Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorRodriguez Medina, Caren Dayana
dc.contributor.authorFernández Paz, Jessica Alejandra
dc.date.accessioned2022-03-23T22:13:46Z
dc.date.available2022-03-23T22:13:46Z
dc.date.issued2022-02-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81345
dc.descriptionIlustraciones, tablas, fotografías
dc.description.abstractEl cadmio es un elemento altamente tóxico y sin función biológica conocida, para la mayoría de los seres vivos. Diversos estudios han demostrado un efecto tóxico del cadmio en el desarrollo fisiológico y crecimiento de las plantas. Un efecto del portainjerto en la acumulación de cadmio en la parte aérea de la planta ha sido observado en combinaciones copa × portainjerto de algunas especies vegetales. El objetivo de la presente investigación fue evaluar el efecto fisiológico de la absorción de cadmio sobre dos de los portainjertos de cacao más comúnmente sembrados en Colombia: IMC67 y PA121, y sobre combinaciones copa × portainjerto, utilizando como copa, dos de los cultivares más comunes en el país: ICS95 y CCN51. El estudio fue realizado bajo condiciones de vivero en el Centro de Investigación de Agrosavia en la ciudad de Palmira (Valle del Cauca, Colombia). Parámetros fisiológicos y de crecimiento fueron evaluados en portainjertos cinco meses después de su establecimiento en sustrato conteniendo suelo enriquecido con cadmio, posteriormente, ramas porta yemas de ICS95 y CCN51 fueron injertadas en los portainjertos. Las combinaciones copa × portainjerto fueron evaluadas dos y cuatro meses después de la injertación, utilizando los mismos parámetros fisiológicos y de crecimiento empleados para la evaluación de los portainjertos. El análisis de los datos se realizó mediante un modelo lineal mixto (MLM). Los resultados mostraron mayor acumulación de Cd en tejido foliar, además de un efecto del cadmio en la longitud y peso de raíces, área foliar, rendimiento cuántico del fotosistema II medido por la fluorescencia de la clorofila, disminución de fotosíntesis neta y uso eficiente del agua, afectación en la concentración foliar de elementos nutricionales como N, K, Mn, Zn, Cu y B, contenido de pigmentos fotosintéticos, pérdida de electrolitos y concentración de proteína total soluble en hojas. En conclusión, el cadmio redujo significativamente el crecimiento de hojas y raíces, afecto la tasa de fotosíntesis y el uso eficiente del agua en los portainjertos y la fluorescencia de la clorofila en las combinaciones copa x portainjerto, altero la toma de elementos nutriciones esenciales para el normal desarrollo de la planta, disminuyó las concentraciones de proteína total soluble y aumento la perdida de electrolitos. La mayor acumulación del metal pesado fue en parte aérea, tanto en los portainjertos como en las combinaciones copa × portainjerto generando un efecto nocivo sobre parámetros fisiológicos y de crecimiento. (Texto tomado de la fuente)
dc.description.abstractCadmium is a highly toxic element with no known biological function for most living beings. Various studies have shown a toxic effect of cadmium on the physiological development and growth of plants. An effect of the rootstock on the accumulation of cadmium in the aerial part of the plant has been observed in scion × rootstock combinations of some plant species. The objective of this research was to evaluate the physiological effect of cadmium absorption on two of the most commonly planted cocoa rootstocks in Colombia: IMC67 and PA121, and on scion × rootstock combinations, using two of the most common cultivars as scion in the country: ICS95 and CCN51. The study was carried out under greenhouse conditions at the Agrosavia Research Center in the city of Palmira (Valle del Cauca, Colombia). Physiological and growth parameters were evaluated on rootstocks five months after their establishment in substrate containing cadmium-enriched soil, later, ICS95 and CCN51 bud-bearing branches were grafted onto the rootstocks. The scion × rootstock combinations were evaluated two and four months after grafting, using the same physiological and growth parameters used for the evaluation of the rootstocks. Data analysis was performed using a linear mixed model (MLM). The results showed a greater accumulation of Cd in leaf tissue, in addition to an effect of cadmium on the length and weight of roots, leaf area, quantum efficiency of photosystem II measured by chlorophyll fluorescence, decrease in net photosynthesis and efficient use of water, affectation in the foliar concentration of nutritional elements such as N, K, Mn, Zn, Cu and B, content of photosynthetic pigments, loss of electrolytes and concentration of total soluble protein in leaves. In conclusion, cadmium significantly reduced the growth of leaves and roots, affected the rate of photosynthesis and the efficient use of water in the rootstocks and the fluorescence of chlorophyll in the scion x rootstock combinations, altering the uptake of essential nutritional elements for the normal development of the plant, decreased the concentrations of total soluble protein and increased the loss of electrolytes. The greatest accumulation of heavy metal was partly aerial, both in the rootstocks and in the scion × rootstock combinations, generating a harmful effect on physiological and growth parameters
dc.format.extentxv, 65 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia Sede Palmira
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleEfecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.contributor.educationalvalidatorMejía de Tafur, María Sara
dc.contributor.researchgroupMejoramiento genético de cacao
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methodsEn el banco de germoplasma de cacao, del C.I Palmira, se colectaron frutos obtenidos de polinización abierta de IMC67 y PA121, materiales genéticos avalados por el Consejo Nacional Cacaotero para ser utilizados como portainjertos en el país. Además de los frutos obtenidos de libre polinización, se llevaron a cabo cruzamientos dirigidos entre IMC67 y PA121 siguiendo la metodología descrita por Royaert et al. (2011). Los botones florales de árboles escogidos como parentales fueron cubiertos con tubos plásticos transparentes, conteniendo plastilina en el extremo adherido al árbol mientras que el otro extremo fue sellado con muselina para evitar la entrada de insectos. Las flores seleccionadas como madre o receptoras se identificaron por su aspecto abultado indicando que estaban próximas a abrir. Al día siguiente, entre las 7 y 10 de la mañana, se procedió a emascular las flores del genotipo materno para lo cual se retiraron los estambres de la flor seleccionada como receptora, además de dos o tres estaminodios para facilitar el acceso al estilo. La preparación de la flor seleccionada como donadora o padre consistió en la remoción de los pétalos dejando de este modo libre los estambres con sus anteras. La coloración blanca del polen, indicativo de su viabilidad, fue confirmada antes de la polinización. Finalmente, se procedió a frotar las anteras sobre el estigma y se cubrió nuevamente la flor receptora o madre. Las flores polinizadas se marcaron con láminas plásticas indicando la fecha de polinización y el cruzamiento dirigido. También fueron evaluadas progenies de los mismos genotipos obtenidas a partir de polinización libre. Una vez obtenidos los frutos, tanto de cruzamientos dirigidos como de libre polinización (LP), las almendras se extrajeron de las mazorcas, se eliminó el mucilago con arena y se sembraron en bolsas de polietileno de 20 cm de diámetro x 30 cm de alto, conteniendo arena lavada de rio donde permanecieron por dos meses.
dc.description.researchareaFisiología de cultivos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacional
dc.relation.referencesAhmad, P., Alyemeni, M. N., Wijaya, L., Alam, P., Ahanger, M. A., & Alamri, S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(13), 1889–1899. https://doi.org/10.1080/03650340.2017.1313406
dc.relation.referencesAranzazu, F., Martínez, N., Palencia, G., Coronado, R., & Rincon, D. (2009). Mejoramiento genético para incrementar la producción y productividad del sistema de cacao en Colombia.
dc.relation.referencesArao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition, 54(4), 555–559. https://doi.org/10.1111/j.1747-0765.2008.00269.x
dc.relation.referencesArnon, D. & Stout, P. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 1939 Apr;14(2):371-5. doi: 10.1104/pp.14.2.371.
dc.relation.referencesArvelo, M. A., González, D., Maroto, S., Delgado, T., & Montoya, P. (2017). Manual técnico del cultivo de cacao Buenas prácticas para América Latina. In Instituto Interamericano de Cooperación para la Agricultura (IICA).
dc.relation.referencesAstolfi, S., Zuchi, S., Chiani, A., & Passera, C. (2003). In vivo and in vitro effects of cadmium on H+ATPase activity of plasma membrane vesicles from oat (Avena sativa L.) roots. Journal of Plant Physiology, 160(4), 387–393. https://doi.org/10.1078/0176-1617-00832
dc.relation.referencesAzcon, J, & Talón, M. (2008). Fundamentos de fisiología vegetal. In Journal of Chemical Information and Modeling (Segunda, Vol. 53, Issue 9). McGRAW-HILL. http://www.elsevier.com/locate/scp
dc.relation.referencesBaker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
dc.relation.referencesBarceló, J., & Poschenrieder, C. (1992). RESPUESTAS DE LAS PLANTAS A LA CONTAMINACION POR METALES PESADOS. Suelo y Plantas, 2, 345–361. https://www.researchgate.net/publication/285841974
dc.relation.referencesBravo, D., Pardo, S., Benavides, J., Rengifo, G., Braissant, O., & Leon, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698
dc.relation.referencesBravo, I., Arboleda, C., & Martín, F. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronomica, 63(2), 164–172. https://doi.org/10.15446/acag.v63n2.39569
dc.relation.referencesCarvalho, A., Cannata, M. G., Carvalho, R., Ribeiro Bastos, A. R., Puggina Freitas, M., & dos Santos Augusto, A. (2012). Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicology and Environmental Safety, 86, 176–181. https://doi.org/10.1016/j.ecoenv.2012.09.011
dc.relation.referencesChang, Y. Sen, Chang, Y. J., Lin, C. T., Lee, M. C., Wu, C. W., & Lai, Y. H. (2013). Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. International Biodeterioration and Biodegradation, 85, 709–714. https://doi.org/10.1016/j.ibiod.2013.05.021
dc.relation.referencesCho, U., & Seo, N. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113–120. https://doi.org/10.1016/j.plantsci.2004.07.021
dc.relation.referencesChoppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., & Ok, Y. S. (2014). Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 33(5), 374–391. https://doi.org/10.1080/07352689.2014.903747
dc.relation.referencesClemens, S., Palmgren, M., & Kramer, U. (2002). Long way ahead: understanding and engineering plant metal accumulation. Plant Science, 7, 309–315. https://doi.org/10.1016/j.plantsci.2014.12.008
dc.relation.referencesCooper, J., Bolbot, J. A., Saini, S., & Setford, S. J. (2007). Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water, Air, and Soil Pollution, 179(1–4), 183–195. https://doi.org/10.1007/s11270-006-9223-x
dc.relation.referencesDaymond, A. J., & Hadley, P. (2004). The effects of temperature and light integral on early vegetative growth and chlorophyll fluorescence of four contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol., 145, 257–262.
dc.relation.referencesDegryse, F., Buekers, J., & Smolders, E. (2004). Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. European Journal of Soil Science, 55(1), 113–122. https://doi.org/10.1046/j.1351-0754.2003.0554.x
dc.relation.referencesDias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281–1289. https://doi.org/10.1007/s11738-012-1167-8
dc.relation.referencesDomínguez, M. T., Marañón, T., Murillo, J. M., & Redondo-Gómez, S. (2011). Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere, 83(8), 1166–1174. https://doi.org/10.1016/j.chemosphere.2011.01.002
dc.relation.referencesEkmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017
dc.relation.referencesEkmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017
dc.relation.referencesFarooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61–68. https://doi.org/10.1016/j.sajb.2015.11.006
dc.relation.referencesFedecacao. (2012). Guía técnica para el cultivo del cacao.
dc.relation.referencesFedecacao, F. N. D. C. (2004). Cacaocultura en el Departamento De Cundinamarca. http://www.fedecacao.com.co/portal/images/recourses/pub_doctecnicos/fedecacao-pub-doc_08B.pdf
dc.relation.referencesFedecacao, (2021). Economia nacional. Federación nacional de cacaoteros. Recuperado de https://www.fedecacao.com.co/economianacional.
dc.relation.referencesFernández, J. (2018). Estudio del efecto de diferentes líneas monospóricas de Rhizophagus irregularis en la respuesta del cacao al cadmio bajo condiciones de déficit hídrico en vivero. Universidad Nacional de Colombia. Tesis.
dc.relation.referencesFernández, R., Bertrand, A., Reis, R., Mourato, M. P., Martins, L. L., & González, A. (2013). Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. Journal of Hazardous Materials, 244–245, 555–562. https://doi.org/10.1016/j.jhazmat.2012.10.044
dc.relation.referencesFuhrer, J. (1982). Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans ( Phaseolus vulgaris L.) . Plant Physiology, 70(1), 162–167. https://doi.org/10.1104/pp.70.1.162
dc.relation.referencesGe, W., Jiao, Y., Zou, J., Jiang, W., & Liu, D. (2015). Ultrastructural and photosynthetic response of Populus 107 leaves to cadmium stress. Polish Journal of Environmental Studies, 24(2), 519–527. https://doi.org/10.15244/pjoes/27814
dc.relation.referencesGill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
dc.relation.referencesGillet, S., Decottignies, P., Chardonnet, S., & Le Maréchal, P. (2006). Cadmium response and redoxin targets in Chlamydomonas reinhardtii: A proteomic approach. Photosynthesis Research, 89(2), 201–211. https://doi.org/10.1007/s11120-006-9108-2
dc.relation.referencesGoldschmidt, E. E. (2014). Plant grafting: New mechanisms, evolutionary implications. Frontiers in Plant Science, 5(DEC), 1–9. https://doi.org/10.3389/fpls.2014.00727
dc.relation.referencesGonzález, S., Perales, H., & Salcedo, M. (2008). LA FLUORESCENCIA DE LA CLOROFILA a COMO HERRAMIENTA EN LA INVESTIGACIÓN DE EFECTOS TÓXICOS EN EL APARATO FOTOSINTÉTICO DE PLANTAS Y ALGAS* (Vol. 27, Issue 4).
dc.relation.referencesGuerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta.1;1465(1-2):190-8. doi: 10.1016/s0005-2736(00)00138-3.
dc.relation.referencesHassan, W., Bano, R., Bashir, S., & Aslam, Z. (2016). Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Research, 54(4), 460–468. https://doi.org/10.1071/SR14360
dc.relation.referencesHe, J. Y., Zhu, C., Ren, Y. F., Yan, Y. P., Chang, C., Jiang, D. A., & Sun, Z. X. (2008). Uptake, Subcellular Distribution, and Chemical Forms of Cadmium in Wild-Type and Mutant Rice1 1 Project supported by the National Natural Science Foundation of China (No. 30671255), the National Key Technologies R&D Program of China during the 11th Five-Y. Pedosphere, 18(3), 371–377. https://doi.org/10.1016/S1002-0160(08)60027-2
dc.relation.referencesHe, J, Ren, Y., Zhu, C., Yan, Y., & Jiang, D. (2008). Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica, 46(3), 466–470. https://doi.org/10.1007/s11099-008-0080-2
dc.relation.referencesHe, Jiali, Zhou, J., Wan, H., Zhuang, X., Li, H., Qin, S., & Lyu, D. (2020). Rootstock–Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01264
dc.relation.referencesHe, S., Yang, X., He, Z., & Baligar, V. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4
dc.relation.referencesHernández, L., & Cooke, D. (1997). Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany, 48(312), 1375–1381. https://doi.org/10.1093/jxb/48.7.1375
dc.relation.referencesHuang, B., Xin, J., Dai, H., Liu, A., Zhou, W., Yi, Y., & Liao, K. (2015). Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environmental Science and Pollution Research, 22(2), 1151–1159. https://doi.org/10.1007/s11356-014-3405-7
dc.relation.referencesHussain, A., Ali, S., Rizwan, M., Rehman, M. Z. ur, Qayyum, M. F., Wang, H., & Rinklebe, J. (2019). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety, 173(August 2018), 156–164. https://doi.org/10.1016/j.ecoenv.2019.01.118
dc.relation.referencesHussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2018). Morphological and Physiological Responses of Plants to Cadmium Toxicity. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814864-8.00003-6
dc.relation.referencesICCO. (2019). Quarterly Bulletin of Cocoa Statistics. Production of cocoa (Vol. XLV). https://doi.org/.1037//0033-2909.I26.1.78
dc.relation.referencesIICA. (2006). Guía técnica Cultivo de Cacao. In Plan De Agricultura Familiar.
dc.relation.referencesIrfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004
dc.relation.referencesJácome, D. (2017). Efecto de la inoculación de hongos formadores de micorrizas arbusculares (HFMA) sobre un sistema suelo-planta de cacao en suelos contaminados con cadmio en etapa de vivero. Universidad Nacional de Colombia.
dc.relation.referencesJaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao. In Corporación Colombiana de Investigafación Agropecuaria AGROSAVIA. Colombia
dc.relation.referencesJiao, Y., Zou, J., Ge, W., Jiang, W., & Liu, D. (2015). Physiological and ultrastructural effects of cadmium on poplar (Populus x euramericana) leaves. Baltic Forestry, 21(1), 106–113.
dc.relation.referencesJimenez, C. (2015). Global legal status of cadmium in cacao (Theobroma cacao): a fantasy or a reality Estado legal mundial do cádmio em cacau (Theobroma cacau): fantasia ou realidade (Vol. 10, Issue 1).
dc.relation.referencesKrantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920–931. https://doi.org/10.1016/j.jplph.2006.11.014
dc.relation.referencesLeón, A. M., Palma, J. M., Corpas, F. J., Gómez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., Del Río, L. A., & Sandalio, L. M. (2002). Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry, 40(10), 813–820. https://doi.org/10.1016/S0981-9428(02)01444-4
dc.relation.referencesLewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365
dc.relation.referencesLi, X., Zhou, Q., Sun, X., & Ren, W. (2016). Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chemistry, 194, 101–110. https://doi.org/10.1016/j.foodchem.2015.07.114
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology (Vol. 148, Issue C). https://doi.org/10.1016/0076-6879(87)48036-1
dc.relation.referencesLin, L., Yang, D., Wang, X., Liao, M., Wang, Z., Lv, X., Tang, F., Liang, D., Xia, H., Lai, Y., & Tang, Y. (2016). Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum. Environmental Monitoring and Assessment, 188(2), 1–11. https://doi.org/10.1007/s10661-015-5084-3
dc.relation.referencesLiu, J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 52(9), 1467–1473. https://doi.org/10.1016/S0045-6535(03)00484-3
dc.relation.referencesLiu, J., Yu, G., Jiang, P., Zhang, X., Meng, D., Chen, Z., Baker, A. J. M., & Qiu, R. (2020). Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems. Plant and Soil, 450(1–2), 323–336. https://doi.org/10.1007/s11104-020-04514-3
dc.relation.referencesLiu, W., Sun, L., Zhong, M., Zhou, Q., Gong, Z., Li, P., Tai, P., & Li, X. (2012). Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting. Chemosphere, 89(9), 1048–1055. https://doi.org/10.1016/j.chemosphere.2012.05.068
dc.relation.referencesLiu, Z., He, X., & Chen, W. (2011). Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20(4), 698–705. https://doi.org/10.1007/s10646-011-0609-1
dc.relation.referencesLópez, A. F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2–3), 376–385. https://doi.org/10.1016/j.envexpbot.2008.11.010
dc.relation.referencesLu, Z., Zhang, Z., Su, Y., Liu, C., & Shi, G. (2013). Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety, 91, 147–155. https://doi.org/10.1016/j.ecoenv.2013.01.017
dc.relation.referencesMa, Y. L., Wang, H. F., Wang, P., Yu, C. G., Luo, S. Q., Zhang, Y. F., & Xie, Y. F. (2018). Effects of cadmium stress on the antioxidant system and chlorophyll fluorescence characteristics of two Taxodium clones. Plant Cell Reports, 37(11), 1547–1555. https://doi.org/10.1007/s00299-018-2327-0
dc.relation.referencesMartinez, R. (2014). Caracterización de parámetros fisiológicos y bioquímicos en plantas de fresa (Fragaria x ananassa Duch.) variedad Albin. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/42989/
dc.relation.referencesMcLaughlin, M. J. (2016). Heavy metals in agriculture with a focus on Cd. In CSIRO Land and Water.
dc.relation.referencesMADR. (2021). Cadena del cacao. Dirección de cadenas agrícolas y forestales. Ministerio de agricultura y desarrollo rural. Recuperado de https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03 31%20Cifras%20Sectoriales.pdf
dc.relation.referencesMelgarejo, L. M., Romero, M., Hernández, S., Jaime, S. M. E., Suárez, D., and Pérez, W. (2010). Experimentos en Fisiología Vegetal Lab Físiol Bioquímica Veg. Bogotá: Universidad Nacional de Colombia. Available online at: https://www.uv.mx/personal/tcarmona/files/2019/02/Melgarejo-2010.pdf
dc.relation.referencesMetwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K. J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56(409), 167–178. https://doi.org/10.1093/jxb/eri017
dc.relation.referencesMobin, M., & Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164(5), 601–610. https://doi.org/10.1016/j.jplph.2006.03.003
dc.relation.referencesMonteiro, M., Santos, C., Soares, A., & Mann, R. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 72(3), 811–818. https://doi.org/10.1016/j.ecoenv.2008.08.002
dc.relation.referencesMori, S., Uraguchi, S., Ishikawa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67(1), 127–132. https://doi.org/10.1016/j.envexpbot.2009.05.006
dc.relation.referencesMotamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311
dc.relation.referencesMyśliwa-Kurdziel, B., & Strzałka, K. (2002). Influence of Metals on Biosynthesis of Photosynthetic Pigments. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. https://doi.org/10.1007/978-94-017-2660-3_8
dc.relation.referencesNada, E., Ferjani, B. A., Ali, R., Bechir, B. R., Imed, M., & Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologiae Plantarum, 29(1), 57–62. https://doi.org/10.1007/s11738-006-0009-y
dc.relation.referencesNazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences, 03(10), 1476–1489. https://doi.org/10.4236/ajps.2012.310178
dc.relation.referencesNedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphology, Distribution, Functional Ecology of Plants, 204(4), 316–324. https://doi.org/10.1016/j.flora.2008.03.004
dc.relation.referencesNguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016). Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of Visualized Experiments, 2016(113), 1–9. https://doi.org/10.3791/54317
dc.relation.referencesNouairi, I., Ammar, W. Ben, Youssef, N. Ben, Daoud, D. B. M., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519. https://doi.org/10.1016/j.plantsci.2005.10.003
dc.relation.referencesNováková, M., Matějova, E., & Sofrová, D. (2004). Cd 2+ Effect on photosynthetic apparatus in synechococcus elongatus and spinach (Spinacia oleracea L.). Photosynthetica, 42(3), 425–430. https://doi.org/10.1023/B:PHOT.0000046162.87918.98
dc.relation.referencesParmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6. https://doi.org/10.1186/1999-3110-54-45
dc.relation.referencesPaunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., & Goltsev, V. (2018). Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030787
dc.relation.referencesPena, L., Pasquini, L., Tomaro, M., & Gallego, S. (2006). Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Science, 171(4), 531–537. https://doi.org/10.1016/j.plantsci.2006.06.003
dc.relation.referencesPence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4956–4960. https://doi.org/10.1073/pnas.97.9.4956
dc.relation.referencesPereira de Araujo, R., Furtado de Almeida, A. A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006
dc.relation.referencesPerfus, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.x
dc.relation.referencesPietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. https://doi.org/10.1104/pp.103.026518
dc.relation.referencesPinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
dc.relation.referencesPopova, L., Maslenkova, L., Yordanova, R., Ivanova, A., Krantev, A., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47(3), 224–231. https://doi.org/10.1016/j.plaphy.2008.11.007
dc.relation.referencesQin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168–180. https://doi.org/10.1016/S1002-0160(20)60002-9
dc.relation.referencesRamos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1
dc.relation.referencesRamos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1
dc.relation.referencesRasool, A., Mansoor, S., Bhat, K. M., Hassan, G. I., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Frontiers in Plant Science, 11(December). https://doi.org/10.3389/fpls.2020.590847
dc.relation.referencesReichman, S. M. A. (2002). The Response Of Plant To Metal Toxicity: A Review Of Focusing On Copper, Magnase And Zinc. In Australian Minerals and Energy Environment Foundation (Issue January 2002).
dc.relation.referencesRodriguez, H. (2017). Dinámica del cadmio en suelos con niveles altos del elemento, en zonas productoras de cacao de Nilo y Yacopí, Cundinamarca. Universidad Nacional de Colombia.
dc.relation.referencesRodríguez, M., Martínez, N., Romero, M. C., Del Río, L. A., & Sandalio, L. M. (2008). Toxicidad del Cadmio en Plantas. Ecosistemas, 17(3), 139–146. http://www.revistaecosistemas.net/articulo.asp?Id=558
dc.relation.referencesRodriguez, M., Romero, M., Pazmino, D., Testillano, P., Risueno, M., Del Río, L., & Sandalio, L. (2009). Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150(1), 229–243. https://doi.org/10.1104/pp.108.131524
dc.relation.referencesRouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1–3), 49–58. https://doi.org/10.1016/j.envexpbot.2007.10.015
dc.relation.referencesRueda, G., Rodríguez, J., & Madriñán, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. Acta Agronomica, 60(3), 203–218.
dc.relation.referencesSaidi, I., Chtourou, Y., & Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal of Plant Physiology, 171(5), 85–91. https://doi.org/10.1016/j.jplph.2013.09.024
dc.relation.referencesSandalio, L., Dalurzo, H., Gomez, M., Romero-Puertas, M., & del Río, L. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115–2126. http://jxb.oxfordjournals.org/content/52/364/2115.full.pdf
dc.relation.referencesSandoval, F. (2019). Efecto de las comunidades locales de hongos formadores de micorrizas arbusculares y patrones de injertación en la fisiologia de plantulas de cacao sometidas a estres por cadmio y zinc. Universidad Nacional de Colombia.
dc.relation.referencesSavvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. In Scientia Horticulturae (Vol. 127, Issue 2, pp. 156–161). https://doi.org/10.1016/j.scienta.2010.09.011
dc.relation.referencesShah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9
dc.relation.referencesSharma, R. K., Agrawal, M., & Agrawal, S. B. (2010). Physiological, biochemical and growth responses of lady’s finger (Abelmoschus esculentus L.) Plants as affected by Cd contaminated soil. Bulletin of Environmental Contamination and Toxicology, 84(6), 765–770. https://doi.org/10.1007/s00128-010-0032-y
dc.relation.referencesSingh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassicajuncea L. plants. Journal of Environmental Biology, 24(1), 107–112.
dc.relation.referencesSkrebsky, E. C., Tabaldi, L. A., Pereira, L. B., Rauber, R., Maldaner, J., Cargnelutti, D., Gonçalves, J. F., Castro, G. Y., Shetinger, M. R. C., & Nicoloso, F. T. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Brazilian Journal of Plant Physiology, 20(4), 285–294. https://doi.org/10.1590/s1677-04202008000400004
dc.relation.referencesSong, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598
dc.relation.referencesSouza, V., De Almeida, A., Lima, S., Carcardio, J., Silva, D., Mangabeira, P., & Gomes, F. (2011). Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). BioMetals, 24(1), 59–71. https://doi.org/10.1007/s10534-010-9374-5
dc.relation.referencesSterckeman, T., & Thomine, S. (2020). Mechanisms of Cadmium Accumulation in Plants. Critical Reviews in Plant Sciences, 39(4), 322–359. https://doi.org/10.1080/07352689.2020.1792179
dc.relation.referencesTaiz, L., & Zeiger, E. (2002). Plant physiology. In Science progress (3rd ed.). https://doi.org/10.1017/9781108486392
dc.relation.referencesVerbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Plant Biology, 12, 364–372. https://doi.org/10.1016/j.pbi.2009.05.001
dc.relation.referencesWang, F. Y., Lin, X. G., & Yin, R. (2007). Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 51(2), 99–109. https://doi.org/10.1016/j.pedobi.2007.02.003
dc.relation.referencesWang, H., Zhao, S. C., Liu, R. L., Zhou, W., & Jin, J. Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica, 47(2), 277–283. https://doi.org/10.1007/s11099-009-0043-2
dc.relation.referencesWang, P., Deng, X., Huang, Y., Fang, X., Zhang, J., Wan, H., & Yang, C. (2016). Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. Environmental Science and Pollution Research, 23(2), 1860–1872. https://doi.org/10.1007/s11356-015-5424-4
dc.relation.referencesWilliams, L. E., Pittman, J. K., & Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Bi, 1465, 104–126. www.elsevier.com/locate/bba
dc.relation.referencesYing, R. R., Qiu, R. L., Tang, Y. T., Hu, P. J., Qiu, H., Chen, H. R., Shi, T. H., & Morel, J. L. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167(2), 81–87. https://doi.org/10.1016/j.jplph.2009.07.005
dc.relation.referencesZhang, S., Zhang, H., Qin, R., Jiang, W., & Liu, D. (2009). Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology, 18(7), 814–823. https://doi.org/10.1007/s10646-009-0324-3
dc.relation.referencesZhao, F.-J., Hamon, R. E., Lombi, E., Mclaughlin, M. J., & Mcgrath, S. P. (2002). Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53(368), 535–543.
dc.relation.referencesZhi, Y., He, K., Sun, T., Zhu, Y., Zhou, Q., & Glycine, L. (2015). Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. Journal of Environmental Sciences, 35, 108–114. https://doi.org/10.1016/j.jes.2015.01.031
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocAbsorción
dc.subject.agrovocCadmio
dc.subject.agrovocCrecimiento de planta
dc.subject.agrovocplant growth
dc.subject.armarcTheobroma cacao
dc.subject.proposalTheobroma cacao
dc.subject.proposalMetal pesado
dc.subject.proposalParámetros fisiológicos
dc.subject.proposalCrecimiento
dc.subject.proposalheavy metal
dc.subject.proposalphysiological parameters
dc.subject.proposalgrowth
dc.title.translatedPhysiological effect of cadmium (Cd2+) absorption on cocoa accessions (Theobroma cacao L.)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitlePatrones cacao
oaire.fundernameCorporación Colombiana de Investigación Agropecuaria Agrosavia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito