Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMolina Ochoa, Alejandro
dc.contributor.authorOrtiz Prada, Andrés Fernando
dc.date.accessioned2022-03-15T21:11:21Z
dc.date.available2022-03-15T21:11:21Z
dc.date.issued2021-12-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81233
dc.descriptionDocumento en formato PDF de la tesis de maestría, documento en la plantilla institucional, redactada en ingles siguiendo la recomendación del grupo de investigación.
dc.description.abstractA medida que los vehículos de combustión interna tienen mayor presencia en Colombia, generan una cantidad significativa de desechos peligrosos. Las baterías de plomo-ácido (BPA) que deben cambiarse periódicamente una vez que alcanzan su vida útil son, posiblemente, los desechos peligrosos más comunes producidos por los vehículos. La eliminación inadecuada de las BPA puede ser altamente peligrosa para el medio ambiente y el bienestar de las personas. El reciclaje de Baterías de Plomo-Ácido Usadas (BPAU) mediante pirometalurgia se ha establecido como una alternativa para recuperar elementos valiosos, principalmente Pb. Esta tesis describe una simulación de Dinámica de Fluidos Computacional (CFD) de un horno de lanza vertical sumergida (TSL), una tecnología que no ha sido implementada en Colombia para el reciclaje de BPAU pero que se considera prometedora dada su alta eficiencia energética y capacidad de producción. un derretimiento uniforme. Se determinó la condición de operación y configuración geométrica del horno TSL para la producción de 320 kg/h de plomo secundario a partir de BPAU, valor que se adapta a la demanda colombiana de baterías de plomo. El efecto de los cambios en el flujo de combustible (CH4) y oxidante (aire enriquecido, 30 % O2) y la componente de turbulencia del aire de combustión sobre la eficiencia térmica del horno y la hidrodinámica de la masa fundida. También se abordó el efecto de la componente radial sobre el flujo de CH4 en el fenómeno de combustión. Se desarrolló un modelo transitorio para representar los cambios en el horno para la capacidad propuesta y, con la ayuda de datos de la literatura, determinar el tamaño del horno. Se realizó una evaluación preliminar de la combustión en el horno con base en una simulación CFD que utilizó el modelo de transporte de especies y un mecanismo de reacción de dos pasos. La simulación se realizó en el Software Comercial Fluent 2020 R1. Una segunda simulación CFD consideró el horno multifásico transitorio y se basó en el modelo VOF y la turbulencia RANS. Incluía combustión, radiación y presencia de Pb fundido. La simulación se verificó utilizando una correlación empírica basada en datos experimentales para un número de Froude modificado, Frm. Los efectos del flujo de metano (8 g/s a 2 g/s), y la componente tangencial del aire (20° a 50°), en la eficiencia térmica del horno y los campos de velocidad y temperatura y el tiempo de mezcla fueron revisados. Una vez que se alcanzó el estado pseudo-estable, los datos se recopilaron cada 0,04 s durante un período de 5 s. Los resultados indican que la eficiencia térmica del horno disminuye al aumentar la potencia de combustión para una constante de turbulencia constante de 30° La penetración de gas aumenta con el flujo de CH4. Un mayor flujo de combustible disminuyó el tiempo de mezcla y evitó la formación de zonas muertas cerca del fondo del horno, donde se coloca la piquera para la extracción de Pb. Por otro lado, el remolino no tiene un efecto significativo sobre la penetración del gas o el tiempo de mezclado. El diseño propuesto considera un pozo central y pozos secundarios en los cuales el caudal tiene una componente radial equivalente al 80 % de la magnitud de la velocidad. El aire se enriqueció con un 30 % de O2 y se formó una “zona muerta” que permitió el fraguado de plomo en la base. (Texto tomado de la fuente)
dc.description.abstractAs internal combustion vehicles become ubiquist in Colombia, they generate a significant amount of hazardous waste. Lead-Acid Batteries (LAB) that must be periodically changed once they reach their useful life are, arguably, the most common hazardous waste produced from vehicles. Improper disposal of LABs can be highly dangerous for the environment and the wellness of people. The recycling of Spent Lead-Acid Batteries (SLABs) through pyrometallurgy has been established as an alternative to recover valuable elements, mainly Pb. This thesis describes a Computational Fluid Dynamics (CFD) simulation of a submerged vertical lance (TSL) furnace, a technology that has not been implemented in Colombia for the recycling of SLABs but that is considered as promising given its high energy efficiency and ability to produce an uniform melt. The operating condition and geometric configuration of the TSL furnace were determined for the production of 320 kg/h of secondary lead from SLABs, a value that suits the Colombian demand for lead batteries. The effect of changes in the fuel (CH4) and oxidant (enriched air, 30 % O2) flow and the swirl component of the combustion air on the thermal efficiency of the furnace and the hydrodynamics of the melt was studied. The effect of the radial component on the CH4 flow in the combustion phenomenon was also addressed. A transitory model was developed to represent the changes in the furnace for the proposed capacity and to, assisted with data from the literature, determine the furnace size. A preliminary evaluation of the combustion in the furnace was carried out based on a CFD simulation that used the transport of species model and a two-step reaction mechanism. The simulation was carried out in the Commercial Software Fluent 2020 R1. A second CFD simulation considered the transient multiphase furnace and was based on the VOF model and RANS turbulence. It included combustion, radiation and the presence of molten Pb. The simulation was verified using an empirical correlation based on experimental data for a modified Froude number, Frm. The effects of methane ow (8 g/s to 2 g/s), and the tangential component of air, (20° to 50°), in the thermal efficiency of the furnace and the velocity and temperature fields and the mixing time were reviewed. Once the pseudo-steady state was reached, data was collected every 0.04 s for a period of 5 s. The results indicate that the thermal efficiency of the furnace decreases by increasing the combustion power for a constant swirl constant of 30° Gas penetration increases with methane ow. A higher fuel flow decreased the mixing time and prevented the formation of dead zones near the bottom of the furnace, where the taphole for Pb extraction is placed. On the other hand, the swirl has no significant effect on gas penetration or mixing time. The proposed design considers a central bore and secondary bores in which the ow has a radial component equivalent to 80 % of the magnitude of velocity. The air was enriched with 30 % O2 and a “dead zone" was formed that allowed the setting of lead in the base.
dc.format.extentxv, 79 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleComputational fluid dynamics simulation of a vertical furnace with top submerged lance for the recovery of lead from spent lead-acid batteries
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.contributor.educationalvalidatorHenry Copete
dc.contributor.researchgroupBioprocesos y Flujos Reactivos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaDinámica de fluidos computacional
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesR. D. Prengaman and A. H. Mirza, \Recycling concepts for lead{acid batteries," 2017.
dc.relation.referencesR. Fausto, D. van As, J. Antoft, and J. Box, \Greenland ice sheet melt area from MODIS (2000-2014)," Geological Survey of Denmark and Greenland (GEUS) Bulletin, 2015.
dc.relation.referencesAmerican Meteorological Society, \State of climate in 2020," Tech. Rep. 8, Aug. 2021.
dc.relation.referencesC. Transparency, \Colombia climate transparency report," tech. rep., 2020. Accessed: 2021-11-20.
dc.relation.referencesOxford Martin School and University of Oxford, \CO^a'' emissions by sector, colombia." https://ourworldindata.org/grapher/co-emissions-bysector?time=2011..latestcountry=COL. Accessed: 2021-9-21.
dc.relation.referencesDANE, \Cuenta ambiental y econ_omica de ujos de materiales - residuos s_olidos," tech.rep., Aug. 2020.
dc.relation.referencesSemana, \En colombia, cada a~no 950.000 llantas usadas van a parar a la basura."https://www.semana.com/economia/inversionistas/articulo/en-colombia-cadaano-950000-llantas-usadas-van-a-parar-a-la-basura/202129/, Apr. 2021. Accessed: 20219-24.
dc.relation.referencesE. E. Agengy, \Reducing loss of resources from waste management is key to strengthening the circular economy in europe."https://www.eea.europa.eu/publications/reducing-loss-of-resources-from/reducingloss-of-resources-from, Oct. 2019. Accessed: 2021-9-21.
dc.relation.referencesTHE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, \On batteries and accumulators and waste batteries and accumulators and repealing directive 91/157/EEC."https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:02006L0066-20131230rid=1. Accessed: 2021-921.
dc.relation.referencesU. S. Epa and OAR, \Secondary lead smelting: National emissions standards for hazardous air pollutants (NESHAP)," Feb. 2016. Bibliograf__a 73
dc.relation.referencesU. S. Epa and OAR, \Secondary lead smelters: New source performance standards (NSPS)," Mar. 2016.
dc.relation.referencesP. S. Arthur and S. P. Hunt, \Isasmelt 25 a~nos de evoluci_on continua," in Simposio Internacional John Floyd sobre el desarrollo sustentable en el procesamiento de metales, vol. 3, Isasmelt.com, 2005.
dc.relation.referencesG. R. F. Alvear Flores, S. Nikolic, and P. J. Mackey, \Isasmelt for the recycling of e-scrap and copper in the u.s. case study example of a new compact recycling plant,"JOM, vol. 66, pp. 823{832, May 2014.
dc.relation.referencesC. Spitzer, Digital Avionics Handbook. CRC Press, Dec. 2000
dc.relation.referencesD. Linden, of Translational Neuroscience, T. Reddy, L. David, and R. Thomas, Handbook of Batteries. McGraw-Hill Professional, 2002.
dc.relation.referencesM. Li, J. Liu, and W. Han, \Recycling and management of waste lead-acid batteries: A mini-review," Waste Management & Research, vol. 34, no. 4, pp. 298{306, 2016.
dc.relation.referencesA. Tuncuk, V. Stazi, A. Akcil, E. Y. Yazici, and H. Deveci, \Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling," Miner. Eng., vol. 25, pp. 28{37,Jan. 2012.
dc.relation.referencesL. Xolo, P. Moleko-Boyce, H. Makelane, N. Faleni, and Z. R. Tshentu, \Status of recovery of strategic metals from spent secondary products," Minerals, vol. 11, p. 673, June 2021.
dc.relation.referencesA. S_anchez M., V. H. Guti_errez P., A. Cruz R., and R. G. S_anchez A., \Lead production from recycled paste of lead acid batteries with SiC-Na2CO3," Russ. j. non-ferr. met.,vol. 57, pp. 316{324, July 2016.
dc.relation.referencesM. Stevenson, \Chapter 15 - recovery and recycling of lead-acid batteries," in ValveRegulated Lead-Acid Batteries (D. Rand, J. Garche, P. Moseley, and C. Parker, eds.), pp. 491{512, Amsterdam: Elsevier, 2004.
dc.relation.referencesThe Editors of Encyclopedia Britannica, \Reverberatory furnace."https://www.britannica.com/technology/reverberatory-furnace, May 2007.
dc.relation.referencesA. Babich and D. Senk, \17 - recent developments in blast furnace iron-making technology,"in Iron Ore (L. Lu, ed.), pp. 505{547, Woodhead Publishing, Jan. 2015
dc.relation.referencesY. Zhang, P. V. Barr, and T. Ray Meadowcroft, \Continuous scrap melting in a short rotary furnace," Miner. Eng., vol. 21, pp. 178{189, Jan. 2008. 74 Bibliograf__a
dc.relation.referencesL. Hedlund, \Lead and copper recycling in the boliden kaldo," in EMC '91: Non-Ferrous Metallurgy|Present and Future (J. Vereecken, ed.), pp. 293{298, Dordrecht: Springer Netherlands, 1991
dc.relation.referencesJ. M. Floyd, \Converting an idea into a worldwide business commercializing smelting technology," Metall. Mater. Trans. B, vol. 36, pp. 557{575, Oct. 2005.
dc.relation.referencesP. S. Arthur and G. R. Alvear, \Escalonamiento gradual de isasmelt - la clave para el exito," Tech. Rep. 1, Xstrata Technology.
dc.relation.referencesP. Arthur, E. James, and Xstrata Technology, \Isasmelt a quiet revolution," in European Metallurgical Conference 2003, 2003.
dc.relation.referencesB. R. Davis, M. S. Moats, S. Wang, D. Gregurek, J. Kapusta, T. P. Battle, M. E. Schlesinger, G. R. Alvear Flores, E. Jak, and G. Goodall, eds., Extraction 2018: Proceedings of the _rst global conference on extractive metallurgy. The minerals, metals & materials series, Cham, Switzerland: Springer International Publishing, 1 ed., Aug. 2018.
dc.relation.referencesX. Q. Wang, K. Q. Xie, W. H. Ma, M. Y. Yang, P. Zeng, and Y. C. Cao, \Recovery of zinc and other valuable metals from zinc leach residue by top blowing fuming method,"Miner. Process. Extr. Metall., vol. 122, pp. 174{178, Sept. 2013.
dc.relation.referencesM. L. Bakker, S. Nikolic, and P. J. Mackey, \ISASMELT^a"¢ TSL { applications for nickel," Miner. Eng., vol. 24, pp. 610{619, June 2011.
dc.relation.referencesK. Ramus and P. Hawkins, \Lead/acid battery recycling and the new isasmelt process,"J. Power Sources, vol. 42, pp. 299{313, Jan. 1993.
dc.relation.referencesH. Zhao, T. Lu, P. Yin, L. Mu, and F. Liu, \An experimental and simulated study on gas-liquid ow and mixing behavior in an ISASMELT furnace," Metals, vol. 9, p. 565, May 2019.
dc.relation.referencesH.-L. Zhao, P. Yin, L.-F. Zhang, and S. Wang, \Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate," Int. J. Miner. Metall.Mater., vol. 23, pp. 1369{1376, Dec. 2016.
dc.relation.referencesH. Zhao, L. Zhang, P. Yin, and S. Wang, \Bubble motion and gas-liquid mixing in metallurgical reactor with a top submerged lance," Int. J. Chem. Reactor Eng., vol. 15, May 2017.
dc.relation.referencesB. V. Kolmachikhin, V. P. Zhukov, and V. A. Men'shchikov, \E_ect of parameters of the blowing regime on the hydrodynamics of smelting with a submersible lance,"Metallurgist, vol. 59, pp. 718{722, Nov. 2015.
dc.relation.referencesC. B. Solnordal and N. B. Gray, \Heat-transfer and pressure-drop considerations in the design of sirosmelt lances," 1996.
dc.relation.referencesC. B. Solnordal, F. R. A. Jorgensen, and R. N. Taylor, \Modeling the heat ow to an operating sirosmelt lance," 1998.
dc.relation.referencesN. Huda, J. Naser, G. Brooks, M. A. Reuter, and R. W. Matusewicz, \CFD modeling of swirl and nonswirl gas injections into liquid baths using top submerged lances," Metall. Mater. Trans. B, vol. 41, pp. 35{50, Feb. 2010.
dc.relation.referencesY. S. Morsi, W. Yang, B. R. Clayton, and N. B. Gray, \Experimental investigation of swirl and Non-Swirl gas injections into liquid baths using submerged vertical lances,"2000.
dc.relation.referencesN. Huda, J. Naser, G. Brooks, M. A. Reuter, and R. W. Matusewicz, Computational fluid dynamic modeling of zinc slag fuming process in top-submerged lance smelting furnace," Metall. Mater. Trans. B, vol. 43, pp. 39{55, Feb. 2012.
dc.relation.referencesY. Wang, L. Cao, B. Blanpain, M. Vanierschot, and M. Guo, Modelling of bubble dynamics in slag during its hot stage engineering. SINTEF Academic Press, 2017.
dc.relation.referencesD. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer, \The importance of viscous and interfacial forces in the hydrodynamics of the top-submerged-lance furnace,"Metall. Mater. Trans. B, vol. 50, pp. 2403{2420, Oct. 2019.
dc.relation.referencesX. Wang, S.-G. Zheng, and M.-Y. Zhu, \Numerical simulation on gas{liquid multiphase flow in hot metal ladle with top submerged lance," Ironmak. Steelmak., vol. 47, pp. 915-924, Sept. 2020.
dc.relation.referencesS. Gwynn-Jones, P. Conradie, S. Nikolic, B. Henning, M. Bakker, H. Joubert, and B. Francis, Using CFD analysis to optimise top submerged lance furnace geometries.SINTEF Academic Press, 2017.
dc.relation.referencesC. Nassaralla, \Pyrometallurgy," in Encyclopedia of Materials: Science and Technology (K. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssi~A re, eds.), pp. 7938{7941, Oxford: Elsevier, 2001.
dc.relation.referencesH. M. Veit and A. Moura Bernardes, eds.,Electronic waste; Recycling techniques: Recycling techniques. Topics in Mining, Metallurgy and Materials Engineering, Springer International Publishing, Jan. 2015.
dc.relation.referencesW. Caibin, \Spent lead-acid batteries crushing mechanical properties and impact crushing effect," Int. j. mater. sci. appl., vol. 7, no. 4, p. 153, 2018.
dc.relation.referencesW. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, and R. V. Kumar, \A critical review on secondary lead recycling technology and its prospect," Renewable Sustainable Energy Rev., vol. 61, pp. 108{122, Aug. 2016.
dc.relation.referencesM. Stevenson, \RECYCLING | Lead{Acid batteries: Overview," 2009. A. Buchholz and J. Rodseth, \Investigation of heat transfer conditions in a reverberatory melting furnace by numerical modeling," in Light Metals 2011, pp. 1179{1184, Hoboken, NJ, USA: John Wiley & Sons, Inc., May 2011.
dc.relation.referencesS. Ueda, S. Natsui, H. Nogami, J.-I. Yagi, and T. Ariyama, \Recent progress and future perspective on mathematical modeling of blast furnace," ISIJ Int., vol. 50, no. 7, pp. 914{923, 2010.
dc.relation.referencesZ. Wang, \Practice on exploration of Oxygen-Enriched converting industrial production by kaldo furnace," 2018.
dc.relation.referencesB. R. Baldock, K. R. Robilliard, J. M. Floyd, and B. W. Lightfoot, \Top submerged lancing technology (sirosmelt) for achieving di_cult separations in smelting complex materials," Miner. Process. Extr. Metall. Rev., vol. 8, pp. 245{261, Feb. 1992.
dc.relation.referencesK. Chong, S. Lai, and H. Thiam, \RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY," Journal of engineering science and technology, vol. 11, 2016.
dc.relation.referencesW. J. Koros and G. K. Fleming, \Membrane-based gas separation," J. Memb. Sci.,vol. 83, pp. 1{80, Aug. 1993.
dc.relation.referencesS. E. Sloop, K. Kotaich, T. W. Ellis, and R. Clarke, \RECYCLING | Lead{Acid batteries: Electrochemical," in Encyclopedia of Electrochemical Power Sources (J. Garche,ed.), pp. 179{187, Amsterdam: Elsevier, Jan. 2009.
dc.relation.referencesH. Vest, \Fundamentals of the recycling of Lead-Acid batteries," Gate Information Service, pp. 1{2, 2002.
dc.relation.referencesY. Li, Y. Chen, C. Tang, S. Yang, L. Klemettinen, M. R am a, X. Wan, and A. Jokilaakso, \A new pyrometallurgical recycling technique for lead battery paste without SO2 generation|a thermodynamic and experimental investigation," in The Minerals, Metals& Materials Series, The minerals, metals & materials series, pp. 1109{1120, Cham: Springer International Publishing, 2018.
dc.relation.referencesA. Molina, P. M. Walsh, C. R. Shaddix, J. W. Neufeld, and L. G. Blevins, \Implications of air in_ltration in oxygen/fuel _red glass furnaces," J. Energy Inst., vol. 79, pp. 84{91,June 2006.
dc.relation.referencesAspen Technology and Inc, ASPEN PLUS Guide to Physical Properties: Software Version; this Manual is Applicable to ASPEN PLUS Release 8. 1989.
dc.relation.referencesASM International. Handbook Committee, \Thermophysical properties," in ASM Handbook: Casting. Volume 15, vol. 15, pp. 468-481, 2008.
dc.relation.referencesJ. D. Cox, D. D. Wagman, and V. A. Medvedev, \CODATA key values for thermodynamics,"1984.
dc.relation.referencesC. Co, Flow of uids through valves, _ttings, and pipe. Crane Company, 1988. L. F. Moody, \An approximate formula for pipe friction factors," Trans. ASME J. Appl. Mech., vol. 69, no. 12, pp. 1005-1011, 1947.
dc.relation.referencesM. E. Schlesinger, M. J. King, K. C. Sole, and W. G. Davenport, \Bath matte smelting,"in Extractive Metallurgy of Copper, pp. 155{178, Elsevier, 2011
dc.relation.referencesW. G. Davenport, M. King, M. Schlesinger, and A. K. Biswas, \Ausmelt/Isasmelt matte smelting," in Extractive Metallurgy of Copper, pp. 119{129, Elsevier, 2002.
dc.relation.referencesP. Arthur and P. Partington, \Isasmelt - not just a ash in the pan," Xstrata technology, Nov. 2003.
dc.relation.referencesW. Jun, L. Yi, C. Baizhi, and S. J. Creedy, \DESIGN AND COMMISSIONING OF AN OUTOTEC ® AUSMELT COPPER SMELTER FOR DAYE NON-FERROUS METALS COMPANY LTD," Cobre 2013 | Copper 2013, Dec. 2013.
dc.relation.referencesY. Wang, M. Vanierschot, L. Cao, Z. Cheng, B. Blanpain, and M. Guo, \Hydrodynamics study of bubbly ow in a top-submerged lance vessel," Chem. Eng. Sci., vol. 192, pp. 1091-1104, Dec. 2018.
dc.relation.referencesH. Zhao, T. Lu, F. Liu, P. Yin, and S. Wang, \Computational uid dynamics study on a top-blown smelting process with lance failure in an isa furnace," JOM, vol. 71, pp. 1643-1649, May 2019.
dc.relation.referencesS. Chakchak, A. Hidouri, H. Zaidaoui, M. Chrigui, and T. Boushaki, \Experimental and numerical study of swirling di_usion ame provided by a coaxial burner: E_ect of inlet velocity ratio," Fluids, vol. 6, no. 4, 2021.
dc.relation.referencesUNE-EN ISO 10081-2: clasi_caci_on de los productos refractarios conformados densos. Parte 2, Productos b_asicos con un contenido en carbono residual inferior al 7 % : (ISO 10081-2:2003). AENOR, 2005.
dc.relation.referencesD. Gregurek, A. Ressler, V. Reiter, A. Franzkowiak, A. Spanring, and T. Prietl, \Refractory wear mechanisms in the nonferrous metal industry: Testing and modeling results,"JOM, vol. 65, pp. 1622-1630, Nov. 2013.
dc.relation.referencesD. Gregurek, K. Reinharter, C. Majcenovic, C. Wenzl, and A. Spanring, \Overview of wear phenomena in lead processing furnaces," J. Eur. Ceram. Soc., vol. 35, pp. 1683-1698, June 2015.
dc.relation.referencesS. Nikolic, B. Hogg, and P. Voigt, \Freeze lining refractories in non-ferrous TSL smelting systems," in TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, pp. 1149-1159, Springer International Publishing, 2019.
dc.relation.referencesMatWeb - the online materials information resource." https://bit.ly/3r49pec. Accessed: 2021-7-13.
dc.relation.referencesB. F. Magnussen and B. H. Hjertager, \On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion," Symp. Combust.,vol. 16, pp. 719-729, Jan. 1977.
dc.relation.referencesP. G. Sa_man and G. B. Whitham, \A model for inhomogeneous turbulent ow," Proc. R. Soc. Lond. A Math. Phys. Sci., vol. 317, pp. 417-433, June 1970.
dc.relation.referencesH. K. Versteeg and W. Malalasekera, An introduction to computational uid dynamics:the _nite volume method. Pearson education, 2007.
dc.relation.referencesD. C. Wilcox and Others, Turbulence modeling for CFD, vol. 2. DCW industries La Canada, CA, 1998.
dc.relation.referencesI. Ansys, \Fluent theory guide," ANSYS Inc, USA [(accessed on 27 March 2020)], 2013.
dc.relation.referencesY. Pan and M. A. Somerville, \Mathematical model prediction of heat losses from a pilot sirosmelt furnace," Proc. Inst. Mech. Eng. Pt. D: J. Automobile Eng., vol. 5, Sept. 2015.
dc.relation.referencesK. Tools, \Emissivity chart non-metal materials," tech. rep.
dc.relation.referencesW. Yang, Modelling of Top Submerged Swirl and Non-Swirl Gas Injections into Liquid Baths. PhD thesis, School of Engineering and Science Swinburne University of Technology, 2003.
dc.relation.referencesJ. R. Howell, M. Pinar Menguc, and R. Siegel, \Chapter absorption and emission in participating media," in Thermal Radiation Heat Transfer, pp. 440{492, CRC Press, 5th edition ed., Sept. 2010.
dc.relation.referencesM. Iguchi, T. Uemura, H. Yamaguchi, T. Kuranaga, and Z.-I. Morita, \Fluid ow phenomena in a cylindrical bath agited by top lance gas injection," ISIJ International, vol. 34, pp. 973-979, 1994.
dc.relation.referencesC. J. Tsai, T. S. Shih, and R. N. Sheu, \Characteristics of lead aerosols in different work environments," Am. Ind. Hyg. Assoc. J., vol. 58, pp. 650-656, Sept. 1997
dc.relation.referencesM. J. Duggan, M. J. Inskip, S. A. Rundle, and J. S. Moorcroft, \Lead in playground dust and on the hands of schoolchildren," Sci. Total Environ., vol. 44, pp. 65-79, July 1985.
dc.relation.referencesR. Flemmer and C. Banks, \On the drag coe_cient of a sphere," Powder Technology, vol. 48, no. 3, pp. 217-221, 1986.
dc.relation.referencesP. J. Jones and L. S. Leung, \A comparison of correlations for saltation velocity in horizontal pneumatic conveying," Ind. eng. chem. process des. dev., vol. 17, pp. 571-575, Oct. 1978.
dc.relation.referencesE. Rubens Pocov__ and G. del V. Villaor, Ventilaci_on industrial: descripci_on y dise~no de los sistemas de ventilaci_on industrial. 1999.
dc.relation.referencesC. Sun, H. Geng, L. Ji, Y. Wang, and G. Wang, \Rheological properties of pb, sb, bi, and sn melts," Journal of Applied Physics, vol. 102, no. 3, p. 034901, 2007.
dc.relation.referencesI. A. Chusov, V. G. Pronyayev, G. Y. Novikov, and N. A. Obysov, \Correlations for calculating the transport and thermodynamic properties of lead-bismuth eutectic," Nuclear Energy and Technology, vol. 6, no. 2, pp. 125-130, 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembReciclaje de baterías
dc.subject.lembBaterías eléctricas
dc.subject.proposalRecycling
dc.subject.proposalCombustion
dc.subject.proposalFluid dynamics
dc.subject.proposalSimulation
dc.subject.proposalCFD
dc.subject.proposalPlomo
dc.subject.proposalCombustión
dc.subject.proposalSwirl
dc.subject.proposalDinámica de fluidos
dc.title.translatedComputational fluid dynamics simulation of a vertical furnace with top submerged lance for the recovery of lead from spent lead-acid batteries
dc.title.translatedSimulación de dinámica de fluidos computacional de un horno vertical de lanza superior sumergida para la recuperación de plomo de los residuos de baterías de plomo-ácido
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito