Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorBotero Botero, Sergio
dc.contributor.authorMorales Sanchez, Karidys Liseth
dc.date.accessioned2022-03-16T14:04:00Z
dc.date.available2022-03-16T14:04:00Z
dc.date.issued2022-03-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81244
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractEn este trabajo se presenta una propuesta de sistema híbrido de potencia (HPS) con tecnologías solar fotovoltaica y gasificación de biomasa con posibilidad de ser implementado en el departamento de La Guajira. El HPS incluye un sistema de gasificación de 30 kWt y 10 kWe evaluado para funcionar con cascarilla de arroz. Se utilizó un modelo de predicción de la composición del syngas y se obtuvo un poder calorífico inferior de 3,77 MJ/Nm3 utilizado para determinar las dimensiones constructivas del gasificador y seleccionar el motor acoplable. Por otro lado, se dimensionó un sistema fotovoltaico de 12,5 kW con inversor de tipo híbrido para gestionar la carga DC de los paneles y la carga AC del motor. El prototipo diseñado se evaluó desde los aspectos técnicos, financieros y regulatorios. La evaluación regulatoria indica que la normativa colombiana ha establecido la promoción de la generación con HPS con el objetivo de sustituir la alta presencia de generación con diésel existente en las Zonas No Interconectadas y aunque la conexión al Sistema Interconectado Nacional no es mencionada en la normativa, se encuentra permitida y en ambos casos se puede acceder a los incentivos tributarios establecidos por la ley. La evaluación técnica y financiera se realizó en el software HOMER Pro y se seleccionó como mejor alternativa la generación a partir de gasificación + fotovoltaica + baterías con un exceso de electricidad y demanda no atendida mínima de 14,5% y 0,03% respectivamente; finalmente se obtiene un costo nivelado de la energía 0,34 USD/kWh. (Texto tomado de la fuente)
dc.description.abstractThis paper presents a proposal for a hybrid power system (HPS) with photovoltaic solar technologies and biomass gasification with the possibility of being implemented in the department of La Guajira. The HPS includes a 30 kWt and 10 kWe gasification system evaluated to work with rice husks. A prediction model of the synthesis gas composition was obtained, and a lower calorific value of 3,77 MJ/Nm3 was obtained, used to determine the gasifier's construction dimensions, and select the attachable engine. On the other hand, a 12,5 kW photovoltaic system with a hybrid inverter was dimensioned to manage the panels’ DC load and the motor’s AC load. The designed prototype was evaluated from the technical, financial, and regulatory aspects. The regulatory evaluation indicates that the Colombian regulations have established the promotion of HPS generation to replace the high presence of existing diesel generation in the Non-Interconnected Zones and although the connection to the National Interconnected System is not mentioned in the regulations, it is allowed and in both cases the tax incentives established by law can be accessed. The technical and financial evaluation was carried out using the HOMER Pro software and generation from gasification + photovoltaic + batteries with excess electricity and minimum unattended demand of 14,5% and 0,03%, respectively, was selected as the best alternative; Finally, a levelized cost of energy of 0,34 USD/kWh is obtained.
dc.format.extentxvi, 143 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.titleGeneración distribuida basada en sistemas híbridos caso de estudio: La Guajira, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativas
dc.coverage.countryLa Guajira - Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticos
dc.description.funderColombia Científica financia la alianza interinstitucional Energética 2030
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de la Computación y la Decisión
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesIEA, “Global Energy Review 2021,” 2021. [Online]. Available: https://www.iea.org/reports/global-energy-review-2021
dc.relation.referencesIEA, “World Energy Outlook 2019,” 2019. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019
dc.relation.referencesIRENA, IEA, UNSD, The World Bank, and WHO, “Tracking SDG7: the energy progress report,” 2019. [Online]. Available: https://trackingsdg7.esmap.org/downloads
dc.relation.referencesA. Planas, J. D. Quintero, and L. Montealegra, “Guía ambiental y social para proyectos de generación fotovoltaicos e híbridos menores o iguales a 1MW,” 2021. [Online]. Available: http://dx.doi.org/10.18235/0003114
dc.relation.referencesH. O. Benavides Ballesteros, O. Simbaqueva Fonseca, and H. J. Zapata Lesmes, “Atlas de radiación solar, ultravioleta y ozono de Colombia,” 2017
dc.relation.referencesJ. F. Ruíz Murcia, J. Serna Cuenca, and H. J. Zapata Lesmes, “Atlas de viento de Colombia,” 2017
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, “Atlas del potencial energético de la Biomasa residual en Colombia,” 2011
dc.relation.referencesIEA, “Status of power system transformation,” 2019. [Online]. Available: https://www.iea.org/reports/status-of-power-system-transformation-2019
dc.relation.referencesA. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques,” Applied Energy, vol. 210, pp. 44–59, 2018.
dc.relation.referencesT. Ackermann, G. Andersson, and L. Söder, “Distributed generation: a definition,” Electric power systems research, vol. 57, no. 3, pp. 195–204, 2001.
dc.relation.referencesG. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy policy, vol. 33, no. 6, pp. 787–798, 2005.
dc.relation.referencesP. Fraser, “Distributed generation in liberalised electricity markets,” in Second international symposium on distributed generation: power system and market aspects (Stockholm, 2-4 October 2002), 2002, pp. 1G – 12.
dc.relation.referencesIEA, “Renewables 2019,” 2019. [Online]. Available: https://www.iea.org/reports/renewables-2019
dc.relation.referencesCESA, “Distributed generation in state Renewable Portfolio Standards,” 2017.
dc.relation.referencesA. L’Abbate, G. Fulli, F. Starr, and S. D. Peteves, “Distributed Power Generation in Europe: technical issues for further integration,” JRC European Commission Scientific and Technical Report. EUR, vol. 23234, 2007.
dc.relation.referencesY. Guiyong, “The status of distributed generation in China,” 2017. [Online]. Available: https://www.unescap.org/sites/default/files/Session 2-3. Guiyong Yu_CGC.pdf
dc.relation.referencesO. Zhang, S. Yu, and P. Liu, “Development mode for renewable energy power in China: Electricity pool and distributed generation units,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 657–668, 2015.
dc.relation.referencesEIA, “Electricity generation, capacity, and sales in the United States,” 2020. [Online]. Available: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php
dc.relation.referencesO. Zinaman, T. Bowen, and A. Y. Aznar, “An Overview of Behind-the-meter Solar-plus-storage Regulatory Design: Approaches and Case Studies to Inform International Applications,” 2020.
dc.relation.referencesO. Zinaman, A. Aznar, C. Linvill, N. Darghouth, T. Dubbeling, and E. Bianco, “Grid-connected distributed generation: compensation mechanism basics,” National Renewable Energy Laboratory: Golden, CO, USA, 2017.
dc.relation.referencesJ. Lowitzsch, C. E. Hoicka, and F. J. van Tulder, “Renewable energy communities under the 2019 European Clean Energy Package–Governance model for the energy clusters of the future?,” Renewable and Sustainable Energy Reviews, vol. 122, p. 109489, 2020.
dc.relation.referencesK. Frank et al., “Distributed electricity production and self-consumption in the Nordics,” 2019.
dc.relation.referencesFortum, “Fortum Solar Charging, funciona con su propia energía fotovoltaica,” 2021. https://www.fortum.fi/aurinkolataus
dc.relation.referencesA. N. Mejdalani, J. E. Chueca, D. D. L. Soto, Y. Ji, and M. Hallack, “Implementación de políticas de medición neta en América Latina y el Caribe: diseño, incentivos y mejores prácticas,” 2019.
dc.relation.referencesARCONEL, “Proyecto de regulación: marco normativo para la participación de la generación distribuida,” 2020.
dc.relation.referencesComisión Reguladora de Energía de México, “Solicitudes de interconexión de Centrales Eléctricas con capacidad menor a 0.5 MW, Contratos Interconexión de Pequeña y Mediana Escala/Generación Distribuida – Estadísticas al primer semestre de 2020,” 2020. https://www.gob.mx/cre/documentos/pequena-y-mediana-escala
dc.relation.referencesUPME, “Guía para la Incorporación de la Dimensión Minero Energética en los Planes de Ordenamiento Departamental,” 2020. [Online]. Available: https://www.upme.gov.co/CursoCajaHerramientas/departamental-modulo1-1.html
dc.relation.referencesUPME, “Capacidad instalada de autogeneración y cogeneración en el sector de industria, petróleo, comercio y público del país,” 2014.
dc.relation.referencesCREG, “Marco regulatorio para la prestación del servicio de energía eléctrica en las zonas no interconectadas,” 2007.
dc.relation.referencesUPME, “Estadísticas Incentivos FNCE,” 2020.
dc.relation.referencesUPME, “Solicitudes de autogeneración y generación distribuida,” 2020.
dc.relation.referencesCREG, “Revisión de las reglas de autogeneración a pequeña escala y generación distribuida,” 2021.
dc.relation.referencesN. Bizon, H. Shayeghi, and N. M. Tabatabaei, Analysis, control, and optimal operations in hybrid power systems: Advanced techniques and applications for linear and nonlinear systems. Springer, 2013.
dc.relation.referencesS. M. Lawan and W. A. W. Z. Abidin, “A Review of hybrid renewable energy systems based on wind and solar energy: modeling, design and optimization,” Wind Solar Hybrid Renewable Energy System, 2020.
dc.relation.referencesS. Ganguly, C. K. Shiva, and V. Mukherjee, “Frequency stabilization of isolated and grid connected hybrid power system models,” Journal of Energy Storage, vol. 19, pp. 145–159, 2018.
dc.relation.referencesM. M. Elkadragy et al., “Off-grid and decentralized hybrid renewable electricity systems data analysis platform (OSDAP): A building block of a comprehensive techno-economic approach based on contrastive case studies in Sub-Saharan Africa and Canada,” Journal of Energy Storage, vol. 34, p. 101965, 2021.
dc.relation.referencesP. P. Kumar and R. P. Saini, “Optimization of an off-grid integrated hybrid renewable energy system with different battery technologies for rural electrification in India,” Journal of Energy Storage, vol. 32, p. 101912, 2020.
dc.relation.referencesX. Fei, R. Xuejun, and N. Razmjooy, “Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell: a case study in Iran,” Energy sources, part A: Recovery, utilization, and environmental effects, pp. 1–21, 2019.
dc.relation.referencesM. del M. Martínez Díaz, “Stand-alone hybrid renewable energy systems (HRES),” 2017.
dc.relation.referencesH. Morais, P. Kádár, P. Faria, Z. A. Vale, and H. M. Khodr, “Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming,” Renewable Energy, vol. 35, no. 1, pp. 151–156, 2010.
dc.relation.referencesH. Farzaneh, Energy systems modeling: Principles and applications. Springer, 2019.
dc.relation.referencesH. Yang, W. Zhou, L. Lu, and Z. Fang, “Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm,” Solar energy, vol. 82, no. 4, pp. 354–367, 2008.
dc.relation.referencesB. G. Subhadra, “Macro-level integrated renewable energy production schemes for sustainable development,” Energy Policy, vol. 39, no. 4, pp. 2193–2196, 2011.
dc.relation.referencesV. T. Achirgbenda, A. Kuhe, and K. Okoli, “Techno-economic feasibility assessment of a solar-biomass-diesel energy system for a remote rural health facility in Nigeria,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18, 2020.
dc.relation.referencesM. Hossain, K. Ziaul Islam, A. Jahid, K. M. Rahman, S. Ahmed, and M. H. Alsharif, “Renewable energy-aware sustainable cellular networks with load balancing and energy-sharing technique,” Sustainability, vol. 12, no. 22, p. 9340, 2020.
dc.relation.referencesM. S. Hossain, A. Jahid, K. Z. Islam, and M. F. Rahman, “Solar PV and biomass resources-based sustainable energy supply for off-grid cellular base stations,” IEEE Access, vol. 8, pp. 53817–53840, 2020.
dc.relation.referencesA. Cano, P. Arévalo, and F. Jurado, “Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study,” Energy, vol. 202, p. 117727, 2020.
dc.relation.referencesM. K. Deshmukh and S. S. Deshmukh, “Modeling of hybrid renewable energy systems,” Renewable and sustainable energy reviews, vol. 12, no. 1, pp. 235–249, 2008.
dc.relation.referencesJ. L. Bernal-Agustín and R. Dufo-Lopez, “Simulation and optimization of stand-alone hybrid renewable energy systems,” Renewable and sustainable energy reviews, vol. 13, no. 8, pp. 2111–2118, 2009.
dc.relation.referencesJ. Paska, P. Biczel, and M. Kłos, “Hybrid power systems–An effective way of utilising primary energy sources,” Renewable energy, vol. 34, no. 11, pp. 2414–2421, 2009.
dc.relation.referencesB. G. Subhadra, “Macro-level integrated renewable energy production schemes for sustainable development,” Energy Policy, vol. 39, no. 4, pp. 2193–2196, 2011.
dc.relation.referencesC. L. Chambon, T. Karia, P. Sandwell, and J. P. Hallett, “Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India,” Renewable Energy, vol. 154, pp. 432–444, 2020.
dc.relation.referencesD. Alfonso-Solar, C. Vargas-Salgado, C. Sánchez-Díaz, and E. Hurtado-Pérez, “Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings,” Sustainability, vol. 12, no. 21, p. 9300, 2020.
dc.relation.referencesI. M. Eleftheriadis and E. G. Anagnostopoulou, “Identifying barriers in the diffusion of renewable energy sources,” Energy Policy, vol. 80, pp. 153–164, 2015.
dc.relation.referencesN. Alshammari and J. Asumadu, “Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms,” Sustainable Cities and Society, vol. 60, p. 102255, Sep. 2020, doi: 10.1016/j.scs.2020.102255.
dc.relation.referencesJ. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists. CRC press, 2005.
dc.relation.referencesX. L. Yin, C. Z. Wu, S. P. Zheng, and Y. Chen, “Design and operation of a CFB gasification and power generation system for rice husk,” Biomass and Bioenergy, vol. 23, no. 3, pp. 181–187, 2002.
dc.relation.referencesS. De, A. K. Agarwal, V. S. Moholkar, and B. Thallada, “Coal and Biomass Gasification,” Recent Advances and Future Challenges; Springer Nature Singapore Pte Ltd.: Singapore, p. 521, 2018.
dc.relation.referencesY. Yun, Gasification for practical applications. BoD–Books on Demand, 2012.
dc.relation.referencesR. Luque and J. Clark, Handbook of biofuels production: Processes and technologies. Elsevier, 2010.
dc.relation.referencesP. Basu, Biomass gasification, pyrolysis, and torrefaction: practical design and theory. Academic press, 2018.
dc.relation.referencesP. Sharma, B. Gupta, M. Pandey, K. S. Bisen, and P. Baredar, “Downdraft biomass gasification: A review on concepts, designs analysis, modelling and recent advances,” Materials Today: Proceedings, 2020.
dc.relation.referencesA. A. P. Susastriawan, H. Saptoadi, and others, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 989–1003, 2017.
dc.relation.referencesR. Luque and J. Clark, Handbook of biofuels production: Processes and technologies. Elsevier, 2010.
dc.relation.referencesC. A. D. González and L. P. Sandoval, “Sustainability aspects of biomass gasification systems for small power generation,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110180, 2020.
dc.relation.referencesR. Luque and J. Speight, Gasification for synthetic fuel production: fundamentals, processes, and applications. Elsevier, 2014.
dc.relation.referencesH. Häberlin, Photovoltaics: system design and practice. John Wiley & Sons, 2012.
dc.relation.referencesO. Perpiñan Lamigueiro, A. Colmenar Santos, and M. A. Catro Gil, Diseño de sistemas fotovoltaicos. Promotora General de Estudios S.A, 2012.
dc.relation.referencesM. H. Alsharif and J. Kim, “Hybrid off-grid SPV/WTG power system for remote cellular base stations towards green and sustainable cellular networks in South Korea,” Energies, vol. 10, no. 1, p. 9, 2017.
dc.relation.referencesD. Watson, Y. Binnie, K. Duncan, and J.-F. Dorville, “Photurgen: The open source software for the analysis and design of hybrid solar wind energy systems in the Caribbean region: A brief introduction to its development policy,” Energy Reports, vol. 3, pp. 61–69, 2017.
dc.relation.referencesB. Ugwoke, A. Adeleke, S. P. Corgnati, J. M. Pearce, and P. Leone, “Decentralized renewable hybrid mini-grids for rural communities: Culmination of the IREP framework and scale up to urban communities,” Sustainability, vol. 12, no. 18, p. 7411, 2020.
dc.relation.referencesV. T. Achirgbenda, A. Kuhe, and K. Okoli, “Techno-economic feasibility assessment of a solar-biomass-diesel energy system for a remote rural health facility in Nigeria,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–18, 2020.
dc.relation.referencesM. S. Hossain, A. Jahid, K. Z. Islam, and M. F. Rahman, “Solar PV and biomass resources-based sustainable energy supply for Off-Grid cellular base stations,” IEEE Access, vol. 8, pp. 53817–53840, 2020.
dc.relation.referencesC. L. Chambon, T. Karia, P. Sandwell, and J. P. Hallett, “Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India,” Renewable Energy, vol. 154, pp. 432–444, 2020.
dc.relation.referencesD. Alfonso-Solar, C. Vargas-Salgado, C. Sánchez-Díaz, and E. Hurtado-Pérez, “Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings,” Sustainability, vol. 12, no. 21, p. 9300, 2020.
dc.relation.referencesA. Cano, P. Arévalo, and F. Jurado, “Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study,” Energy, vol. 202, p. 117727, 2020.
dc.relation.referencesS. Bhattacharjee and A. Dey, “Techno-economic performance evaluation of grid integrated PV-biomass hybrid power generation for rice mill,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 6–16, 2014.
dc.relation.referencesP. Arévalo, A. Cano, and F. Jurado, “Comparative study of two new energy control systems based on PEMFC for a hybrid tramway in Ecuador,” International Journal of Hydrogen Energy, vol. 45, no. 46, pp. 25357–25377, 2020.
dc.relation.referencesN. Chowdhury, C. Akram Hossain, M. Longo, and W. Ya\"\ici, “Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh,” Sustainability, vol. 12, no. 4, p. 1568, 2020.
dc.relation.referencesP. P Kumar and R. P. Saini, “Optimization of an off-grid integrated hybrid renewable energy system with various energy storage technologies using different dispatch strategies,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–30, 2020.
dc.relation.referencesP. Malik, M. Awasthi, and S. Sinha, “Study of grid integrated biomass-based hybrid renewable energy systems for Himalayan terrain,” International Journal of Sustainable Energy Planning and Management, vol. 28, pp. 71–88, 2020.
dc.relation.referencesV. Suresh, M. M., and R. Kiranmayi, “Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas,” Energy Reports, vol. 6, pp. 594–604, 2020, doi: https://doi.org/10.1016/j.egyr.2020.01.013.
dc.relation.referencesS. Ghosh and V. Karar, “Assimilation of optimal sized hybrid photovoltaic-biomass system by dragonfly algorithm with grid,” Energies, vol. 11, no. 7, p. 1892, 2018.
dc.relation.referencesE. Aykut and Ü. K. Terzi, “Techno-economic and environmental analysis of grid connected hybrid wind/photovoltaic/biomass system for Marmara University Goztepe campus,” International Journal of Green Energy, vol. 17, no. 15, pp. 1036–1043, 2020.
dc.relation.referencesA. N. Kozlov, N. v Tomin, D. N. Sidorov, E. E. S. Lora, and V. G. Kurbatsky, “Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems using Reinforcement Learning Techniques,” Energies, vol. 13, no. 10, p. 2632, 2020.
dc.relation.referencesN. Alshammari and J. Asumadu, “Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms,” Sustainable Cities and Society, vol. 60, p. 102255, 2020.
dc.relation.referencesJ. L. Murgas Bornachelly, B. Mauricio, A. Olivella Fernandez, and M. M. L. Javier, “Implementación de una central micro-central hidroeléctrica en el trapiche panelero de la vereda Alto San Jorge Municipio de Dibulla.” 2015.
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización como alternativa para el fortalecimiento de la cadena productiva del café en el municipio de Urumita - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2015.
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización para el mejoramiento del servicio en rancherías etnoturísticas del municipio de Riohacha - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2015.
dc.relation.referencesJ. L. Murgas Bornachelly, M. Brito, and J. Ramirez Ortega, “Energización híbrida para el mejoramiento del servicio en las posadas turísticas de punta gallinas - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2016.
dc.relation.referencesJ. L. Murgas Bornachelly, “Implementación de energías alternativas en los ambientes de aprendizajes de instituciones educativas rurales del departamento del Cesar - Plan de Energización Rural Sostenible para el Departamento del Cesar - PERS Cesar,” 2018.
dc.relation.referencesG. F. García Acevedo, D. M. Bonet, and J. L. Murgas, “Implementación de un sistema de energía solar para la disminución de los costos de la energía eléctrica de las actividades de riego en parcelas productivas en el corregimiento de Guacochito - Valledupar.” 2018.
dc.relation.referencesJ. Murgas Bornachelly, “Energización para el fortalecimiento de los trapiches paneleros en zona rural del municipio de González.” 2018.
dc.relation.referencesJ. L. Murgas Bornachelly, “Instalación de sistemas fotovoltaicos para el mejoramiento de las tareas de beneficio de café en zona rural del municipio del Copey.” 2019.
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía alternativa para incrementar el potencial competitivo del sector pesquero en el municipio de Nuquí - Plan de Energización Rural Sostenible para el Departamento del Chocó - PERS Chocó,” 2015.
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía eléctrica a base de fuentes renovables para el fortalecimiento de la prestación de servicios de salud pública en el municipio de Media Baudó, del departamento del Chocó.” 2015.
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de sistemas de energía solar fotovoltaica para la energización de instituciones de educativas rurales de la subregión geográfica del Baudó, departamento del Chocó.” 2015.
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía solar fotovoltaico para el mantenimiento de la cadena de frío de la pesca en un centro de acopio comunitario del municipio de Bajo Baudó en el departamento del Chocó.” 2015.
dc.relation.referencesJ. Asprilla Perea, P. Pineda Jaime, J. E. Luna Rengifo, and L. Lemos, “Diseño de un sistema de energía eléctrica con fuentes renovables para el fortalecimiento de la pesca artesanal del municipio de Juradó, departamento del Chocó - Plan de Energización Rural Sostenible para el Departamento del Chocó - PERS Chocó,” 2015.
dc.relation.referencesIPSE, “Informe mensual de la prestación del servicio de energía eléctrica en las localidades sin sistema de telemetría en las Zonas No Interconectadas- Abril de 2021,” 2021.
dc.relation.referencesSSPD, “Evaluación integral de prestadores de energía para el Amazonas S.A. E.S.P.” 2018.
dc.relation.referencesSSPD, “Diagnostico de la prestación del servicio de energía eléctrica en Zonas No Interconectadas ZNI.” 2018.
dc.relation.referencesSSPD, “Diagnostico de la prestación del servicio de energía eléctrica en Zonas No Interconectadas ZNI - Superintendencia delegada para la energía y gas combustible,” 2019.
dc.relation.referencesIPSE, “Informes mensuales de telemetría 2013 a 2021.” 2021.
dc.relation.referencesF. Chejne, F. Frechoso, V. Jhon Fredy, D. Diez, and A. Urueña, Generación de energía eléctrica mediante sistema de híbrido solar/gasificación de residuos agroindustriales HIBRELEC. Editorial CARTIF, 2017.
dc.relation.referencesFEDEARR0Z, “IV Censo Nacional Arrocero 2016,” Bogotá D.C., 2017. [Online]. Available: http://bit.ly/2SER3O7
dc.relation.referencesIPSE, “Informes mensuales de telemetría 2018 a 2021,” 2021. [Online]. Available: https://ipse.gov.co/cnm/informe-mensuales-telemetria/
dc.relation.referencesR. Flórez Faura, M. Á. Meneses Ariza, and O. E. Siabatto Pérez, Estudio semidetallado de suelos y zonificación de tierras en la media y baja Guajira. 2012.
dc.relation.referencesGobernación de La Guajira, “Plan de desarrollo 2016-2019 - Oportunidad para todos y propósito del país,” Riohacha, La Guajira, 2016. [Online]. Available: https://www.laguajira.gov.co/web/attachments/article/4221/Plan de Desarrollo 2017-2019.pdf
dc.relation.referencesGobernación de La Guajira, “Plan departamental de desarrollo de La Guajira, unidos por el cambio 2020-2023,” 2020.
dc.relation.referencesIGAC, “División política administrativa de La Guajira,” 2011.
dc.relation.referencesDANE, “Censo Nacional de Población y Vivienda - CNPV 2018 Colombia,” 2019. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
dc.relation.referencesDANE, “Resultados censo nacional de población y vivienda 2018 - La Guajira,” Bogotá D.C., 2019. [Online]. Available: http://bit.ly/2X5fbLk
dc.relation.referencesIPSE, “Oferta de recursos renovables como fuentes para generar energía en el departamento de La Guajira,” 2016.
dc.relation.referencesE. Romero Sierra and C. Benedetti Henao, “Inversión en La Guajira: Oportunidades y Restricciones,” 2016.
dc.relation.referencesDANE, “Resultados pobreza multidimensional por departamentos 2018,” Bogotá D.C., 2019. [Online]. Available: http://bit.ly/2Q92I8c
dc.relation.referencesDANE, “La información del DANE en la toma de decisiones regionales, Riohacha-La Guajira,” 2020. [Online]. Available: https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/201215-InfoDane-La-Guajira-Riohacha.pdf
dc.relation.referencesDANE, “Población indígena de Colombia - Resultados del censo nacional de población y vivienda 2018,” Bogotá D.C., 2019.
dc.relation.referencesDANE, “Pueblo Wayúu - Resultados del Censo Nacional de Población y Vivienda - CNPV 2018 Colombia,” 2019. [Online]. Available: https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190816-CNPV-presentacion-Resultados-Guajira-Pueblo-Wayuu.pdf
dc.relation.referencesR. Rodríguez, D. Arroyo Alvares, E. Mejía Suarez, L. Mendoza, and T. González Peralta, “Dotación de kits para áreas dispersas y vulnerables en el departamento de La Guajira - Plan de Energización Rural Sostenible para el Departamento de La Guajira - PERS,” 2016.
dc.relation.referencesC. Posso and J. Barney, El viento del este llega con revoluciones, Multinacionales y transición con energía eólica en territorio Wayúu. 2019.
dc.relation.referencesOCA, “El Cercado, ¿nuevo elefante blanco en La Guajira? , Observatorio de Conflictos Ambientales (OCA) del Instituto de Estudios Ambientales (IDEA).” 2019.
dc.relation.referencesUPME, “Informe de Registro de Proyectos de Generación de Electricidad 2020– Inscripción según los requisitos de las Resoluciones UPME No. 0520, No.0638 de 2007 y No.0143 de 2016,” 2020.
dc.relation.referencesCámara de Comercio de La Guajira, “Oportunidades para los productores agropecuarios de La Guajira,” 2020. Accessed: Jun. 27, 2021. [Online]. Available: https://www.camaraguajira.org/publicaciones/informes/nuestro-entorno-empresarial-14.pdf
dc.relation.referencesCORPOGUAJIRA, “Altlas Ambiental del Departamento de La Guajira,” https://issuu.com/corpoguajira/docs/atlas_ambiental/124, 2011.
dc.relation.referencesAgronet, “Evaluaciones Agropecuarias - EVA y Anuario Estadístico del Sector Agropecuario,” https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=59, 2020.
dc.relation.referencesJ. Rivera Rincones, J. Murgas Bornachelly, T. González Peralta, and E. Mejía Suarez, “Implementación de la Unidad de Investigación en Energías Renovables para la Productividad y la Equidad Social del Departamento de La Guajira.” 2016.
dc.relation.referencesL. Ruidia Adianis AND González, “Inventario del recurso biomásico agrícola con capacidad energética de la región caribe de Colombia,” 2019.
dc.relation.referencesI. Osei, F. Kemausuor, M. K. Commeh, J. O. Akowuah, and L. Owusu-Takyi, “Design, fabrication and evaluation of non-continuous inverted downdraft gasifier stove utilizing rice husk as feedstock,” Scientific African, vol. 8, p. e00414, 2020.
dc.relation.referencesFEDEARROZ, “IV Censo nacional arrocerro 2016.” 2017.
dc.relation.referencesA. T. Belonio, “Rice husk gas stove handbook,” Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City, Philippines, pp. 1–155, 2005.
dc.relation.referencesA. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, “Prediction of heating values of biomass fuel from elemental composition,” Analytica chimica acta, vol. 544, no. 1–2, pp. 191–198, 2005.
dc.relation.referencesF. Centeno, K. Mahkamov, E. E. Silva Lora, and R. v. Andrade, “Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system,” Renewable Energy, vol. 37, no. 1, pp. 97–108, 2012, doi: 10.1016/j.renene.2011.06.008.
dc.relation.referencesJ. K. Ratnadhariya and S. A. Channiwala, “Three zone equilibrium and kinetic free modeling of biomass gasifier–a novel approach,” Renewable energy, vol. 34, no. 4, pp. 1050–1058, 2009.
dc.relation.referencesJ. B. Shohan, Present-day Knowledge of the Chemical Constitution of Coal, vol. 6212. US Department of Commerce, Bureau of Mines, 1929.
dc.relation.referencesR. A. Mott and C. E. Spooner, “The calorific value of carbon in coal: the Dulong relationship,” Fuel, vol. 19, no. 226–231, pp. 242–251, 1940.
dc.relation.referencesW. A. Selvig, “Calorific value of coal.,” Chemistry of coal utilization, pp. 132–144, 1945.
dc.relation.referencesS. A. Channiwala, “On biomass gasification process and technology development some analytical and experimental investigations,” Bombay:” Indian Institute of Technology, 1992.
dc.relation.referencesS. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels,” Fuel, vol. 81, no. 8, pp. 1051–1063, 2002.
dc.relation.referencesC. Storm, H. Rudiger, H. Spliethoff, and K. R. G. Hein, “Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures,” 1999.
dc.relation.referencesF. J. Mastral, E. Esperanza, C. Berrueco, S. Serrano, and J. Ceamanos, “Co-pyrolysis and Cogasification of polyethylene and sawdust mixtures in a fluidized bed reactor; temperature influence,” 2001.
dc.relation.referencesR. Berends and G. Brem, “Two-stage gasification of biomass for the production of syngas,” in Proceedings of the 12th European conference and technical exhibition on biomass for energy. Amsterdam, Netherlands: Industry and Climate Protection, 2002, pp. 622–624.
dc.relation.referencesL. van de Steene, S. Salvador, and A. Napoli, “Rice husk, straw and bark behaviour during pyrolysis, combustion, and gasification: fundamental study,” 2002.
dc.relation.referencesJ. Parikh, G. Ghosal, and S. A. Channiwala, “A critical review on biomass pyrolysis,” 2002.
dc.relation.referencesM. J. Baxter, “Downdraft gasification of biomass,” 1994.
dc.relation.referencesM. W. Thring, The science of flames and furnaces. Wiley, 1962.
dc.relation.referencesN. R. Amundson and L. E. Arri, “Char gasification in a countercurrent reactor,” AIChE Journal, vol. 24, no. 1, pp. 87–101, 1978.
dc.relation.referencesB. Srinivas and N. R. Amundson, “A single-particle char gasification model,” AIChE Journal, vol. 26, no. 3, pp. 487–496, 1980.
dc.relation.referencesB. Lewis and G. von Elbe, Combustion, flames, and explosions of gases. Elsevier, 2012.
dc.relation.referencesW. Gumz, Gas producers and blast furnaces: theory and methods of calculation. Wiley, 1950.
dc.relation.referencesP. M. Bhagat, “Wood charcoal combustion and the effects of water application,” Combustion and Flame, vol. 37, pp. 275–291, 1980.
dc.relation.referencesD. D. Evans and H. W. Emmons, “Combustion of wood charcoal,” Fire Safety Journal, vol. 1, no. 1, pp. 57–66, 1977.
dc.relation.referencesD. L. Giltrap, “Investigating downdraft gasification of biomass: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics,” 2002.
dc.relation.referencesD. L. Giltrap, R. McKibbin, and G. R. G. Barnes, “A steady state model of gas-char reactions in a downdraft biomass gasifier,” Solar Energy, vol. 74, no. 1, pp. 85–91, 2003.
dc.relation.referencesB. v Babu and P. N. Sheth, “Modeling and simulation of reduction zone of downdraft biomass gasifier: effect of char reactivity factor,” Energy conversion and management, vol. 47, no. 15–16, pp. 2602–2611, 2006.
dc.relation.referencesY. Wang and C. M. Kinoshita, “Kinetic model of biomass gasification,” Solar energy, vol. 51, no. 1, pp. 19–25, 1993.
dc.relation.referencesR. Macías, Manual práctico para el diseño de un gasificador de lecho fijo a pequeña escala. Universidad Nacional de Colombia, 2021.
dc.relation.referencesP. E. Akhator, A. I. Obanor, and E. G. Sadjere, “Design and development of a small-scale biomass downdraft gasifier,” Nigerian Journal of Technology, vol. 38, no. 4, pp. 922–930, 2019.
dc.relation.referencesJ. Venselaar, “Design Rules for Down Draft Wood Gasifiers: a Short Review,” Joint Technical Assistance Project, JTA-9A-Research Development1 at the Institut Teknologi Bandung, Indonesia, pp. 1–24, 1982.
dc.relation.referencesW. P. M. van Swaaij, S. R. A. Kersten, and W. Palz, Biomass power for the world. CRC Press, 2015.
dc.relation.referencesT. B. Reed and A. Das, Handbook of biomass downdraft gasifier engine systems. Biomass Energy Foundation, 1988.
dc.relation.referencesJ. I. Silva Ortega, E. Ojeda, and J. E. Candelo, “Perspectivas de comunidades ind\’\igenas de la Guajira frente al desarrollo sostenible y el abastecimiento energético,” 2017.
dc.relation.referencesUSPCAS-E, “Biomass gasification system, training manual,” US Pakistan Centre of Advance Studies in Energy & National University of Sciences and Tecnology, 2016.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRecursos energéticos renovables
dc.subject.lembRenewable energy sources
dc.subject.lembEnergy supply - La Guajira (Colombia)
dc.subject.lembAbastecimiento de energía - La Guajira (Colombia)
dc.subject.proposalSistemas híbridos de potencia
dc.subject.proposalGeneración distribuida
dc.subject.proposalGasificación de biomasa
dc.subject.proposalEnergía solar
dc.subject.proposalFotovoltaica
dc.subject.proposalHybrid power systems
dc.subject.proposalDistributed generation
dc.subject.proposalBiomass gasification
dc.subject.proposalSolar energy
dc.subject.proposalPhotovoltaic
dc.title.translatedDistributed power generation based on hybrid systems case study: La Guajira, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleproyecto P4 - Poligeneración: Biomasa
oaire.fundernameCOLCIENCIAS
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito