, G., Kolli, R., and Hovsepyan, A. (2018). From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23:330 – 341. ICUC9: The 9th International Conference on Urban Climate.
dc.relation.referencesBaklanov, A., Grimmond, C. S. B., Carlson, D., Terblanche, D., Bouchet, V., Lee, B., and Langendijk, G. (2015). From Urban Meteorology, Climate and Environment Research to Urban Integrated Services. ICUC9 - 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, (iv).
dc.relation.referencesBaklanov, A. and Grisogono, B. (2006). Atmospheric boundary layers. Nature, Theory and Applications to Environmental Modelling and Security
dc.relation.referencesBaklanov, A. and Mahura, A. (2009). Meteorological and air quality models for urban areas.
dc.relation.referencesBarlow, J. F., Halios, C. H., Lane, S. E., and Wood, C. R. (2015). Observations of urban bound- ary layer structure during a strong urban heat island event. Environmental Fluid Mechanics, 15(2):373–398.
dc.relation.referencesBarman, N., Borgohain, A., Kundu, S. S., Roy, R., Saha, B., Solanki, R., Kiran Kumar, N. V., and Raju, P. L. (2019). Daytime Temporal Variation of Surface-Layer Parameters and Tur- bulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India, volume 172
dc.relation.referencesBeare, R. J. (2008). The Role of Shear in the Morning Transition Boundary Layer. Boundary- Layer Meteorology, pages 395–410.
dc.relation.referencesBetts, A. K. (1973). Non-precipitating cumulus convection and its parameterization. Quarterly Journal of the Royal Meteorological Society, 99(419):178–196.
dc.relation.referencesBetts, A. K., Fuentes, J. D., Garstang, M., and Ball, J. H. (2002). Surface diurnal cycle and boundary layer structure over rondA ̃Zˇnia during the rainy season. Journal of Geophysical Research: Atmospheres, 107(D20):LBA 32–1–LBA 32–14.
dc.relation.referencesBetts, A. K. and Viterbo, P. (2005). Land-surface, boundary layer, and cloud-field coupling over the southwestern amazon in era-40. Journal of Geophysical Research: Atmospheres, 110(D14).
dc.relation.referencesBianco, L., Djalalova, I. V., King, C. W., and Wilczak, J. M. (2011). Diurnal Evolution and Annual Variability of Boundary-Layer Height and Its Correlation to Other Meteorological Variables in California’s Central Valley. Boundary-Layer Meteorology, 140:491–511.
dc.relation.referencesBiltoft, C. A. (2001). SOME THOUGHTS ON LOCAL ISOTROPY AND THE 4/3 LAT- ERAL TO LONGITUDINAL VELOCITY SPECTRUM RATIO. Boundary-Layer Meteorol- ogy, 100(December 2000):393–404.
dc.relation.referencesBohnenstengel, S. I., Belcher, S. E., Aiken, A., Allan, J. D., Allen, G., Bacak, A., Bannan, T. J., Barlow, J. F., Beddddows, D. C., Blossss, W. J., Booth, A. M., Chemel, C., Coceal, O., Di Marco, C. F., Dubey, M. K., Faloon, K. H., Flemiming, Z. L., Furger, M., Gietl, J. K., Graves, R. R., Green, D. C., Grimmond, C. S., Halios, C. H., Hamiamiamilton, J. F., Harrisison, R. M., Heal, M. R., Heard, D. E., Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A. M., Kelly, F. J., Kotthaus, S., Langford, B., Lee, J. D., Leigh, R. J., Lewisis, A. C., Lidsidsidster, R. T., Lopez-Hilfiker, F. D., McQuaidaid, J. B., Mohr, C., Monks, P. S., Nemimitz, E., Ng, N. L., Percival, C. J., Pr ́evˆot, A. S., Ricketts, H. M., Sokhi, R., Stone, D., Thornton, J. A., Tremper, A. H., Valach, A. C., Vissississer, S., Whalley, L. K., Williamsiamsiamsiams, L. R., Xu, L., Young, D. E., and Zotter, P. (2015). Meteorology, air quality, and health in London: The ClearfLo project. Bulletin of the American Meteorological Society, 96(5):779–804.
dc.relation.referencesBritter, R. E. and Hanna, S. R. (2003). Flow and Dispersion in Urban Areas. Annual Review of Fluid Mechanics, 35(1):469–496.
dc.relation.referencesBrown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J., Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C., Neggers, R. A. J., Siebesma, A. P., and Stevens, B. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society, 128(582):1075– 1093.
dc.relation.referencesCast ́an-Broto, V. and Bulkeley, H. (2013). A survey of urban climate change experiments in 100 cities. Global Environmental Change, 23(1):92 – 102.
dc.relation.referencesCeccherini, G., Ameztoy, I., Hern??ndez, C. P. R., and Moreno, C. C. (2015). High-resolution precipitation datasets in South America and West Africa based on satellite-derived rainfall, enhanced vegetation index and digital elevation model, volume 7.
dc.relation.referencesChamecki, M. and Dias, N. L. (2004). The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 130(603 PART B):2733–2752.
dc.relation.referencesChampagne, F. H., Friehe, C. A., and LaRue, J. C. (1977). Flux measurements, Flux Estimation Techniques, and Fine-Scale Turbulence Measurements in the Unstable Surface Layer Over Land. Journal of the Atmospheric Sciences, 34:1–27.
dc.relation.referencesChandra, A. S., Kollias, P., and Albrecht, B. A. (2013). Multiyear summertime observations of daytime fair-weather cumuli at the arm southern great plains facility. Journal of Climate, 26(24):10031–10050.
dc.relation.referencesChandra, S., Dwivedi, A. K., and Kumar, M. (2014). Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal Earth Syst. Sci, (6):1233–1240.
dc.relation.referencesChoi, W., Ranasinghe, D., Bunavage, K., DeShazo, J. R., Wu, L., Seguel, R., Winer, A. M., and Paulson, S. E. (2016). The effects of the built environment, traffic patterns, and micrometeo- rology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites. Science of the Total Environment, 553:474–485.
dc.relation.referencesChristen, A. (2005). Atmospheric turbulence and surface energy exchange in urban environments: Results from the Basel Urban Boundary Layer Experiment (BUBBLE). PhD thesis, University of Basel, Basel.
dc.relation.referencesChristen, A., Rotach, M. W., and Vogt, R. (2009). The budget of turbulent kinetic energy in the urban roughness sublayer. Boundary-Layer Meteorology, 131(2):193–222.
dc.relation.referencesCleugh, H. and Grimmond, S. (2012). Urban Climates and Global Climate Change. Elsevier B.V., second edi edition.
dc.relation.referencesCohn, S. A. and Angevine, W. A. (2000). Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars. Journal of Applied Meteorology, 39(2000):1233–1247.
dc.relation.referencesColette, A., Chow, F. K., and Street, R. L. (2003). A Numerical Study of Inversion-Layer Breakup and the Effects of Topographic Shading in Idealized Valleys. American Meteorological Society, 96(19):1255–1272.
dc.relation.referencesConzemius, R. J. and Fedorovich, E. (2006). Dynamics of Sheared Convective Boundary Layer Entrainment. Part I: Methodological Background and Large-Eddy Simulations. Journal of the Atmospheric Sciences, 63(4):1151–1178.
dc.relation.referencesCorrea, M., Zuluaga, C., Palacio, C., P ́erez, J., and J ́ımenez, J. (2009). Acoplamiento de la atm ́osfera libre con el campo de vientos locales en una regi ́on tropical de topograf ́ıa compleja. Caso de estudio: Valle de Aburra ́, Antioquia, Colombia. Dyna, An ̃o 76:17–27.
dc.relation.referencesCoutts, A. M., Beringer, J., and Tapper, N. J. (2007). Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46(4):477–493.
dc.relation.referencesCurry, J. and Webster, P. (1999). Thermodynamics of Atmospheres and Oceans. International Geophysics. Elsevier Science.
dc.relation.referencesDabberdt, W. F., Frederick, G. L., Hardesty, R. M., Lee, W. C., and Underwood, K. (2004). Ad- vances in meteorological instrumentation for air quality and emergency response. Meteorology and Atmospheric Physics, 87:57–88.
dc.relation.referencesde Franceschi, M., Zardi, D., Tagliazucca, M., and Tampieri, F. (2009). Analysis of second- order moments in surface layer turbulence in an Alpine valley. Quarterly Journal of the Royal Meteorological Society, 135(October):1750–1765.
dc.relation.referencesDe Wekker, S. F. J. and Kossmann, M. (2015). Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Frontiers in Earth Science, 3(December):1–22.
dc.relation.referencesDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., HA ̃lm, E. V., Isaksen, L., KA ̃llberg, P., KA ̃¶hler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., ThA ̃ ⃝c paut, J.-N., and Vitart, F. (2011). The era-interim reanalysis: con- figuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656):553–597.
dc.relation.referencesDi Giuseppe, F., Riccio, A., Caporaso, L., Bonaf ́e, G., Gobbi, G. P., and Angelini, F. (2012). Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model. Quarterly Journal of the Royal Meteorological Society, 138(November 2011):649–663.
dc.relation.referencesDi Sabatino, S. (2016). Boundary-Layer Atmospheric Processes in Mountainous Terrain: Results from MATERHORN-X. Boundary-Layer Meteorology, 159(3):465–467.
dc.relation.referencesDi Sabatino, S., Buccolieri, R., and Salizzoni, P. (2013). Recent advancements in numerical modelling of flow and dispersion in urban areas: A short review. International Journal of Environment and Pollution, 52(3/4):172–191.
dc.relation.referencesDoran, J., Berkowitz, C., Coulter, R., Shaw, W., and Spicer, C. (2003). The 2001 phoenix sunrise experiment: vertical mixing and chemistry during the morning transition in phoenix. Atmospheric Environment, 37(17):2365 – 2377.
dc.relation.referencesDoran, J. C., Fast, J. D., and Horel, J. (2002). THE VTMX 2000 CAMPAIGN. Bulletin of the American Meteorological Society, (APRIL):537–551.
dc.relation.referencesEdgerton, S., Bian, X., Doran, J., Fast, J., Hubbe, J., Malone, E., Shaw, W., Whiteman, C., Zhong, S., Arriaga, J., Ortiz, E., Ruiz, M., Sosa, G., Vega, E., Limon, T., Guzman, F., Archuleta, J., Bossert, J., Elliot, S., Lee, J., McNair, L., Chow, J., Watson, J., Coulter, R., Doskey, P., Gaffney, J., Marley, N., Neff, W., and Petty, R. (1999). Particulate air pollution in mexico city: A collaborative research project. Journal of the Air & Waste Management Association, 49(10):1221–1229. PMID: 28060672.
dc.relation.referencesEmeis, S., Sch ̈afer, K., and Mu ̈nkel, C. (2008). Long-term observations of the urban mixing-layer height with ceilometers. IOP Conference Series: Earth and Environmental Science, 1:012027.
dc.relation.referencesEmeis, S., Sch ̈afer, K., and Mu ̈nkel, C. (2009). Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorologische Zeitschrift, 18(2):149–154.
dc.relation.referencesEmeis, S., Sch ̈afer, K., Mu ̈nkel, C., Friedl, R., and Suppan, P. (2012). Evaluation of the Inter- pretation of Ceilometer Data with RASS and Radiosonde Data. Boundary-Layer Meteorology, 143:25–35.
dc.relation.referencesEresmaa, N., H ̈arko ̈onen, J., and Joffre, S. (2012). A Three-Step Method for Estimating the Mixing Height Using Ceilometer Data from the Helsinki Testbed. pages 2172–2187.
dc.relation.referencesEresmaa, N., Karppinen, A., and Joffre, S. M. (2006). Mixing height determination by ceilome- ter. Atmospheric Chemistry and Physics, 6:1485–1493.
dc.relation.referencesFedorovich, E. and Conzemius, R. (2008). Effects of wind shear on the atmospheric convective boundary layer structure and evolution. Acta Geophysica, 56(1):114–141.
dc.relation.referencesFedorovich, E., Nieuwstadt, F. T. M., and Kaiser, R. (2001). Numerical and Laboratory Study of Horizontally Evolving Convective Boundary Layer. Part II: Effects of Elevated Wind Shear and Surface Roughness. Journal of the Atmospheric Sciences, 58(6):546–560.
dc.relation.referencesFeigenwinter, C., Vogt, R., and Parlow, E. (1999). Vertical structure of selected turbulence characteristics above an urban canopy. Theoretical and Applied Climatology, 62(1-2):51–63.
dc.relation.referencesFernando, H., Pardyjak, E., Di Sabatino, S., Chow, F. K., De Wekker, S., Hoch, S. W., Hacker, J., Pace, J., Pratt, T., Pu, Z., Steenburgh, W., Whiteman, C. D., Wang, Y., Zajic, D., Balsley, B., Dimitrova, R., and Emmitt, G. (2015). The Materhorn - Unraveling the Intricacies of Mountain Weather. Bulletin of the American Meteorological Society.
dc.relation.referencesFernando, H. J. S., Zajic, D., Di Sabatino, S., Dimitrova, R., Hedquist, B., and Dallman, A. (2010). Flow, turbulence, and pollutant dispersion in urban atmospheres. Physics of Fluids, 22(5):051301.
dc.relation.referencesFiedler, H. E. (1988). Coherent structures in turbulent flows. Progress in Aerospace Sciences, 25(3):231–269.
dc.relation.referencesFinnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A. (2003). A RE- EVALUATION OF LONG-TERM FLUX MEASUREMENT TECHNIQUES Part I : Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 107(1):1–48.
dc.relation.referencesFoken, T. (2006). 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol- ogy, 119(3):431–447.
dc.relation.referencesFoken, T. and Wichura, B. (1996). Tools for quality assessment of surface-based flux measure- ments. Agricultural and Forest Meteorology, 78(1-2):83–105.
dc.relation.referencesFortuniak, K., Pawlak, W., and Siedlecki, M. (2013). Integral Turbulence Statistics Over a Central European City Centre. Boundary-Layer Meteorology, 146(2):257–276.
dc.relation.referencesGarratt, J. R. (1992). The Atmospheric Boundary Layer. CAMBRIDGE University Press.
dc.relation.referencesGrachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G. (2013). The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147(1):51–82.
dc.relation.referencesGrachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G. (2015). Similarity theory based on the Dougherty-Ozmidov length scale. Quarterly Journal of the Royal Meteorological Society, 141(690):1845–1856
dc.relation.referencesGranados-Munoz, M. J., Navas-Guzm ́an, F., Bravo-Aranda, J. a., Guerrero-Rascado, J. L., Lya- mani, H., Fern ́andez-G ́alvez, J., and Alados-Arboledas, L. (2012). Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain. Journal of Geophysical Research: Atmospheres, 117:1–10.
dc.relation.referencesGrimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864):756–760.
dc.relation.referencesGrimmond, C. S. and Oke, T. R. (1999). Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology, 38(9):1262–1292.
dc.relation.referencesGrimmond, C. S. and Oke, T. R. (2002). Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology, 41(7):792–810.
dc.relation.referencesGrimmond, C. S., Salmond, J. A., Oke, T. R., Offerle, B., and Lemonsu, A. (2004). Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. Journal of Geophysical Research D: Atmospheres, 109(24):1–19.
dc.relation.referencesGrimmond, C. S. B. (2006). Progress in measuring and observing the urban atmosphere. The- oretical and Applied Climatology, 84(1):3–22.
dc.relation.referencesGrubiˇsi ́c, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F., Pan, L. L., and Chow, F. K. (2008). The terrain-induced rotor experiment. Bulletin of the American Meteorological Society, 89(10):1513–1533.
dc.relation.referencesHalios, C. H. and Barlow, J. F. (2018). Observations of the Morning Development of the Urban Boundary Layer Over London , UK , Taken During the ACTUAL Project. Boundary-Layer Meteorology, 166(3):395–422.
dc.relation.referencesHannesdottir, A. (2013). Boundary-layer height detection with a ceilometer at a coastal site in western Denmark. PhD thesis, Technical University of Denmark, Roskilde, Denmark.
dc.relation.referencesHayden, K. L., Anlauf, K. G., Hoff, R. M., Strapp, J. W., Bottenheim, J. W., Wiebe, H. a., Froude, F. a., Martin, J. B., Steyn, D. G., and McKendry, I. G. (1997). The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ’93. Atmospheric Environment, 31(14):2089–2105.
dc.relation.referencesHeinrichs, D. and Bernet, J. S. (2014). Public transport and accessibility in informal settlements: Aerial cable cars in medell ́ın, colombia. Transportation Research Procedia, 4:55–67. Sustain- able Mobility in Metropolitan Regions. mobil.TUM 2014. International Scientific Conference on Mobility and Transport. Conference Proceedings.
dc.relation.referencesHelfter, C., Tremper, A. H., Halios, C. H., Kotthaus, S., Bjorkegren, A., Grimmond, C. S. B., Barlow, J. F., and Nemitz, E. (2016). Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmospheric Chemistry and Physics, 16(16):10543–10557.
dc.relation.referencesHelgason, W. and Pomeroy, J. W. (2012). Characteristics of the near-surface boundary layer within a mountain valley during winter. Journal of Applied Meteorology and Climatology, 51(3):583–597.
dc.relation.referencesHenao, J. J., Mej ́ıa, J. F., Rend ́on, A. M., and Salazar, J. F. (2020). Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric Pollution Research, 11(5):928–945.
dc.relation.referencesHenne, S., Furger, M., Nyeki, S., Steinbacher, M., Neininger, B., de Wekker, S. F. J., Dommen, J., Spichtinger, N., Stohl, A., and Pr ́evˆot, A. S. H. (2004). Quantification of topographic venting of boundary layer air to the free troposphere. Atmospheric Chemistry and Physics, 4(2):497–509.
dc.relation.referencesHennemuth, B. and Lammert, A. (2006). Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter. Boundary-Layer Meteorology, 120(1):181– 200.
dc.relation.referencesHerrera-Mejıa, L. and Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: the Aburr ́a Valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723):2641–2665.
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor ́anyi, A., Mun ̃oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., HA ̃lm, E., JaniskovA ̃¡, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and ThA ̃ ⃝c paut, J.-N. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.
dc.relation.referencesHiller, R., Zeeman, M. J., and Eugster, W. (2008). Eddy-covariance flux measurements in the complex terrain of an Alpine Valley in Switzerland. Boundary-Layer Meteorology, 127(3):449– 467.
dc.relation.referencesHogstrom, U., Bergstrom, H., and Alexandersson, H. (1982). Turbulence characteristics in a near neutrally stratified urban atmosphere. Boundary-Layer Meteorology, 23:449–472.
dc.relation.referencesHolzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92:235–242.
dc.relation.referencesHoyos, C. D., Ceballos, L. I., P ́erez-Carrasquilla, J. S., Sepulveda, J., L ́opez-Zapata, S. M., Zuluaga, M. D., Velasquez, N., Herrera-Mej ́ıa, L., Hern ́andez, O., Guzm ́an-Echavarr ́ıa, G., and Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11):2635–2665.
dc.relation.referencesHoyos, C. D., Herrera-Mej ́ıa, L., Rold ́an-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the Medell ́ın metropolitan area. Environmental Fluid Mechanics, 192(6):1–31.
dc.relation.referencesHu, X.-M., Nielsen-Gammon, J. W., and Zhang, F. (2010). Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 49(9):1831–1844.
dc.relation.referencesHuffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8(1):38–55.
dc.relation.referencesHunt, J. and Durbin, P. (1999). Perturbed vortical layers and shear sheltering. Fluid Dynamics Research, 24(6):375 – 404
dc.relation.referencesKaimal, J. C. and Finnigan, J. J. (1994). Atmospheric boundary layer flows, volume 41.
dc.relation.referencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 098(417):563– 589.
dc.relation.referencesKambezidis, H. D., Paliatsos, A. G., Kappos, N., and Kasselouri, B. (2012). A Case of African Dust Transport over Athens Captured by a Ceilometer. Advances in Meteorology, Climatology and Atmospheric Physics, pages 1245–1250.
dc.relation.referencesKastner-Klein, P. and Rotach, M. W. (2004). Mean Flow and Turbulence Characteristics in an Urban Roughness Sublayer. Boundary-Layer Meteorology, 111:55–84.
dc.relation.referencesKlipp, C. L. and Mahrt, L. (2004). Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 130(601 PART B):2087–2103.
dc.relation.referencesKljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11):3695–3713.
dc.relation.referencesKolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR, (30):299–303.
dc.relation.referencesKotthaus, S. and Grimmond, C. S. (2014). Energy exchange in a dense urban environment - Part II: Impact of spatial heterogeneity of the surface. Urban Climate, 10(P2):281–307.
dc.relation.referencesKrishnamurti, T., Stefanova, L., and Misra, V. (2013). Tropical Meteorology: An Introduction. Springer Atmospheric Sciences. Springer New York.
dc.relation.referencesKumar, R., Barth, M. C., Pfister, G. G., Delle Monache, L., Lamarque, J., Archer-Nicholls, S., TIlmes, S., Ghuse, S., Wiedinmyer, C., Naja, M., and Walters, S. (2018). How will air quality change in South Asia by 2050? American Geophysical Union.
dc.relation.referencesKummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J. (1998). The tropical rainfall measuring mission(TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3):809–817.
dc.relation.referencesLaing, A. and Evans, J. L. (2015). Introduction to tropical meteorology, 2nd Edition. The COMET Program.
dc.relation.referencesLau, E., McLaughlin, S., Pratte, F., Weber, B., Merritt, D., Wise, M., Zimmerman, G., James, M., and Sloan, M. (2013). The DeTect Inc. RAPTOR VAD-BL Radar Wind Profiler. Journal of Atmospheric and Oceanic Technology, 30:1978–1984.
dc.relation.referencesLee, S.-J., Kim, J., and Cho, C.-H. (2014). An automated monitoring of atmospheric mixing height from routine radiosonde profiles over South Korea using a web-based data transfer method. Environmental Monitoring and Assessment, 186:3253–3263.
dc.relation.referencesLehner, M. and Rotach, M. W. (2018). Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere, 9(7).
dc.relation.referencesLeukauf, D., Gohm, A., and Rotach, M. W. (2016). Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime. Atmospheric Chemistry and Physics, pages 13049–13066.
dc.relation.referencesLeukauf, D., Gohm, A., and Rotach, M. W. (2017). Toward generalizing the impact of surface heating, stratification, and terrain geometry on the daytime heat export from an idealized valley. Journal of Applied Meteorology and Climatology, 56(10):2711–2727.
dc.relation.referencesLeukauf, D., Gohm, A., Rotach, M. W., and Wagner, J. S. (2015). The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing. Journal of Applied Meteorology and Climatology, 54(11):2199–2216.
dc.relation.referencesLi, H., Guo, B., Han, M., Tian, M., and Zhang, J. (2015). Particulate matters pollution characteristic and the correlation between pm (pm2. 5, pm10) and meteorological factors during the summer in shijiazhuang. Journal of Environmental Protection, 6(05):457.
dc.relation.referencesLiebmann, B. and Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6):1275–1277.
dc.relation.referencesLiu, H., Yuan, R., Mei, J., Sun, J., Liu, Q., and Wang, Y. (2017). Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer. Boundary-Layer Mete- orology, 165(2):277–294.
dc.relation.referencesLiu, S. and Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21):5790–5809.
dc.relation.referencesLiu, X. G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., Zhang, Y., Tian, H., and Hu, M. (2013). Formation and evolution mechanism of regional haze: a case study in the megacity beijing, china. Atmospheric Chemistry and Physics, 13(9):4501–4514.
dc.relation.referencesLokoshchenko, M. a. (2002). Long-Term Sodar Observations in Moscow and a New Approach to Potential Mixing Determination by Radiosonde Data. Journal of Atmospheric and Oceanic Technology, 19(8):1151–1162.
dc.relation.referencesLotteraner, C. and Piringer, M. (2016). Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights. Boundary-Layer Meteorology, 161(2):265–287.
dc.relation.referencesMahrt, L. (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorology, 90(3):375–396.
dc.relation.referencesMamtimin, B. and Meixner, F. X. (2011). Air pollution and meteorological processes in the grow- ing dryland city of urumqi (xinjiang, china). Science of The Total Environment, 409(7):1277 – 1290.
dc.relation.referencesMapes, B. E. (2000). Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57(10):1515– 1535.
dc.relation.referencesMartins, C. A., Moraes, O. L., Acevedo, O. C., and Degrazia, G. A. (2009). Turbulence intensity parameters over a very complex terrain. Boundary-Layer Meteorology, 133(1):35–45.
dc.relation.referencesMartucci, G., Matthey, R., Mitev, V., and Richner, H. (2010). Frequency of boundary-layer-top fluctuations in convective and stable conditions using laser remote sensing. Boundary-Layer Meteorology, 135:313–331.
dc.relation.referencesMassaro, G., Stiperski, I., Pospichal, B., and Rotach, M. W. (2015). Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmospheric Measurement Techniques, 8(8):3355–3367.
dc.relation.referencesMay, P. T., Long, C. N., and Protat, A. (2012). The diurnal cycle of the boundary layer, con- vection, clouds, and surface radiation in a coastal monsoon environment (darwin, australia). Journal of Climate, 25(15):5309–5326.
dc.relation.referencesMayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25):4029–4037.
dc.relation.referencesMcMillen, R. T. (1988). An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology, 43(3):231–245.
dc.relation.referencesMonin, A. S. and Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz, 24(151):163–187.
dc.relation.referencesMoore, C. J. (1986). Frequency response corrections for eddy correlation systemns. Boundary- Layer Meteorology, 37:17–35.
dc.relation.referencesMoraes, O. L., Acevedo, O. C., Degrazia, G. A., Anfossi, D., Da Silva, R., and Anabor, V. (2005). Surface layer turbulence parameters over a complex terrain. Atmospheric Environ- ment, 39(17):3103–3112.
dc.relation.referencesMorille, Y., Haeffelin, M., Drobinski, P., and Pelon, J. (2007). STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data. Journal of Atmospheric and Oceanic Technology, 24(5):761–775.
dc.relation.referencesMuenkel, C., Emeis, S., Mueller, W. J., and Schaefer, K. P. (2004). Aerosol concentration measurements with a lidar ceilometer: results of a one year measuring campaign. Proceedings of SPIE–the international society for optical engineering, 5235:486–496.
dc.relation.referencesMu ̈nkel, C., Eresmaa, N., R ̈as ̈anen, J., and Karppinen, A. (2006). Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorology, 124(1):117–128.
dc.relation.referencesMünkel, C. and Roininen, R. (2010). Automatic monitoring of boundary layer structures with ceilometer. Technical report, Vaisala.
dc.relation.referencesNadeau, D. F., Oldroyd, H. J., Pardyjak, E. R., Sommer, N., Hoch, S. W., and Parlange, M. B. (2020). Field observations of the morning transition over a steep slope in a narrow alpine valley. Environmental Fluid Mechanics, 20(5):1199–1220.
dc.relation.referencesNadeau, D. F., Pardyjak, E. R., Higgins, C. W., and Parlange, M. B. (2013). Similarity Scaling Over a Steep Alpine Slope. Boundary-Layer Meteorology, 147(3):401–419.
dc.relation.referencesNesbitt, S. W. and Zipser, E. J. (2003). The diurnal cycle of rainfall and convective intensity according to three years of trmm measurements. Journal of Climate, 16(10):1456–1475.
dc.relation.referencesNieuwstadt, F. T. (1984). The turbulent structure of the stable, nocturnal boundary layer.
dc.relation.referencesNieuwstadt, F. T. M. and van Dop, H. (1982). Atmospheric Turbulence and Air Pollution Modelling.
dc.relation.referencesNisperuza, D. J. (2015). Propiedades Opticas de los Aerosoles Atmosfericos en la Region Andina Colombiana Mediante Analisis de Mediciones Remotas : LIDAR , Fotometricas y Satelitales Presentada por Daniel Jose Nisperuza Toledo. PhD thesis, Universidad Nacional de Colombia.
dc.relation.referencesNoppel, H. and Fiedler, F. (2002). Mesoscale heat transport over complex terrain by slope winds - A conceptual model and numerical simulations. Boundary-Layer Meteorology, 104(1):73–97.
dc.relation.referencesNordbo, A., Jarvi, L., Haapanala, S., Moilanen, J., and Vesala, T. (2013). Intra-City Varia- tion in Urban Morphology and Turbulence Structure in Helsinki, Finland. Boundary-Layer Meteorology, 146(3):469–496.
dc.relation.referencesOfferle, B., Grimmond, C. S., Fortuniak, K., and Pawlak, W. (2006). Intraurban differences of surface energy fluxes in a central European City. Journal of Applied Meteorology and Climatology, 45(1):125–136.
dc.relation.referencesOke, T. R. (1988). The urban energy balance. Progress in Physical Geography, 12(4):471–508.
dc.relation.referencesOke, T. R., Spronken-Smith, R. A., J ́auregui, E., and Grimmond, C. S. (1999). The energy balance of central Mexico City during the dry season. Atmospheric Environment, 33(24- 25):3919–3930.
dc.relation.referencesPahlow, M., Parlange, M. B., and Port ́e-Agel, F. (2001). On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorology, 99(2):225–248.
dc.relation.referencesPal, S., Lee, T., Phelps, S., and Wekker, S. D. (2014). Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Science of The Total Environment, 496:424 – 434.
dc.relation.referencesPal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I., and Ciais, P. (2015). Investigation of the atmospheric boundary layer depth variability and its impact on the 222rn concentration at a rural site in france. Journal of Geophysical Research: Atmospheres, 120(2):623–643.
dc.relation.referencesPanofsky, H. and Dutton, J. (1984). Atmospheric turbulence: models and methods for engineer- ing applications. cited By 827.
dc.relation.referencesPanofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C. (1977). THE CHARAC- TERISTICS OF TURBULENT VELOCITY COMPONENTS IN THE SURFACE LAYER UNDER CONVECTIVE CONDITIONS. Boundary-Layer Meteorology, 11:355–361.
dc.relation.referencesPegahfar, N. and Bidokhti, A. A. (2013). Similarity relations in a stable and relatively neutral surface layer in an urban area with complex topography (Tehran). Environmental Fluid Mechanics, 13(1):1–31.
dc.relation.referencesPegahfar, N. and Zawar-Reza, P. (2017). Observed turbulence characteristics in unstable condi- tions over the city of Tehran based on similarity theory. Meteorology and Atmospheric Physics, 129(5):479–494.
dc.relation.referencesPeppler, R. A. (1988). A review of static stability indices and related thermodynamic parameters. Technical report, Illinois State Water Survey.
dc.relation.referencesPerez Arango, J. D. (2008). Caracterizacion preliminar de la circulacion en la capa lımite atmosferica. Caso de estudio: Valle de Aburra. PhD thesis, Universidad Nacional de Colombia Sede Medellın.
dc.relation.referencesPerez Arango, J. D., Palacio Tobon, C. A., and Jimenez Mejia, J. F. (2011). Aspectos descriptivos de la circulacion en la capa límite atmosferica en el Valle de Aburra. DESCRIPTIVE ASPECTS ON ATMOSPHERIC BOUNDARY LAYER CIRCULATION OVER THE VALLE DE ABURRA. (English), 7:31–41.
dc.relation.referencesPerlik, M., Messerli, P., and B ̈atzing, W. (2001). Towns in the Alps. Urbanization Processes, Economic Structure, and Demarcation of European Functional Urban Areas (EFUAs) in the Alps. Mountain Research and Development, 21(3):243–252.
dc.relation.referencesPoveda, G. (2004). La Hidroclimatolog ́ıa de Colombia: Una s ́ıntesis desde la escala interdecadal hasta la escala diurna. Revista Academia Colombiana de Ciencias, 28(10):201–222.
dc.relation.referencesPoveda, G., Waylen, P. R., and Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1):3–27.
dc.relation.referencesQuan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, D. (2013). Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11(1):34–40.
dc.relation.referencesQuan, L. and Hu, F. (2009). Relationship between turbulent flux and variance in the urban canopy. Meteorology and Atmospheric Physics, 104(1-2):29–36.
dc.relation.referencesRampanelli, G. and Zardi, D. (2004). A method to determine the capping inversion of the convective boundary layer. Journal of Applied Meteorology, 43(6):925–933.
dc.relation.referencesRaupach, M. R., Antonia, R. A., and Rajagopalan, S. (1991). Rough-wall turbulent boundary layers. Applied Mechanics Reviews, 44:1–25.
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., and Wirth, V. (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. Journal of Applied Meteorology and Climatology, 54(2):302–321.
dc.relation.referencesRendon, A. M., Salazar, J. F., Palacio, C. A., Wirth, V., and Brotz, B. (2014). Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. Journal of Applied Meteorology and Climatology, 53(4):840–858.
dc.relation.referencesRendon, A. M., Salazar, J. F., and Wirth, V. (2020). Daytime air pollution transport mechanisms in stable atmospheres of narrow versus wide urban valleys. Environmental Fluid Mechanics, 20(4):1101–1118.
dc.relation.referencesRestrepo, P. P., Hernandez, P. A., and Roldan, L. M. (2016). Informe de calidad de vida de medellin, 2016. Technical report, Medellin Como Vamos.
dc.relation.referencesRochetin, N., Couvreux, F., Grandpeix, J.-Y., and Rio, C. (2014). Deep convection triggering by boundary layer thermals. part i: Les analysis and stochastic triggering formulation. Journal of the Atmospheric Sciences, 71(2):496–514.
dc.relation.referencesRoldan-Henao, N., Hoyos, C. D., Herrera-Mejia, L., and Isaza, A. (2020). An investigation of the precipitation net effect on the particulate matter concentration in a narrow valley: Role of lower-troposphere stability. Journal of Applied Meteorology and Climatology, 59(3):401–426.
dc.relation.referencesRoldan-Henao, N., Hoyos, C. D., Herrera-Mejıa, L., and Isaza, A. (2020). An investigation of the precipitation net effect on the particulate matter concentration in a narrow valley: Role of lower-troposphere stability. Journal of Applied Meteorology and Climatology, 59(3):401–426.
dc.relation.referencesRosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., and Ibrahim, S. (2018). Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Cambridge University Press.
dc.relation.referencesRotach, M. W. (1993). Turbulence close to a rough urban surface part II: Variances and gradi- ents. Boundary-Layer Meteorology, 66(1-2):75–92.
dc.relation.referencesRotach, M. W. (1994). Determination of the zero plane displacement in an urban environment. Boundary-Layer Meteorology, 67(1-2):187–193.
dc.relation.referencesRotach, M. W. (1995). Profiles of turbulence statistics in and above an urban street canyon. Atmospheric Environment, 29(13):1473–1486.
dc.relation.referencesRotach, M. W., Calanca, P., Graziani, G., Gurtz, J., Steyn, D. G., Vogt, R., Andretta, M., Christen, A., Cieslik, S., Connolly, R., De Wekker, S., Galmarini, S., Kadygrov, N., Kadygrov, V., Miller, E., Neininger, B., Rucker, M., Van Grosel, E., Weber, H., Weiss, A., and Zappa, M. (2004). TURBULENCE STRUCTURE AND EXCHANGE PROCESSES IN AN ALPINE VALLEY. Bulletin of the American Meteorological Society, (January):1367–1386.
dc.relation.referencesRotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., and Wagner, J. S. (2015). On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Frontiers in Earth Sciences, 3(December):1–14.
dc.relation.referencesRotach, M. W., Stiperski, I., Fuhrer, O., Goger, B., Gohm, A., Obleitner, F., Rau, G., Sfyri, E., and Vergrgeiner, J. (2017). Investigating exchange processes over complex topography: The Innsbruck box (i-Box). Bulletin of the American Meteorological Society, 98(4):787–805.
dc.relation.referencesRotach, M. W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S. E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y. A., Ruffieux, D., Salmond, J. A., Schatzmann, M., and Voogt, J. A. (2005). BUBBLE - An urban boundary layer meteorology project. Theoretical and Applied Climatology, 81(3-4):231–261.
dc.relation.referencesRoth, M. (2000). Review of atmospheric turbulence over cities. Quarterly Journal of the Royal Meteorological Society, 126(564):941–990.
dc.relation.referencesRoth, M. (2007). Review of urban climate research in (sub)tropical regions. International Journal of Climatology, 27(27):1859–1873.
dc.relation.referencesRoth, M., Jansson, C., and Velasco, E. (2017). Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. International Journal of Climatology, 37(5):2679–2698.
dc.relation.referencesRoth, M. and Oke, T. R. (1993). Turbulent transfer relationships over an urban surface. I : Spec- tral Characteristics. Quarterly Journal of the Royal Meteorological Society, 119(513):1071– 1104.
dc.relation.referencesSaide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E., Mena-Carrasco, M. A., and Pagowski, M. (2011). Forecasting urban pm10 and pm2.5 pollution episodes in very
dc.relation.referencesSalamanca, F., Martilli, A., Tewari, M., and Chen, F. (2011). A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology, 50(5):1107–1128.
dc.relation.referencesSantosa, S. J., Okuda, T., Tanaka, S., Sciences, N., Sciences, N., and Utara, S. (2008). Air Pollution and Urban Air Quality Management in Indonesia. Clean Journal, 36:466–475.
dc.relation.referencesSawyer, V. and Li, Z. (2013). Detection, variations and intercomparison of the planetary bound- ary layer depth from radiosonde, lidar and infrared spectrometer. Atmospheric Environment, 79:518–528.
dc.relation.referencesSchmutz, M. and Vogt, R. (2019). Flux similarity and turbulent transport of momentum, heat and carbon dioxide in the urban boundary layer. Boundary-Layer Meteorology, 172(1):45–65.
dc.relation.referencesSchmutz, M., Vogt, R., Feigenwinter, C., and Parlow, E. (2016). Ten years of eddy covariance measurements in Basel, Switzerland: Seasonal and interannual variabilities of urban CO2 mole fraction and flux. Journal of Geophysical Research, 121(14):8649–8667.
dc.relation.referencesSchneider, T., Bischoff, T., and Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516):45–53.
dc.relation.referencesSchnitzhofer, R., Norman, M., Wisthaler, A., Vergeiner, J., Harnisch, F., Gohm, A., Obleitner, F., Fix, A., Neininger, B., and Hansel, A. (2009). A multimethodological approach to study the spatial distribution of air pollution in an alpine valley during wintertime. Atmospheric Chemistry and Physics, 9(10):3385–3396.
dc.relation.referencesSchotanus, P., Nieuwstadt, F. T., and De Bruin, H. A. (1983). Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorology, 26(1):81–93.
dc.relation.referencesSchween, J. H., Hirsikko, a., L ̈ohnert, U., and Crewell, S. (2014). Mixing layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment. Atmospheric Measurement Techniques Discussions, 7:4275–4319.
dc.relation.referencesSeibert, P., Beyrich, F., Gryning, S.-e., Jo, S., Rasmussen, A., and Tercier, P. (2000). Re- view and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34:1001–1027.
dc.relation.referencesSeidel, D. J., Ao, C. O., and Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115:1–15.
dc.relation.referencesSerafin, S., Adler, B., Cuxart, J., De Wekker, S. F., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D. J., Rotach, M. W., Schmidli, J., Stiperski, I., Veˇcenaj, Zˇ., and Zardi, D. (2018). Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 9(3):1–32.
dc.relation.referencesSfyri, E., Rotach, M. W., Stiperski, I., Bosveld, F. C., Lehner, M., and Obleitner, F. (2018). Scalar-Flux Similarity in the Layer Near the Surface Over Mountainous Terrain. Boundary- Layer Meteorology, 169(1):11–46.
dc.relation.referencesShao, Y. and Hacker, J. M. (1990). Local similarity relationships in a horizontally inhomogeneous boundary layer. Boundary-Layer Meteorology, 52(1-2):17–40.
dc.relation.referencesShrivastava, R., Dash, S. K., Oza, R. B., and Sharma, D. N. (2014). Evaluation of Parameter- ization Schemes in the WRF Model for Estimation of Mixing Height. International Journal of Atmospheric Sciences, 2014(February):Article ID: 451578.
dc.relation.referencesSkamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G. (2008). A description of the advanced research wrf version 3. ncar technical note -475+str.
dc.relation.referencesSorbjan, Z. (1987). An examination of local similarity theory in the stably stratified boundary layer. Boundary-Layer Meteorology, 38(1-2):63–71.
dc.relation.referencesSouch, C. and Grimmond, S. (2006). Applied climatology: urban climate. Progress in Physical Geography: Earth and Environment, 30(2):270–279.
dc.relation.referencesSreenivasan, K. R. (1995). On the universality of the Kolmogorov constant. Physics of Fluids, 7(11):2778–2784.
dc.relation.referencesSrivastava, A. K., Srijith, O. P., Kshirsagar, S. R., and Srivastava, K. (2015). Has modulation of Indian summer monsoon rainfall by sea surface temperature of the equatorial Pacific Ocean, weakened in recent years? Climate Dynamics, 45(7-8):2237–2254.
dc.relation.referencesSteyn, D. G., Baldi, M., and Hoff, R. M. (1999). The detection of mixed layer depth and en- trainment zone thickness from lidar backscatter profiles. Journal of Atmospheric and Oceanic Technology, 16(1979):953–959.
dc.relation.referencesStiperski, I. and Calaf, M. (2018). Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Quarterly Journal of the Royal Meteorological Soci- ety, 144(712):641–657.
dc.relation.referencesStiperski, I., Calaf, M., and Rotach, M. W. (2019). Scaling, Anisotropy, and Complexity in Near-Surface Atmospheric Turbulence. Journal of Geophysical Research: Atmospheres, pages 1428–1448.
dc.relation.referencesStiperski, I. and Rotach, M. W. (2016). On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorology, 159(1):97–121.
dc.relation.referencesStull, R. B. (1988). An introduction to boundary layer meteorology.
dc.relation.referencesStull, R. B. (1991). Static Stability-An Update. Bulletin of the American Meteorological Society, 72(10):1521–1530.
dc.relation.referencesSu, T., Li, J., Li, C., Xiang, P., Lau, A. K. H., Guo, J., Yang, D., and Miao, Y. (2017). An intercomparison of long-term planetary boundary layer heights retrieved from CALIPSO, ground-based lidar, and radiosonde measurements over Hong Kong. Journal of Geophysical Research: Atmospheres, 122(7):3929–3943.
dc.relation.referencesSundstrom, A. M., Nousiainen, T., and Pet ̈aj ̈a, T. (2009). On the quantitative low-level aerosol measurements using ceilometer-type lidar. Journal of Atmospheric and Oceanic Technology, 26(2005):2340–2352.
dc.relation.referencesTampieri, F., Maurizi, A., and Viola, A. (2009). An investigation on temperature variance scaling in the atmospheric surface layer. Boundary-Layer Meteorology, 132(1):31–42.
dc.relation.referencesTang, G., Zhang, J., Zhu, X., Song, T., Mu ̈nkel, C., Hu, B., Sch ̈afer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y. (2016). Mixing layer height and its implications for air pollution over beijing, china. Atmospheric Chemistry and Physics, 16(4):2459–2475.
dc.relation.referencesTaylor, K. E. (2001). Study of some factors maintaining the ’atrophie gonadique’ character in experimental populations of Drosophila melanogaster. Journal of Geophysical Research, 106(D7):7183–7192.
dc.relation.referencesThiermann, V. (1990). Optische Messung turbulenter Flu ̈sse und Vorhersage der optischen Turbulenz aus einfachen Grenzschichtparametern.
dc.relation.referencesTischler, S. and Mailer, M. (2019). Cable propelled transit systems in urban areas. Trans- portation Research Procedia, 41:169–173. Urban Mobility – Shaping the Future Together mobil.TUM 2018 – International Scientific Conference on Mobility and Transport Conference Proceedings.
dc.relation.referencesTorrence, C. and Compo, G. P. (1997). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):61–78.
dc.relation.referencesTRMM (2011). Trmm (tmpa) rainfall estimate l3 3 hour 0.25 degree x 0.25 degree v7. https: //doi.org/10.5067/TRMM/TMPA/3H/7.
dc.relation.referencesUzan, L., Egert, S., and Alpert, P. (2016). Ceilometer evaluation of the eastern Mediterranean summer boundary layer height-first study of two Israeli sites. Atmospheric Measurement Techniques, 9(9):4387–4398.
dc.relation.referencesvan der Kamp, D. and McKendry, I. (2010). Diurnal and Seasonal Trends in Convective Mixed- Layer Heights Estimated from Two Years of Continuous Ceilometer Observations in Vancou- ver, BC. Boundary-Layer Meteorology, 137(3):459–475.
dc.relation.referencesVeˇcenaj, Z. and De Wekker, S. F. (2015). Determination of non-stationarity in the surface layer during the T-REX experiment. Quarterly Journal of the Royal Meteorological Society, 141(690):1560–1571.
dc.relation.referencesVeˇcenaj, Z., de Wekker, S. F., and Grubiˇsi ́c, V. (2011). Near-surface characteristics of the turbulence structure during a mountain-wave event. Journal of Applied Meteorology and Climatology, 50(5):1088–1106.
dc.relation.referencesVickers, D. and Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology, pages 512–526.
dc.relation.referencesWagner, J. S., Gohm, A., and Rotach, M. W. (2014). The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quarterly Journal of the Royal Meteorological Society, i(July):1780–1794.
dc.relation.referencesWang, W., Shen, X., and Huang, W. (2016). A Comparison of Boundary-Layer Character- istics Simulated Using Different Parametrization Schemes. Boundary-Layer Meteorology, 161(2):375–403.
dc.relation.referencesWard, H. C., Evans, J. G., and Grimmond, C. S. (2013). Multi-season eddy covariance observa- tions of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmospheric Chemistry and Physics, 13(9):4645–4666.
dc.relation.referencesWard, H. C. and Grimmond, C. S. (2017). Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across Greater London. Landscape and Urban Planning, 165(March):142–161.
dc.relation.referencesWebb, E. K., Pearman, G. I., and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Mete- orological Society, 106(447):85–100.
dc.relation.referencesWeber, S. and Kordowski, K. (2010). Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany. Theoretical and Applied Climatology, 102(1):61–74.
dc.relation.referencesWhiteman, C. D. (1982). Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21(3):270–290.
dc.relation.referencesWhiteman, C. D. (2000). Mountain Meteorology: Fundamentals and Applications, volume 21. Oxford University Press.
dc.relation.referencesWhiteman, C. D., Hoch, S. W., Horel, J. D., and Charland, A. (2014). Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmospheric Environment.
dc.relation.referencesWhiteman, C. D. and McKee, T. B. (1982). Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic Model. Journal of Applied Meteorology, pages 290 – 302.
dc.relation.referencesWhiteman, C. D., Pospichal, B., Eisenbach, S., Weihs, P., Clements, C. B., Steinacker, R., Mursch-Radlgruber, E., and Dorninger, M. (2004). Inversion Breakup in Small Rocky Moun- tain and Alpine Basins. Journal of Applied Meteorology, 43(8):1069–1082.
dc.relation.referencesWiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, a., Pappalardo, G., Sch ̈afer, K., and Thomas, W. (2014). What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmospheric Measurement Techniques, 7:1979–1997.
dc.relation.referencesWiernga, J. (1993). Representative roughness parameters for homogeneous terrain. Boundary- Layer Meteorology, 63(4):323–363.
dc.relation.referencesWood, C. R., Lacser, A., Barlow, J. F., Padhra, A., Belcher, S. E., Nemitz, E., Helfter, C., Famulari, D., and Grimmond, C. S. (2010). Turbulent Flow at 190 m Height Above London During 2006-2008: A Climatology and the Applicability of Similarity Theory. Boundary-Layer Meteorology, 137(1):77–96.
dc.relation.referencesWyngaard, J. C. (2010). Turbulence in the Atmosphere. Cambridge University Press.
dc.relation.referencesWyngaard, J. C., Cot ́e, O. R., and Izumi, Y. (1971). Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux. Journal of the Atmospheric Sciences, 28:1171–1182.
dc.relation.referencesYoung, J. S. (2013). Investigation of winter time cold-air pools and aerosol layers in the salt lake valle y using a lidar ceilometer. PhD thesis, University of Utah.
dc.relation.referencesYoung, J. S. and Whiteman, C. D. (2015). Laser ceilometer investigation of persistent wintertime cold-air pools in Utah’s Salt Lake Valley. Journal of Applied Meteorology and Climatology, page 150203142804008.
dc.relation.referencesYu, H., Liu, S. C., and Dickinson, R. E. (2001). Radiative effects of aerosols on the evo- lution of the atmospheric boundary layer. Journal of Geophysical Research: Atmospheres, 107(D12):AAC 3–1–AAC 3–14.
dc.relation.referencesZardi, D. and Whiteman, C. D. (2013). Diurnal Mountain Wind Systems, pages 35–119. Springer Netherlands, Dordrecht.
dc.relation.referencesZhang, H., Chen, J., and Park, S.-u. (2001). TURBULENCE STRUCTURE IN UNSTABLE CONDITIONS OVER VARIOUS SURFACES. Boundary-Layer Meteorology, 5(1):243–261.
dc.relation.referencesZhang, Y. and Li, S. (2019). Climatological characteristics of planetary boundary layer height over Japan. International Journal of Climatology.
dc.relation.referencesZhang, Y., Zhang, S., Huang, C., Huang, K., Gong, Y., and Gan, Q. (2014a). Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China. Science China Technological Sciences, 57(11):2172–2176.
dc.relation.referencesZhang, Y., Zhang, S., Huang, C., Huang, K., Gong, Y., and Gan, Q. (2014b). Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China. Science China Technological Sciences, 57(11):2172–2176.
dc.relation.referencesZou, J., Sun, J., Liu, G., Yuan, R., and Zhang, H. (2018). Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research: Atmospheres, 123(4):2017–2036.
dc.relation.referencesZoumakis, N. M. and Efstathiou, G. A. (2006). Parameterization of inversion breakup in ide- alized valleys. Part I: The adjustable model parameters. Journal of Applied Meteorology and Climatology, 45(4):600–608.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPlanetary boundary layer
dc.subject.lembCapa límite planetaria
dc.subject.lembBoundary layer (Meteorology)
dc.subject.lembCapa límite (Meteorología)
dc.subject.proposalBoundary-Layer
dc.subject.proposalAtmospheric Turbulence
dc.subject.proposalComplex terrain
dc.subject.proposalAir-quality
dc.subject.proposalMicrometeorology
dc.subject.proposalAtmospheric Boundary Layer
dc.subject.proposalEddy covariance
dc.subject.proposalRemote sensing
dc.subject.proposalMeteorology
dc.subject.proposalAtmospheric stability
dc.subject.proposalCapa Límite Atmosférica
dc.subject.proposalCalidad del aire
dc.subject.proposalTerrenos complejos
dc.subject.proposalTurbulencia atmosférica
dc.subject.proposalSensores remotos
dc.subject.proposalMeteorología
dc.subject.proposalEstabilidad atmosférica
dc.title.translatedVariabilidad espacio-temporal de la Capa Límite atmosférica en el Valle de Aburrá: caracterización, procesos, interacciones multi-escala e impactos
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleSistema de Alerta Temprana de Medellín y el Valle de Aburrá - SIATA
oaire.fundernameOeAD Austria - Mach grant
oaire.fundernameÁrea metropolitana del Valle de Aburrá
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito