Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorOrozco, Carlos Augusto
dc.contributor.advisorTobon, Jorge Ivan
dc.contributor.authorGómez Alvarez, Ana Cristina
dc.date.accessioned2022-03-16T16:15:32Z
dc.date.available2022-03-16T16:15:32Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81248
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractLa baja compatibilidad entre los aditivos superplastificantes base policarboxilato (PCE) y los agregados con trazas de arcilla, se ha considerado uno de los retos a resolver en la producción de concreto en los últimos años. A partir de una arena natural, se identificaron fases arcillosas tipo caolinita e Illita, mediante ensayos de Difracción de rayos X (DRX) y por tanto se seleccionaron 2 arcillas puras caolinita (KGa-2) e illita-esmectita (ISCz-1) de capacidad de intercambio catiónico (CIC) de 2.75 meq/100 g y de 27.50 meq/100 g respectivamente. Se evaluaron isotermas de adsorción entre la arcilla y el PCE mediante carbono orgánico total (COT) y se cuantificó una adsorción del 99% del aditivo en la arcilla ISCz-1 así como un incremento de la distancia interplanar de la arcilla de 10.68 Å hasta 11.54 Å, lo que sugiere la intercalación del PCE en la arcilla. Para KGa-2, la adsorción del PCE fue 79 % y no presentó cambios en la distancia interplanar, ni variaciones significativas en el área superficial específica debido a que la interacción entre ambas fases fue fundamentalmente física. Como estrategia de mitigación, se emplearon 2 aminas cuaternarias como agentes de sacrificio de diferente peso molecular; bromuro de hexadeciltrimetil amonio (HTB) y bromuro de tetraetil amonio (TTB) variando las proporciones en función de la capacidad de intercambio catiónico de la arcilla. Los cambios en ISCz-1 funcionalizada mostraron una reducción de 76% en el área superficial específica (BET) para 1.0 CIC-HTB y del 21 % a una relación 1.5 CIC-TTB. Los ensayos de mini-slump y reología mostraron que a mayor peso molecular, en especial para HTB, que presenta una cadena unida al átomo de nitrógeno más larga que TTB, puede ocurrir un efecto sinérgico entre el aditivo y la arcilla funcionalizada que aumenta la fluidez del mortero y reduce el esfuerzo de cedencia de la mezcla, así como una disminución del 25 % para HTB y 4% a 28 días para TTB en la resistencia a compresión de los morteros debido a poca adherencia de la arcilla funcionalizada con la pasta y a la alta fluidez que se obtiene en los morteros con la arcilla funcionalizada, específicamente con HTB. (Texto tomado de la fuente)
dc.description.abstractThe low compatibility between polycarboxylate-based superplasticizer admixtures and aggregates with traces of clay has been considered one of the challenges in concrete production in recent years. Therefore, kaolinite and illite clay minerals were identified in natural sand by X-ray diffraction (XRD), and two pure clays were selected for the study, kaolinite (KGa-2) and illite (ISCz-1) with cation exchange capacity (CEC) 2.75 meq/100 g y de 27.50 meq/100 g respectively. The adsorption isotherms with PCE using Total organic carbon (TOC) showed 99% adsorption of admixture on ISCz-1 and interplanar spacing increase from 10,68 Å to 11.54 Å, suggesting intercalation between the admixture and the clay. For KGa-2, the PCE adsorption was 79 % and did not change the interplanar spacing or specific surface area associated with physical interaction. A mitigation strategy based on two quaternary ammonium compounds as sacrificial agents with different molecular weight were tested: hexadecyltrimethylammonium bromide (HTB) and tetraethylammonium bromide (TTB) varying their proportions based on the cation exchange capacity of clay. The surface changes on functionalized ISCz-1 showed a reduction of 76 % on the surface area for 1.0 CEC HTB and 22 % for 1.5CEC TTB. The results by mini-slump tests and rheology measurements suggest that with higher molecular weight, in fact for HTB , that has a long chain linked to nitrogen atom, a synergistic effect may occur between the PCE increasing the mortar fluidity and cause a reduction in shear stress. A 25 % compressive strength decreased was measured at 28 days for HTB molecule and 4 % for TTB to low bond functionalized clay-paste and higher slump on functionalized mortar, mainly for HTB.
dc.format.extentxvi, 101 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.titleEvaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaMateriales y Minerales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesRamachandran, V.S., Paroli, M., Beaudoin, J., Delgado, A. (2002). Handbook of Thermal Analysis of Construction Materials. New York, USA, Noyes Publication.
dc.relation.referencesGao, G., Ren, J., Liu, Y., Guo, J., Li, J. (2017). Interaction of polycarboxylate-based superplasticiser with clay in Portland cement systems. Advances in Cement Research, 30(6): 270–276.
dc.relation.referencesLui, X., Guan, J., Lai, G., Zheng, Y., Wang, Z., Cui, S., Lan, M, Li, H. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry,55, 80–90.
dc.relation.referencesBorralleras, P. (2019). Intercalation mechanism of polycarboxylate-based superplasticizers into montmorillonite clays. (Tesis de doctorado). Universitat Politècnica de Catalunya, Barcelona.
dc.relation.referencesPansu, M., Gautheyrou, J. (2006). Handbook of Soil Analysis, Mineralogical, organic and Inorganic Methods. Holanda, Springer-Verlag Berlin Heidelberg.
dc.relation.referencesNorvell, K., Stewart. G, Juenger, M., Fowler, D. (2007). Influence of Clays and Clay-Sized Particles on Concrete Performance. Journal of Materials in Civil Engineering, 19 (12), 1053-1059.
dc.relation.referencesMuñoz, F., Tejedor, M., Isabel, M, Anderson, Marc, A., Cramer, S. (2010). Detection of Aggregate Clay Coatings and Impacts on Concrete. ACI Materials Journal, 107 (4), 387-395.
dc.relation.referencesTugrul, A., Hasdemir, S., Yılmaz, M. (2014). The Effect of Feldspar, Mica and Clay Minerals on Compressive Strength of Mortar. IAEG XII Congress, Engineering Geology for Society and Territory, 5, 93-96
dc.relation.referencesXu, H., Sun, S., Yu, Q., Wei, J. (2018). Effect of b-cyclodextrin pendant on the dispersion robustness of polycarboxylate superplasticizer toward kaolin. Polymer Composite, 39 (3), 55-761.
dc.relation.referencesLei, L., Werani, M (2021). Influence of side chain length of MPEG – based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures. Construction and Building Materials, 281,122621.
dc.relation.referencesLei, L, Plank, J. (2014). A Study on the Impact of Different Clay Minerals on the Dispersing Force of Conventional and Modified Vinyl Ether Based Polycarboxylate Superplasticizers. Cement and Concrete Research, 60,1-10.
dc.relation.referencesZhao, Q., Choo, H., Bhatt, A., Burns, S., Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Applied Clay Science. 142, 2-20.
dc.relation.referencesTang, X., Zhao, C., Yang, Y., Dong, Y., Lu, X. (2020). Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation, performance and mechanism. Construction and Building Materials, 252 (20), 119052.
dc.relation.referencesMa, Y., Shi, C., Lei, L., Sha, S., Zhou, B., Liu, Y, Xiao, Y. (2020). Research progress on polycarboxylate based superplasticizers with tolerance to clays - A review. Construction and Building Materials, 255, 119386.
dc.relation.referencesTan, H., Guo, Y., Ma, B., Huang, J., Gu, B., Zou, F. (2018). Effect of Sodium Tripolyphosphate on Clay Tolerance of Polycarboxylate Superplasticizer. KSCE Journal of Civil Engineering, 22, 2934-2941.
dc.relation.referencesJardine, L., Koyata, H., Folliard, K., Chin Ou, C., Jachimowic, F., Chun, B., Jeknovarian, A. Hill, C. (2003). Admixture for optimizing addition of EO/PO. USA, US 6,670,415 B2, Columbia, Oficina de Patentes y Marcas de Estados Unidos.
dc.relation.referencesKoyata, H., Zhang, S., Chun, B. (2017). Method for modifying clay-activity and enhancing slump retention of hydratable cementitous compositions comprising clay-containing aggregates. Unión Europea EP-2 303 801 B1, Oficina Europea de Patentes.
dc.relation.referencesJacquet, A., Villard, E., Watt, O. (2007). Method for inerting impurities. US 2007/0287794 A1, Virginia, Oficina de Patentes y Marcas de Estados Unidos.
dc.relation.referencesKuo, L., Favero, C., Roux, C., Tregger, N. (2015). Functionalized polyamines clay mitigation. US 2015/0065614 A1, Columbia, Oficina de Patentes y Marcas de Estados Unidos.
dc.relation.referencesBergaya, F., Lagaly, G. (2006). Handbook of Clay Science, Amsterdam, Holanda, Elsevier.
dc.relation.referencesNehdi, M. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382.
dc.relation.referencesHuggett J. M, (2015). Clay Minerals, Reference Module in Earth Systems and Environmental Sciences, Elsevier.
dc.relation.referencesWhitworth, T. (1998) Clay minerals: Ion exchange. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht.
dc.relation.referencesNorma Técnica Colombiana, NTC 5268. Determinación de la capacidad de intercambio catiónico, 2006.
dc.relation.referencesAl Ani, T., Sarapää, O. (2008). Clay and clay mineralogy. Geological Survey of Finland, Report
dc.relation.referencesBetega de Paiva, L., Morales, A., Valenzuela Díaz, F. (2008). Organoclays: Properties, preparation and applications. Applied Clay science. 42 (1-2),8-24.
dc.relation.referencesPuertas, F., Palacios, M., Alonso, M. (2009). Aditivos para el hormigón: compatibilidad cemento-aditivos basados en policarboxilatos. Monografías del Instituto Eduardo Torroja. Madrid, Consejo Superior de Investigaciones Científicas.
dc.relation.referencesMahmoud, A., Shehab, M., El-Dieb, A. (2010). Concrete mixtures incorporating synthesized sulfonated acetophenone–formaldehyde resin as superplasticizer. Cement and Concrete Composites, 32 (5), 392-397.
dc.relation.referencesDransfield, J. (2003). Admixtures for concrete, mortar and grout, In Advanced Concrete Technology, Butterworth-Heinemann, Oxford, 3-36.
dc.relation.referencesSha, S., Wang, M., Shi, C., Xiao, Y. (2020). Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Construction and Building Materials, 233,117257.
dc.relation.referencesFlatt, R., Schober, I. (2012). Superplasticizers and the rheology of concrete. Understanding the Rheology of Concrete, Cambridge, UK, Woodhead Publishing, 144-208.
dc.relation.referencesDalas, F., Nonat, A., Pourchet, S., Mosquet, M., Rinaldi, D., Sabio, S . (2015). Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cement and Concrete Research, 67, 21-30.
dc.relation.referencesHe, H., Zhou, Q., Martens, W., Kloprogge, T., Yuan, P., Zhu, J., Frost, R. (2006). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.
dc.relation.referencesOyanedel-Craver, V., Smith, J.(2006).Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials B137, 1102–1114.
dc.relation.referencesShah, K., Mishra, M., Shukla, A., Imae, T., Shah, D. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407 (1), 493–499.
dc.relation.referencesMadejova, J., Jankovič, L., Slany, M., Hronsky,V. (2020). Conformation heterogeneity of alkylammonium surfactants self-assembled on montmorillonite: Effect of head-group structure and temperature. Applied Surface Science, 503 (2020) 144125.
dc.relation.referencesGuéran, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22 (2-3), 132-141.
dc.relation.referencesChen, X., Guo, Y., Li, B., Zhou, M., Li, B., Liu, Z., Zhou, J. (2020). Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete. Construction and Building Materials, 240, 117953.
dc.relation.referencesWang, W., Deng, Z., Feng, Z., Lefeng, F., Baicun, Z. (2015). Interaction of Polycarboxylate-based Superplasticizer/Poly (vinyl alcohol) with Bentonite and Its Application in Mortar with Clay-bearing Aggregates. Superplasticizers and other chemical admixtures in concrete. Eleventh International Conference , Ontario, Canada, 333-348.
dc.relation.referencesFernandes, V., Purnell, P., Still, G., Thomas, T. (2007). The effect of clay content in sands used for cementitious materials in developing countries. Cement and Concrete Research, 37,751–758.
dc.relation.referencesNg, S., Plank, J. (2012). Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cement and Concrete Research, 42(6), 847–854.
dc.relation.referencesLei, L., Plank, J. (2012). A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cement and Concrete Research, 42(10), 1299–1306.
dc.relation.referencesFarris, S., Mora, L., Capretti, G., Piergiovanni, L. (2011). Charge density quantification of polyelectrolyte polysaccharides by conductometric titration: an analytical chemistry experiment. Journal of Chemical education, 89,121-124.
dc.relation.referencesEPA Method 415.1. Determination of Total Organic Carbon in Water using Combustion or Oxidation.
dc.relation.referencesASTM C136 / C136M – 19. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
dc.relation.referencesASTM C128/C128M-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.
dc.relation.referencesASTM C29/C29M-17. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate.
dc.relation.referencesASTM C40/C40M-20. Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.
dc.relation.referencesASTM C117-17. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.
dc.relation.referencesINV E-235-13. Valor de azul de metileno en agregados finos.
dc.relation.referencesWang, X ., Wang, H. (2021). Structural Analysis of Interstratified Illite-Smectite by the Rietveld Method. Crystals, 11, 244.
dc.relation.referencesChipera, S., Bish, D. (2001). Baseline studies of the clay mineral society source clays: Powder X-ray diffraction analyses. Clay and Clay minerals, Vol 49 (5),398-409.
dc.relation.referencesVaculíková , l., Plevová, E, Vallová, S. Koutník, I .(2011).characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater., Vol. 8, No. 1 (161), 59–67.
dc.relation.referencesWilson, M., Wilson, L., Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay minerals, 49, 147-164.
dc.relation.referencesWeibel, R., Nielsen, M., Therkelsen, J., Jakobsen, F., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S., Johannessen, P., Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea, Marine and Petroleum Geology,116, 104290.
dc.relation.referencesGiles, C., Smith, D., Huitson, A. (1974). General Treatment and Classification of the Solute Adsorption Isotherm. Journal of Colloid and Interface Science, 47 (3).
dc.relation.referencesGiles, C., MacEwan, T., Nakhwa, S., Smith, D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of Chemical Society,3973-3993.
dc.relation.referencesAit-Akbour, R., Boustingorry, P., Leroux., F., Taviot-Guého, C. (2015). Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science, 437,227–234.
dc.relation.referencesChalghaf, R., Oueslatin, W., Ammar, M., Ben Rhaiem, H., Haj Amara, A. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2þ, Co2þ) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International, 23-35
dc.relation.referencesCaglar, B., Afsin, A., Tabak, A., Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal. 149,242–248.
dc.relation.referencesCheng, T., Yang, Y., Zhao, Y., Rao, F., Song, S. (2018). Evaluation of exfoliation degree of montmorillonite in aqueous dispersions through turbidity measurement. RSC Adv., 8, 40823-40828.
dc.relation.referencesLi, Z., Jiang, W., Hong, H. (2008). An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta Part A 71, 1525–1534.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCement - additives
dc.subject.lembCemento - Aditivos
dc.subject.proposalArcillas
dc.subject.proposalFuncionalización de arcillas
dc.subject.proposalÁrea superficial específica
dc.subject.proposalCapacidad de intercambio catiónico
dc.subject.proposalAditivo superplastificante
dc.subject.proposalAminas cuaternarias
dc.subject.proposalClay
dc.subject.proposalOrganoclay
dc.subject.proposalSpecific surface area
dc.subject.proposalCation exchange capacity
dc.subject.proposalSuperplasticizer
dc.subject.proposalQuaternary ammonium compounds
dc.title.translatedEvaluation of the effect of the molecular weight of the sacrificial agents in the interaction of the superplasticizer admixtures with the clays present in cement-based mixes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito