Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorNiño Vásquez, Luis Fernando
dc.contributor.advisorBobadilla, Jaime Leonardo
dc.contributor.authorBayuelo Sierra, Alfredo José
dc.date.accessioned2022-03-23T18:54:29Z
dc.date.available2022-03-23T18:54:29Z
dc.date.issued2022-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81329
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractLa planeación del movimiento para sistemas robóticos (o simplemente robots, o vehículos) es un problema bastante bien estudiado. Resultados significativos se han obtenido en la literatura y se han llevado a la práctica en la industria y otros usos comerciales. Sin embargo, altos costos computacionales y simplificaciones hechas en la formulación de los problemas presentan retos abiertos y oportunidades de investigación. Este trabajo presenta estrategias para ayudar en la solución del problema de navegación, y otros relacionados, en cuatro escenarios: Cuando no se conoce el Modelo que describe el vehículo, No se conoce la posición ni orientación del vehículo, no se conoce el Mapa del lugar, Y cuando no se conoce la intención (aliado/adversario) de otros robots en el ambiente. Primero, se presenta una estrategia que usa ambientes simulados realísticos para superar la falta de modelo del vehículo o las dificulatades que conlleven su cálculo. Los ambientes simulados se han beneficiado de las mejoras en los sistemas computarizados de la última década; por ejempo, los juegos de computadora han progresivamente mostrado ambientes más y más realistas, y estos han sido ya usados para entrenar robots al mostrarle a los sensores del robot esta información como cierta, de tal forma que se logra que los robots aprendan de secuencias del juego, de esta misma forma, en este trabajo se usan los simuladores para ayudar a resolver el problema de la navegación. También se presenta un esquema de planeación basado en la retro alimentación para un sencillo robot que rebota, mostrando cómo dicho robot puede navegar ambientes complejos sin saber su posición en todo momento. Por supuesto el mapa debe ser conocido para crear tal esquema de planeación, cuando no se conoce el mapa, la estrategia conocida como Localización y Mapeo Simultaneos, puede usarse para determinar el mapa alrededor y encontrarse en el mismo. Finalmente, cuando se consideran robots más simples, puede llegar a ser necesario usar más de un robot para cumplir una tarea, y puede que en el ambiente hayan robots adversarios, por lo tanto, se presenta una estrategia que permite comunicarse para evitar colisiones que mantiene la privacidad al mismo tiempo. (Texto tomado de la fuente)
dc.description.abstractThe problem of Motion Planning for Robotic Systems (in this work: robot or vehicles) has been well studied. Some significant outcomes have been accomplished, and good results demonstrated in practical situations in industry and other commercial uses. Nevertheless, high computational cost and several assumptions on the problems present open challenges and opportunities for research. This work presents strategies to help in the solution of the navigation and other related problems for four different scenarios: unknown vehicle model, unknown positions/orientation of the vehicle, unknown map to navigate and unknown intention of other vehicles in the same environment. First, realistic simulation is used to overcome the lack of a model, or the difficulties to calculate it. Simulated environments have taken advantage of the improvements in computer systems in the last decades; for example, computer games have progressively shown more realistic environments, these environments have already been used to train models by fooling the sensors of robots and making them to learn from gameplays, in this fashion, simulators are used here to help solving the navigation problem. It is also presented here a feedback-based motion planer for a simple bouncing robot, showing how it can navigate a complex world even if the current position is not know all the time. Of course the map must be known before hand to create such a plan, for the case where the map is not known a priori, a strategy for simultaneous localization and mapping is presented here to determine the world around and the position of the vehicle in such map. Finally, when considering simpler robots, it might be necessary to use multiple of them to succeed at a particular task, and they might also be in the presence of a third party robot, hence, a strategy is presented here to communicate and avoid collisions while preserving privacy.
dc.format.extentxxi, 105 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.titlePlanning under uncertainty using a dynamical systems approach for autonomous vehicles
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisi
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaMotion Planning - Dynamic Non-Linear Systems - Robotics Algorithms
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Minimalist Robot Navigation and Coverage Using a Dynamical System Approach. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 249–256. IEEE, 4 2017.
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A Shell. Minimalist robot navigation and coverage using a dynamical system approach. In Proceedings of IEEE International Conference on Robotic Computing, pages 249–256, 2017.
dc.relation.referencesTauhidul Alam, Leonardo Bobadilla, and Dylan A. Shell. Space-Efficient Filters for Mobile Robot Localization from Discrete Limit Cycles. IEEE Robotics and Automation Letters, 3(1):257–264, 1 2018.
dc.relation.referencesMikhail J Atallah and Wenliang Du. Secure multi-party computational geometry. In Proceedings of the Workshop on Algorithms and Data Structures, pages 165–179. Springer, 2001.
dc.relation.referencesAli-akbar Agha-mohammadi, Saurav Agarwal, Sung-Kyun Kim, Suman Chakravorty, and Nancy M. Amato. SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space. IEEE Transactions on Robotics, 34(5):1195–1214, 10 2018.
dc.relation.referencesAli-akbar Agha-mohammadi, Suman Chakravorty, and Nancy M Amato. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2 2014.
dc.relation.referencesAli-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Amato. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2):268–304, 2014
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N. Smith. A Data-Driven Deployment Approach for Persistent Monitoring in Aquatic Environments. In 2018 Second IEEE International Conference on Robotic Computing (IRC), pages 147–154. IEEE, 1 2018
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. A data-driven deployment approach for persistent monitoring in aquatic environments. In Proceedings of IEEE International Conference on Robotic Computing, pages 147–154, 2018.
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. An underactuated vehicle localization method in marine environments. Technical report, 2018.
dc.relation.referencesTauhidul Alam, Gregory Murad Reis, Leonardo Bobadilla, and Ryan N Smith. An underactuated vehicle localization method in marine environments. In Proceedings of MTS/IEEE OCEANS Charleston, pages 1–8, 2018.
dc.relation.referencesJacob Anderson and Ryan N. Smith. Predicting Water Properties with Markov Random Fields for Augmented Terrain-Based Navigation in Autonomous Underwater Vehicles. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–5. IEEE, 5 2018.
dc.relation.referencesTim Bailey. Mobile robot localisation and mapping in extensive outdoor environments. pages 121–125. Ph.D. dissertation, 2002.
dc.relation.referencesDimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA, 2005
dc.relation.referencesPeter Bogetoft, Dan Lund Christensen, Ivan Damg˚ard, Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation goes live. In Proceedings of the International Conference on Financial Cryptography and Data Security, pages 325–343, 2009.
dc.relation.referencesAssaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure multi-party computation. In Proceedings of the 15th ACM Conference on Computer and Communications Security, pages 257–266. ACM, 2008
dc.relation.referencesTim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping (slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006
dc.relation.referencesAdam Bry and Nicholas Roy. Rapidly-exploring Random Belief Trees for motion planning under uncertainty. In 2011 IEEE International Conference on Robotics and Automation, pages 723–730. IEEE, 5 2011.
dc.relation.referencesRobert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential composition of dynamically dexterous robot behaviors. The International Journal of Robotics Research, 18(6):534–555, 1999.
dc.relation.referencesJustin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, pages 236–252. Springer, 2005.
dc.relation.referencesV. Chen, M. Batalin, W. Kaiser, and Gaurav S. Sukhatme. Towards spatial and semantic mapping in aquatic environments. In IEEE International Conference on Robotics and Automation, pages 629 – 636, Pasadena, CA, May 2008
dc.relation.referencesHowie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard, Lydia E Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT press, 2005.
dc.relation.referencesSuman Chakravorty and S. Kumar. Generalized sampling based motion planners with application to nonholonomic systems. In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages 4077–4082. IEEE, 10 2009.
dc.relation.referencesHao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal v2. 1. In Proceedings of the International Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2017.
dc.relation.referencesT. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2001.
dc.relation.referencesQinyue Chen, Sheue-Er Low, Jeremiah WE Yap, Adjovi KX Sim, Yu-Yang Tan, Benjamin WJ Kwok, Jeannie SA Lee, Chek-Tien Tan, Wan-Ping Loh, Bernard LW Loo, et al. Immersive virtual reality training of bioreactor operations. In 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pages 873–878. IEEE, 2020.
dc.relation.referencesA. Comport, E. Malis, and P. Rives. Real-time quadrifocal visual odometry. International Journal of Robotics Research, Special issue on Robot Vision, 29(2 - 3):245 – 266, 2010.
dc.relation.referencesL. G. Crespo and J. Q. Sun. Stochastic Optimal Control of Nonlinear Systems via Short-Time Gaussian Approximation and Cell Mapping. Nonlinear Dynamics, 28(3/4):323–342, 2002
dc.relation.referencesDavid A Caron, Beth Stauffer, Steffi Moorthi, Amarjeet Singh, Maxim Batalin, Eric Graham, Mark Hansen, William Kaiser, Jnaneshwar Das, Arvind A Pereira, Amit Dhariwal, Bin Zhang, Carl Oberg, and Gaurav S Sukhatme. Macro- to fine-scale spatial and temporal distributions and dynamics of phytoplankton and their environmental driving forces in a small subalpine lake in southern {c}alifornia, {usa}. Journal of Limnology and Oceanography, 53(5):2333–2349, 2008
dc.relation.referencesWenliang Du and Mikhail J Atallah. Secure multi-party computation problems and their applications: a review and open problems. In Proceedings of the Workshop on New Security Paradigms, pages 13–22, 2001.
dc.relation.referencesArnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.
dc.relation.referencesJ Das, T Maughan, M McCann, M Godin, T O’Reilly, M Messie, F Bahr, K Gomes, F Py, J Bellingham, G Sukhatme, and K Rajan. Towards mixedinitiative, multi-robot field experiments: Design, deployment, and lessons learned. In Proceedings of the Intelligent Robots and Systems (IROS) Conference, 2011.
dc.relation.referencesJ Das, F Py, T Maughan, M Messie, T O’Reilly, J Ryan, G S Sukhatme, and K Rajan. Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters. Intnl. J. of Robotics Research, 31(5):626–646, 2012
dc.relation.referencesJorge Estrela da Silva, Bruno Terra, Ricardo Martins, and Joao Borges de Sousa. Modeling and simulation of the lauv autonomous underwater vehicle. In 13th IEEE IFAC international conference on methods and models in automation and robotics, volume 1. Szczecin, Poland Szczecin, Poland, 2007.
dc.relation.referencesRobin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in cluttered environments. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 42–49. IEEE, 5 2015
dc.relation.referencesHugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006
dc.relation.referencesDavid Eppstein, Michael T Goodrich, and Roberto Tamassia. Privacypreserving data-oblivious geometric algorithms for geographic data. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 13–22. ACM, 2010.
dc.relation.referencesXavier Emery. The kriging update equations and their application to the selection of neighboring data. Computational Geosciences, 13(3):269–280, Sep 2009
dc.relation.referencesKeith B Frikken and Mikhail J Atallah. Privacy preserving route planning. In Proceedings of the ACM Workshop on Privacy in the Electronic Society, pages 8–15, 2004.
dc.relation.referencesDrone airborne collisions report. https://www.faa.gov/newsroom/ researchers-release-report-drone-airborne-collisions?newsId= 89246. Published: 28-11-2017, Accessed: 01-10-2021.
dc.relation.referencesC. Fookes, F. Lin, V. Chandran, and S. Sridharan. Evaluation of image resolution and super-resolution on face recognition performance. Journal of Visual Communication and Image Representation, 23(1):75 – 93, 2012
dc.relation.referencesC. Fruh and A. Zakhor. Constructing 3d city models by merging aerial and ground views. IEEE Computer Graphics and Applications, 23(6):52 – 61, 2003.
dc.relation.referencesCraig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20. Stanford University Stanford, 2009.
dc.relation.referencesStephanie Gil, Swarun Kumar, Mark Mazumder, Dina Katabi, and Daniela Rus. Guaranteeing spoof-resilient multi-robot networks. Autonomous Robots, 41(6):1383–1400, 2017.
dc.relation.referencesAlessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing selfdriving cars with search-based procedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 318–328, 2019
dc.relation.referencesOded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 218–229, 1987
dc.relation.referencesJose E Guivant and Eduardo Mario Nebot. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17(3):242–257, 2001
dc.relation.referencesSandeep Hans, Sarat C Addepalli, Anuj Gupta, and Kannan Srinathan. On privacy preserving convex hull. In Proceedings of the International Conference on Availability, Reliability and Security, pages 187–192, 2009.
dc.relation.referencesTomislav Hengl, Gerard BM Heuvelink, and Alfred Stein. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1-2):75–93, 2004.
dc.relation.referencesJeong hwan Jeon, Sertac Karaman, and Emilio Frazzoli. Optimal samplingbased feedback motion trees among obstacles for controllable linear systems with linear constraints. In Proceedings of IEEE International Conference on Robotics and Automation, pages 4195–4201, 2015
dc.relation.referencesDaniel Hernandez, Ryan N Smith, Enrique Fernandez, Josep Isern, Jorge Cabrera, Antonio Dominguez, and Victor Prieto. Glider path-planning for optimal sampling of mesoscale eddies. In Fourteenth International Conference on Computer Aided Systems Theory, Workshop on Marine Robotics and Applications, 2 2013.
dc.relation.referencesChieh Su Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear systems, volume 64. Springer Science & Business Media, 2013.
dc.relation.referencesRaja Jurdak, Alberto Elfes, Branislav Kusy, Ashley Tews, Wen Hu, Emili Hernandez, Navinda Kottege, and Pavan Sikka. Autonomous surveillance for biosecurity. Trends in biotechnology, 33(4):201–207, 2015
dc.relation.referencesRae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom Erez, Yuval Tassa, and Francesco Nori. Modelling generalized forces with reinforcement learning for sim-to-real transfer. arXiv preprint arXiv:1910.09471, 2019.
dc.relation.referencesL´eonard Jaillet and Josep M Porta. Path planning under kinematic constraints by rapidly exploring manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2012.
dc.relation.referencesSertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7):846– 894, 2011
dc.relation.referencesNathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.
dc.relation.referencesLeslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996
dc.relation.referencesSteven M LaValle et al. Sensing and filtering: A fresh perspective based on preimages and information spaces. Foundations and Trends R in Robotics, 1(4):253–372, 2012.
dc.relation.referencesSteven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.
dc.relation.referencesSteven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
dc.relation.referencesSteven M LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/
dc.relation.referencesS. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine, 18(2):108–118, 6 2011
dc.relation.referencesS. M. LaValle. Motion planning. IEEE Robotics & Automation Magazine, 18(1):79–89, March 2011
dc.relation.referencesSteven M. LaValle. Motion planning: Wild frontiers. IEEE Robotics Automation Magazine, 18(2):108–118, 2011.
dc.relation.referencesBenoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive quadrotor flight through cluttered environments using mixed integer programming. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1469–1475. IEEE, 5 2016
dc.relation.referencesJim A Ledin. Hardware-in-the-loop simulation. Embedded Systems Programming, 12:42–62, 1999
dc.relation.referencesStephen R Lindemann and Steven M LaValle. Multiresolution approach for motion planning under differential constraints. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages 139–144. IEEE, 2006.
dc.relation.referencesC. Liu, H.-Y. Shum, and W. Freeman. Face hallucination: Theory and practice. Internaltional Journal of Computer Vision, 75(1):115 – 134, 10 2007.
dc.relation.referencesKevin M. Lynch, Ira B. Schwartz, Peng Yang, and Randy A. Freeman. Decentralized Environmental Modeling by Mobile Sensor Networks. IEEE Transactions on Robotics, 24(3):710–724, June 2008.
dc.relation.referencesSteven La Valle. Motion Planning. IEEE Robotics & Automation Magazine, 18(2):108–118, 6 2011.
dc.relation.referencesKaitai Liang, Bo Yang, Dake He, and Min Zhou. Privacy-preserving computational geometry problems on conic sections. Journal of Computational Information Systems, 7(6):1910–1923, 2011.
dc.relation.referencesGordon E Moore et al. Cramming more components onto integrated circuits, 1965.
dc.relation.referencesM. Mason. The mechanics of manipulation. In Proceedings. 1985 IEEE International Conference on Robotics and Automation, volume 2, pages 544– 548. Institute of Electrical and Electronics Engineers, 1985.
dc.relation.referencesMatthew Mason. The mechanics of manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, volume 2, pages 544– 548, 1985.
dc.relation.referencesBethany H. McCarthy. Ibm unveils world’s first 2 nanometer chip technology, opening a new frontier for semiconductors. https://newsroom.ibm.com/ 2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology, -Opening-a-New-Frontier-for-Semiconductors#assets_all, May 2021. Accessed: 01-10-2021.
dc.relation.referencesDahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplaysecure two-party computation system. In Proceedings of the USENIX Security Symposium, volume 4, page 9. San Diego, CA, USA, 2004.
dc.relation.referencesYuriy Mileyko, Gregory Reis, Monique Chyba, and Ryan N Smith. Energyefficient control strategies for updating an augmented terrain-based navigation map for autonomous underwater navigation. In 2017 IEEE Conference on Control Technology and Applications (CCTA), pages 223–228. IEEE, 8 2017.
dc.relation.referencesMusa Morena Marcusso Manh˜aes, Sebastian A. Scherer, Martin Voss, Luiz Ricardo Douat, and Thomas Rauschenbach. UUV simulator: A gazebobased package for underwater intervention and multi-robot simulation. In OCEANS 2016 MTS/IEEE Monterey. IEEE, sep 2016
dc.relation.referencesAnirudha Majumdar and Russ Tedrake. Funnel Libraries for Real-Time Robust Feedback Motion Planning. 1 2016.
dc.relation.referencesAnirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion planning. The International Journal of Robotics Research, 36(8):947–982, 2017
dc.relation.referencesElon Musk. Tesla ai day. https://www.youtube.com/watch?v= j0z4FweCy4M. Accessed: 01-10-2021
dc.relation.referencesSen Nag et al. How much of the ocean have we explored? WorldAtlas, 2019
dc.relation.referencesJuan Nieto, Jose Guivant, and Eduardo Nebot. Denseslam: Simultaneous localization and dense mapping. The International Journal of Robotics Research, 25(8):711–744, 2006
dc.relation.referencesJason M O’Kane and Steven M LaValle. Comparing the power of robots. The International Journal of Robotics Research, 27(1):5–23, 2008.
dc.relation.referencesJason M O’Kane and Dylan A Shell. Automatic design of discreet discrete filters. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 353–360, 2015.
dc.relation.referencesPascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238. Springer, 1999
dc.relation.referencesBrian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A Survey of Motion Planning and Control Techniques for SelfDriving Urban Vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33– 55, 3 2016
dc.relation.referencesBrian Paden, Michal C´ap, Sze Zheng Yong, Dmitry Yershov, and Emilio ˇ Frazzoli. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016.
dc.relation.referencesS. Prince, J. Elder, J. Warrell, and F. Felisberti. Tied factor analysis for face recognition across large pose differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):970 – 984, 2008.
dc.relation.referencesAmanda Prorok and Vijay Kumar. A macroscopic privacy model for heterogeneous robot swarms. In International Conference on Swarm Intelligence, pages 15–27. Springer, 2016.
dc.relation.referencesM Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger, R Wheeler, and A Y Ng. Ros: an open-source robot operating system. In Proceedings of the Open-Source Software workshop of the International Conference on Robotics and Automation, 2009.
dc.relation.referencesStephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing photorealism enhancement. arXiv preprint arXiv:2105.04619, 2021.
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Augmented Terrain-Based Navigation to Enable Persistent Autonomy for Underwater Vehicles. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 292–298. IEEE, 4 2017
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. In MTS/IEEE Oceans, Aberdeen, Scotland, April 2017. Best Student Paper Finalist
dc.relation.referencesGregory Murad Reis, Michael Fitzpatrick, Jacob Anderson, Jonathan Kelly, Leonardo Bobadilla, and Ryan N. Smith. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. In OCEANS 2017 - Aberdeen, pages 1–8. IEEE, 6 2017
dc.relation.referencesE Rimon and DE Koditschek. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5):501– 518, 1992
dc.relation.referencesD L Rudnick and M J Perry. ALPS: Autonomous and Lagrangian Platforms and Sensors, Workshop Report. Technical report, http://www.geoprose.com/ALPS, 2003
dc.relation.referencesDavid Ribas, Pere Ridao, Jose Neira, and Juan D Tardos. SLAM using an imaging sonar for partially structured underwater environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5040–5045, 2006
dc.relation.referencesDavid Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater SLAM in a marina environment. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1455–1460, 2007.
dc.relation.referencesDavid Ribas, Pere Ridao, Juan Domingo Tard´os, and Jos´e Neira. Underwater SLAM in man-made structured environments. Journal of Field Robotics, 25(11-12):898–921, 2008.
dc.relation.referencesVenkatraman Renganathan and Tyler Summers. Spoof resilient coordination for distributed multi-robot systems. In Proceedings of the International Symposium on Multi-Robot and Multi-Agent Systems, pages 135–141, 2017.
dc.relation.referencesAndrei A Rusu, Matej Veˇcer´ık, Thomas Roth¨orl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning, pages 262–270. PMLR, 2017
dc.relation.referencesRichard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
dc.relation.referencesRyan N Smith, Yi Chao, Peggy P Li, David A Caron, Burton H Jones, and Gaurav S Sukhatme. Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes based on Predictions from a Regional Ocean Model. International Journal of Robotics Research, 29(12):1475–1497, October 2010.
dc.relation.referencesT. Senlet and A. Elgammal. Satellite image based precise robot localization on sidewalks. In IEEE International Conference on Robotics and Automation (ICRA), pages 2647 – 2653, 5 2012.
dc.relation.referencesJ Q Sun and CS T Hsu. The generalized cell mapping method in nonlinear random vibration based upon short-time gaussian approximation. Journal of Applied Mechanics, 57(4):1018–1025, 1990
dc.relation.referencesEdward Schmerling, Lucas Janson, and Marco Pavone. Optimal samplingbased motion planning under differential constraints: the driftless case. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 2368–2375. IEEE, 2015
dc.relation.referencesP Svestka, JC Latombe, and LE Overmars Kavraki. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.
dc.relation.referencesAndrew Stuntz, David Liebel, and Ryan N Smith. Enabling persistent autonomy for underwater gliders through terrain based navigation. In OCEANS 2015-Genova, pages 1–10. IEEE, 2015
dc.relation.referencesAlexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topographyfollowing-coordinate oceanic model. Ocean Modelling, 9(4):347–404, 1 2005.
dc.relation.referencesAlexandre Sousa, Luis Madureira, Jorge Coelho, Jos´e Pinto, Jo˜ao Pereira, Jo˜ao Borges Sousa, and Paulo Dias. Lauv: The man-portable autonomous underwater vehicle. IFAC Proceedings Volumes, 45(5):268–274, 2012
dc.relation.referencesMarkku Suomalainen, Alexandra Q Nilles, and Steven M LaValle. Virtual reality for robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 11458–11465. IEEE, 2020.
dc.relation.referencesRoland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous Mobile Robots. MIT press, 2011
dc.relation.referencesNitin Sydney and Derek A. Paley. Multi-vehicle control and optimization for spatiotemporal sampling. In IEEE Conference on Decision and Control and European Control Conference, pages 5607–5612. IEEE, December 2011
dc.relation.referencesMichael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, 2012.
dc.relation.referencesLi Shundong, Dai Yigi, Wang Daoshun, and Luo Ping. A secure multiparty computation solution to intersection problems of sets and rectangles. Progress in Natural Science, 16(5):538–545, 2006
dc.relation.referencesSebastian Thrun et al. Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, 1(1-35):1, 2002
dc.relation.referencesRobert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972
dc.relation.referencesSebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT press, 2005.
dc.relation.referencesSebastian Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–93, 2000.
dc.relation.referencesA. J. Titus, S. Kishore, T. Stavish, S. M. Rogers, and K. Ni. PySEAL: A Python wrapper implementation of the SEAL homomorphic encryption library. ArXiv e-prints, March 2018
dc.relation.referencesRuss Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-trees: Feedback motion planning via sums-of-squares verification. The International Journal of Robotics Research, 29(8):1038–1052, 2010.
dc.relation.referencesBen Upcroft, M.F. Ridley, L. Ong, B. Douillard, T. Kaupp, S. Kumar, T.A. Bailey, Fabio Ramos, A. Makarenko, A. Brooks, S. Sukkarieh, and H F Durrant-Whyte. Multi-level state estimation in an outdoor decentralised sensor network. Springer Tracts in Advanced Robotics - Experimental Robotics, 39:355 – 365, 2008
dc.relation.referencesAntonio AC Vieira, Luis MS Dias, Guilherme AB Pereira, Jos´e A Oliveira, Maria Do Sameiro Carvalho, and Paulo Martins. Simulation model generation for warehouse management: Case study to test different storage strategies. International Journal of Simulation and Process Modelling, 13(4):324–336, 2018.
dc.relation.referencesUlrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. Learning a visuomotor controller for real world robotic grasping using simulated depth images. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research, pages 291–300. PMLR, 13–15 Nov 2017.
dc.relation.referencesFlorian Wirnshofer, Philipp S. Schmitt, Wendelin Feiten, Georg v. Wichert, and Wolfram Burgard. Robust, Compliant Assembly via Optimal Belief Space Planning. 11 2018.
dc.relation.referencesDustin J Webb and Jur Van Den Berg. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In Proceedings of IEEE International Conference on Robotics and Automation, pages 5054– 5061, 2013.
dc.relation.referencesWencen Wu and Fumin Zhang. Cooperative exploration of level surfaces of three dimensional scalar fields. Automatica, 47(9):2044–2051, September 2011.
dc.relation.referencesFu-Rui Xiong, Zhi-Chang Qin, Yang Xue, Oliver Sch¨utze, Qian Ding, and Jian-Qiao Sun. Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Communications in Nonlinear Science and Numerical Simulation, 19(5):1465–1473, 5 2014.
dc.relation.referencesAndrew C Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pages 160– 164, 1982
dc.relation.referencesAndrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pages 162–167, 1986
dc.relation.referencesDmitry S. Yershov and Emilio Frazzoli. Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. The International Journal of Robotics Research, 35(5):565– 584, 4 2016.
dc.relation.referencesDmitry S Yershov and Emilio Frazzoli. Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. The International Journal of Robotics Research, 35(5):565– 584, 2016
dc.relation.referencesFumin Zhang, D. M. Fratantoni, Derek Paley, J. Lund, and Naomi E. Leonard. Control of coordinated patterns for ocean sampling. International Journal of Control, 80(7):1186 – 1199, 2007.
dc.relation.referencesY Zhang, M A Godin, J G Bellingham, and J P Ryan. Using an Autonomous Underwater Vehicle to Track a Coastal Upwelling Front. IEEE Journal of Oceanic Engineering, 37(3):338–347, July 2012.
dc.relation.referencesLiangjun Zhang, Steven M LaValle, and Dinesh Manocha. Global vector field computation for feedback motion planning. In Proceedings of IEEE International Conference on Robotics and Automation, pages 477–482, 2009.
dc.relation.referencesWenshuai Zhao, Jorge Pe˜na Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 737–744. IEEE, 2020
dc.relation.referencesYulin Zhang and Dylan A Shell. Complete characterization of a class of privacy-preserving tracking problems. International Journal of Robotics Research, 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembINGENIERIA-APARATOS E INSTRUMENTOS
dc.subject.lembEngineering instruments
dc.subject.proposalMotion Planning
dc.subject.proposalSim-to-real
dc.subject.proposalDynamical Systems
dc.subject.proposalSLAM
dc.subject.proposalAquatic Vehicles
dc.subject.proposalPlaneación de movimiento
dc.subject.proposalSimuladores
dc.subject.proposalSistemas dinámicos
dc.subject.proposalSLAM
dc.subject.proposalVehículos acuáticos
dc.title.translatedPlaneación bajo incertidumbre usando una aproximación de los sistemas dinámicos para vehículos autónomos
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito