Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMontealegre Rubio, Wilfredo
dc.contributor.authorArcentales Bastidas, Xavier Andres
dc.date.accessioned2022-03-24T14:14:35Z
dc.date.available2022-03-24T14:14:35Z
dc.date.issued2021-12-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81355
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEste trabajo se focaliza específicamente en bombas centrífugas de flujo radial, cuya componente de velocidad axial no es considerada en comparación con las velocidades tangenciales y radiales, dando lugar al diseño de álabes en dos dimensiones. En consecuencia, como el diseño de álabe es una tarea compleja, debido a la cantidad de parámetros geométricos libres involucrados (radio de curvatura, ángulo del alabe, etc.), se usa el Método de Optimización Topológica (MOT). La selección del MOT en comparación con otro método de optimización (paramétrica, material o de forma) se justifica por el simple hecho de que este método combina todos los métodos anteriores (optimización más robusta). Para el diseño topológico de los álabes, se solucionan las ecuaciones de estado de Navier-Stokes por medio del método de los elementos finitos (MEF), para generar los campos de velocidad y presión, que son los campos de distribución que simulan el comportamiento fluidodinámico dentro del impeler, para posteriormente minimizar dos fenómenos físicos (funciones objetivo) que son la energía de disipación viscosa y la vorticidad. Estas funciones objetivo se combinan en una función bi-objetivo mediante el método de la suma ponderada, dando así mayor minimización a una función con respecto a la otra. Adicionalmente se fórmula el problema de optimización agregando la fuerza de fricción artificial de Darcy en las ecuaciones de Navier-Stokes para flujo incompresible, el método adjunto discreto se utiliza para hallar las sensibilidades y se usa el método de las asíntotas móviles para actualizar la variable de diseño gamma. Para la solución de las ecuaciones de Navier-Stokes en conjunto al problema de optimización, se desarrolla un algoritmo computacional en MATLAB. Adicionalmente se paraleliza el algoritmo desarrollado y se ejecuta el código con la utilización de varios Cores (núcleos CPU) en la nube con dos proveedores diferentes: a) Amazon Web Services (máquina virtual) y b) Equinix (máquina bare-metal), con el objetivo de acelerar el proceso de diseño de los álabes. El resultado obtenido de la topología cuando se considera únicamente la minimización de la energía de disipación (wd=1 y wr=0) es 5.88 Watts. Adicionalmente, el desempeño que se obtiene cuando se considera la minimización de la energía de disipación y vorticidad (wd=0.8 y wr=0.2) es de 5.94 Watts. Estas topologías son extendidas en un diseño de dominio completo en un modelo 3D usando ANSYS FLUENT, con el objetivo de validar la minimización de las funciones objetivos obtenidas por el Método de Optimización Topológica (MOT). (Texto tomado de la fuente)
dc.description.abstractThis work focuses specifically on radial flow centrifugal pumps, whose axial velocity component is neglected compared to tangential and radials velocities, giving rise to the analysis of the blades in two dimensions. In addition, due to the design of flow machines is still a difficult task, mainly due to the large number of free geometrical parameters involved (radius of curvature, blade angle, etc.), the Topological Optimization Method (TOM) is used in this work. The selection of the TOM compared to another optimization method (parametric, material or shape) is justified by the simple fact that this method combines all the previous methods (more robust optimization). For the topological design of the blades, the Navier-Stokes equations of state are solved by means fo the finite element method (FEM) to generate the velocity and pressure fields, which are the distribution fields that simulate the fluid-dynamic behavior within the impeller, for later minimize two physical phenomena (objective functions) which are viscous dissipation energy and vorticity. These objective functions are combined into a bi-objective function using the weighted sum method, thus giving greater minimization to one function concerning the other. Additionally, the optimization problem is formulated by adding the artificial Darcy friction force in the NavierStokes equations for incompressible flow, the discrete adjoint method is used to find the sensitivities and the moving asymptotes method is used to update the design variable gamma. For the solution of the Navier-Stokes equations in conjunction with the optimization problem, a computational algorithm is developed in MATLAB. Additionally, the developed algorithm is parallelized, and the code is executed with the use of several cores (CPU cores) in the cloud on two different platforms: a) Amazon Web Services (virtual machine) and b) Equinix (bare-metal machine), to speed up the blade design process. The performance obtained from the topology result when only the minimization of the energy dissipation is considered (wwdd 1 y wwrr= 0 ) is 5.88 Watts. Additionally, the performance obtained when considering the minimization of the energy dissipation and vorticity (wwdd = 0.8 y 0.2 ) is 5.94 Watts. After these topologies results, they are extended in an entire domain design in a 3D model using ANSYS FLUENT, with the objective to validate the minimization of the objective functions obtained by the Topology Optimization Method (TOM).
dc.format.extentxxv, 195 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc530 - Física::532 - Mecánica de fluidos
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.titleDiseño de bombas centrífugas utilizando el método de optimización topológica y computación paralela en la nube
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.contributor.researchgroupDiseño y Optimización Aplicada (Doa)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería Mecánica
dc.description.researchareaOptimización topológica aplicada al diseño de sistemas mecánicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Mecánica
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAARONSON, K. D.; SLAUGHTER, M.S, MILLER, L., “Use of an intrapericardial, continuos-flow, centrifugal pump in patients awaiting heart transplantation”, Circulation, v. 125, n. 25, p. 3191-3200, jun 2012. ISSN 0009-7322.
dc.relation.referencesB. Jafarzadeh, A. Hajari, M.M. Alishahi, M. Akbari, “The flow simulation of a low-specific- speed high-speed centrifugal pump”, Appl. Math. Model. 35 (2011) 242–249.
dc.relation.referencesK. Cheah, T.S. Lee, S.H. Winoto, Z. Zhao, “Numerical flow simulation in a centrifugal pump at design and off-design conditions”, Internat. J. Rotat. Mach. 2007 (2007) 1–8.
dc.relation.referencesJ.S. Romero (2014), “A topology optimization approach applied to laminar flow machine rotor design”, Comput. Methods Appl. Mech. Engrg. 279 (2014) 268–300, Department of Mechanical Engineering, Federal University of Espirito Santo, ES, Brazil.
dc.relation.referencesFrank White,Fluids Mechanics, McGraw-Hill, New York, Sext Edition (2008).
dc.relation.referencesM. P. Bendsoe y O. Sigmund, “Topology optimization: theory, methods, and applications”. Springer, 2003.
dc.relation.referencesO. Sigmund, “Design of multiphysics actuators using topology optimization - part I: One-material structures”, Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 49-50, pags. 6577-6604, 2001, Department of Mechanical Engineering, Solid Mechanics, the Technical university of Denmark.
dc.relation.referencesD. Hutton, “Comparison of Finite Element and Exact Solutions”, in Fundamentals of Finite Element Analysis, USA: McGraw−Hill, 2004, pags. 4-7.
dc.relation.referencesSun-Sheng Yang, “Theoretical, numerical and experimental prediction of pump as turbine performance”, Renewable Energy 48 (2012) 507-513, Research Center of fluid Machinery Engineering and Technology, Jiangsu University, China.
dc.relation.referencesK.W. Cheah, “Numerical flow simulation in a centrifugal pump at design and off-design conditions”, Singapore, Hindawi Publishing Corporation International Journal of Rotating Machinery Volume 2007, Article ID 83641, 8 pages.
dc.relation.referencesB. Kitchenham, “Procedures for performing systematic reviews”, Keele, UK, Keele University, vol. 33, 2004.
dc.relation.referencesHedi, L., Hatem, K.,Ridha, Z., 2010.“Numerical flow simulation in a centrifugal pump,” International Renewable Energy Congress. Sousse, Tunisia. pp. 300-304.
dc.relation.referencesMentzos, M.,Filios, A.,Margaris, P.,Papanikas, D.,2004. “A numerical simulation of the impeller-volute interaction in a centrifugal pump”, Proceedings of International Conference from Scientific Computing to Computational Engineering. Athens, pp. 1-7.
dc.relation.referencesMentzos, M., Filios, A., Margaris, P., Papanikas, D., 2005. “CFD predictions of flow through a centrifugal pump impeller,” Proceedings of International Conf. Experiments/Process/System Modelling/ Simulation/Optimization. Athens, pp. 1-8.
dc.relation.referencesShah, S., Jain, S., Lakhera, V., 2010. “CFD based flow analysis of centrifugal pump,” Proceedings of International Conference on Fluid Mechanics and Fluid Power. Chennai, India, paper#TM08.
dc.relation.referencesMedvitz, R., Kunz, R., Boger, D., Adam, J.,Yocum, A., 2002. “Performance analysis of cavitating flow in centrifugal pumps using multiphase cfd”, Journal of Fluid Engineering 124, p. 377, Applied Research Laboratory, The Pennsylvania State University.
dc.relation.referencesNohmi, M.,Goto, A.,Iga, Y.,Ikohagi, T., 2003.“Cavitation CFD in a centrifugal pump,” Proceedings of International Symposium on Cavitation. Osaka, Japan, pp. 1-7.
dc.relation.referencesCaridad, J., Asuaje, M.,Kenyery, F.,Tremante, A.,Aguillon, O., 2008. “Characterization of a centrifugal pump Impeller under two-phase flow conditions”, Journal of Petroleum Science and Engineering 63,p. 18.
dc.relation.referencesWilliams, A., "Pumps as turbines for low-cost micro hydropower", Renew. Energy 1996, vol. 9, pp. 1227–1234, September-december 1996.
dc.relation.referencesS. Natanasabapathi and J. Kshirsagar, "Pump As Turbine-An Experience With CFX-5.6," Corporate research and engineering division. Pune, India, Kirloskar Bros. Ltd, 2004.
dc.relation.referencesFernandez, J., Barrio, R., Blanco, E.,Parrondo, J., Marcos, A., 2010. Numerical Investigation of a Centrifugal Pump Running in Reverse Mode. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 224, p. 373.
dc.relation.referencesBarrio, R., Fernandez, J., Blanco, E., Parrondo, J., Marcos, A., 2011. Performance Characteristics and Internal Flow Patterns in a Reverse-Running Pump–Turbine. Proceedings of IMechE Vol. 226 Part C: J. Mechanical Engineering Science, p. 695.
dc.relation.referencesJasmina B., Bogdanovi-Jovanovi, “Pumps used as a Turbines, Power Recovery, Energy Efficiency, CFD Analysis” Faculty of Mechanical Engineering, University of Nis, Nis, Serbia, Jaroslav Cerni Institute for the Development of Water Resources, Belgrade, Serbia.
dc.relation.referencesCarlos M. OkuboJr., César Y. Kiyono, Luís F.N. Sá, Emílio C.N. Silva, “Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach”, Computers and Mathematics with Applications, vol. 96, pp. 16-30, August 2021.
dc.relation.referencesKhaled Alawadhi, Bashar Alzuwayer, Tareq Ali Mohammad and Mohammad H. Buhemdi, “Design and optimization of a centrifugal pump for slurry transport using the response surface method”, MDPI, 9 (3):60, March 2021.
dc.relation.referencesL.F.N.Sá, J.S.Romero, “Topology optimization applied to the development of small scale pump” Structural and Multidisciplinary Optimization (2016) 57:2045–2059, Department of Mechatronics and Mechanical Systems, Engineering of Escola Politecnica, University of Sao Paulo.
dc.relation.referencesShahram Derakhshan, “Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow)” Structural and Multidisciplinary Optimization.
dc.relation.referencesL.F.N.Sá, A. A. Novotny, “Design optimization of laminar flow machine rotors based on the topological derivative concept”, Struct Multidisc Optim (2017) 56:1013–1026, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo.
dc.relation.referencesJ.S.Romero, E.C. N.Silva, “Non-newtonian laminar flow machine rotor design by using topology optimization” Structural and Multidisciplinary Optimization, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo.
dc.relation.referencesShahram Derakhshan, “Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm” Computers & Fluids 81 (2013) 145–151, School of Mechanical Engineering, Iran University of Science & Technology.
dc.relation.referencesBacharoudis, E.,Filios, A.,Mentzos, M.,Margaris, “Parametric study of a centrifugal pump impeller by varying the outlet blade angle”, The Open Mechanical Engineering Journal 2, p. 75.
dc.relation.referencesAnagnostopoulos, “CFD Analysis and design effects in a radial pump impeller”, WSEAS Transactions on Fluid Mechanics, vol. 1 (7), pp. 763, January 2006.
dc.relation.referencesGatta, S.,Salvadori, S., Adami, P.,Bertolazzi, “CFD study for assessment of axial thrust balance in centrifugal multistage pumps”, International Conferenceon Fluid Flow Technologies.
dc.relation.referencesDixon, J. a, Verdicchio, J. a, Benito, D., Karl, A., & Tham, K. M. (2004), “Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(4), 241–255.
dc.relation.referencesMustafa Golcu, “Energy saving in a deep well pump with splitter blade” Energy Conversion and Management 47 (2006) 638–651, Department of Mechanical Education, Pamukkale University, 20017 Kinikli, Denizli, Turkey.
dc.relation.referencesSun-Sheng Yang, “Theoretical, numerical and experimental prediction of pump as turbine performance” Renewable Energy 48 (2012) 507-513, Research Center of Fluid Machinery Engineering and Technology, Jiangsu University.
dc.relation.referencesS.C.M. Yu, “The flow patterns within the impeller passages of a centrifugal blood pump model” Medical Engineering & Physics 22 (2000) 381–393, Nanyang Technological University, Thermal and Fluids Engineering Division, School of Mechanical and Production Engineering, Singapore.
dc.relation.referencesKun-Xi, “Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump” Scientific and Technical Record, Republic of China.
dc.relation.referencesJuan David Berrío, “Optimización topológica de un instrumento musical idiófono tipo metalófono” Tesis de Maestría de Investigación, Universidad Nacional de Medellín.
dc.relation.referencesSRShah, CFD for centrifugal pumps: a review of the state-of-the-art, Ahmedabad, India, Procedia Engineering 51 (2013) 715 – 720.
dc.relation.referencesVentricular Assist devices www.texasheart.org/heart-health/heart-information Center/topics/ventricular-assist-devices/ Accesed: 3-Nov-2018.
dc.relation.referencesYongbo Deng,Yihui Wu,Zhenyu Liu, Topology optimization Theory for Laminar Flow, Applications in inverse Design of Microfluidics.
dc.relation.referencesMaatoug Hassine ESSTH, Sousse University Tunisia, Topology Optimization of fluid Mechanics Problems.
dc.relation.referencesThomas Borrvall and Joakim Petersson, Topology Optimization of fluids in Stokes flow, International Journal for Numerical Methods in fluids, 2003.
dc.relation.referencesNitelMuhtaroglu “Democratization of HPC cloud services with automated parallel solvers and applications containers”, Concurrency Computation Practice and Experience, 2018.
dc.relation.referencesJin “Research on Optmization Algorithm of BP neural network for permanent magnet synchronous TOMor based on Cloud Computing”, Institute of Electrical and Electronics Engineers Inc, 2018.
dc.relation.referencesK. Konopka “Improving efficiency of CCS numerical simulations through use of parallel processing”, Archives of Metallurgy and Materials, Volume 60, Pages 235-238, 2015.
dc.relation.referencesX. Man “A high performance Computing Cloud Computing Environment for machining simulations”, Procedia CIRP 8 57 – 62, 2013.
dc.relation.referencesIsmail Ari Design and implementation of a cloud computing service for finite element analysis, Advances in Engineering Software 60-61 (2013) 122–135.
dc.relation.referencesDazhong Wu Performance Evaluation of cloud-based high-performance computing for finite element analysis Proceedings of the ASME 2015 International Design Engineering Technical Conferences, 2015.
dc.relation.referencesBartosz Balis Leveraging workflows and clouds for a multi-frontal solver for finite element meshes Procedia Computer Science, Volume 51, 2015, Pages 944–953.
dc.relation.referencesHaiming Lin, Xiahu Liu and Kangyu Jia, “A study on linear Elastic Fem by Cloud Computing”, ACM International Conference Proceeding Series, 2013.
dc.relation.referencesJeremy Cohen Nekkloud a software Environment for high order finite element analysis on clusters and clouds, Proceedings - IEEE International Conference on Cluster Computing, ICCC 2013.
dc.relation.referencesZou Xin Structural Finite Element Method based on Cloud Computing, Proceedings - 2012 International Conference on Computer Science and Electronics Engineering.
dc.relation.referencesBai Xiaoyong High performance computing for finite element in cloud, Proceedings -2011 International Conference on Future Computer Sciences and Application.
dc.relation.referencesBook: High Performance Computing and Networking, by Wolfgang Gentzsch, Uwe Harms.
dc.relation.referencesWillem Himpe, “High Performance Computing applied to Dynamic Traffic” Procedia Computer Science 151 (2019) 409–416, Transport and Mobility Leuven, Diestesteenweg 57, 3010 Leuven, Belgium.
dc.relation.referencesMichal Janczykowski, “Large-scale urban traffic simulation with Scala and high-performance computing system” Journal of Computational Science 35 (2019) 91–101, AGH University of Science and Technology, Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, Al.Mickiewicza 30, 30-059 Krakow, Poland.
dc.relation.referencesS.Bastrakov, “High performance computing in biomedical applications” Procedia Computer Science 18 ( 2013 ) 10 – 19, Lobachevski State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950, a Nizhni Novgorod, Russia.
dc.relation.referencesFrancois-Xavier Le Dimet, “High Performance Computing in the Geoscience” Mathematical and Physical Sciences Vol. 462.
dc.relation.referencesJun Fang, “Direct numerical simulation of reactor two-phase flows enabled by high-performance computing” Nuclear Engineering and Design 330 (2018) 409–419, Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, United States.
dc.relation.referencesMarc Garbey, “High Performance Computing for CFD” Department of Computer Science, University of Houston, Houston, TX, USA.
dc.relation.referencesWolfgang Gentzsch, “High performance computing in the cloud” Future Generation Computer Systems 29 (2013) 1407, University of Calabria, Electronics, Informatics and Systems, Cosenza, Italy.
dc.relation.referencesVictor Fernandez, “Cloud Computing” Universidad Técnica Federico Santa María.
dc.relation.referencesJames Byrne, “A Review of Cloud Computing Simulation Platforms and Related Environments” Irish Centre for Cloud Computing and Commerce, Dublin City University, Glasnevin, Dublin 9, Ireland.
dc.relation.referencesSobhanayak Srichandan, “Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm” Future Computing and Informatics Journal 3 (2018) 210-230, Department of Computer Science, IIIT Bhubaneswar, Odisha, India.
dc.relation.referencesAzzedine Boukerche, “Vehicular Cloud Computing: Architectures, Applications, and Mobility” School of Electrical Engineering and Computer Science University of Ottawa Canada.
dc.relation.referencesAntonio Gómez, “An OpenFOAM-based model for heat-exchanger design in the Cloud” Applied Thermal Engineering 139 (2018) 239–255, Nabladot, S.L., WTCZ Torre Oeste, Planta 11, Avda. María Zambrano 31, 50018 Zaragoza, Spain.
dc.relation.referencesSimon Taylor et al, “Enabling Cloud-based Computational Fluid Dynamics with a Platform-as-a Service Solution.
dc.relation.referencesEdgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David Daniel, Richard Graham, and Timothy Woodall, “Open mpi: goals, concept, and design of a next generation mpi implementation”, Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 97-104, January 2004.
dc.relation.referencesS.L. Dixon and C.A. Hall, “Fluids Mechanics and thermodynamics of turbomachinery”, six edition.
dc.relation.referencesKundu, P.K.;COHEN, I.M.;DOWLING, D.R. Fluid mechanics. 5. ed. S.l. Academic Press, 2013. 920 p. ISBN 9780123821003. Citado 2 veces en página 26 y 27.
dc.relation.referencesCengel, Yunus A. and Cimbala, John M. (2014). Fluid Mechanics: Fundamentals and Applications, Third edition, McGraw-Hill.
dc.relation.referencesEndalew Getnet Tsega and V.K. Katiyar, “Finite Element Solution of the Two-dimensional Incompressible Navier-Stokes Equations Using MATLAB”, Applications and Applied Mathematics: An International Journal (AAM), Department of Mathematics, Indian Institute of Technology Roorkee.
dc.relation.referencesW. F. Ames, “Nonlinear partial differential equations in engineering”, Mathematics in Science & Engineering, vol. 18, 527 pages.
dc.relation.referencesEsteban Foronda, “Optimización Topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido” Universidad Nacional de Medellín, Colombia.
dc.relation.referencesSigmund,Ole. (2000). Topology optimization: a tool for the tailoring of structures and materials. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 358, 211-227.
dc.relation.referencesR. T. Haftka and Z. Gürdal, Elements of Structural Optimization, 3rd rev. and expanded Ed., vol. 11. Springer, 1992.
dc.relation.referencesBoom, T. Van Den, & Schutter, B. De. (2007). Optimization in Systems and Control. Delft Center for Systems and Control.
dc.relation.referencesHans A Eschenauer and Niels Olhoff. Topology optimization of continuum structures: a review. Applied Mechanics Reviews, 54 (4):331-390,2001.
dc.relation.referencesA.G.M. Michell, “LVIII. The limits of economy of material in frame-structures, “Philosophical Magazine Series 6, vol 8, no. 47, pp. 589-597,1904.
dc.relation.referencesMartin Philip Bendse and Noboru Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineeting, 71 (2):197-224,1988.
dc.relation.referencesGIN Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural and Multidisciplinary optimization, 21(2):90-108,2001.
dc.relation.referencesCampelo, F., Ram, J. A., & Igarashi, H. (2010), “A survey of topology optimization in electromagnetics: considerations and current trends”.
dc.relation.referencesJoshua D Deaton and Ramana V Grandhi. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization, 49 (1):1-38,2014.
dc.relation.referencesG.I.N. Rozvany, M. Zhou and T.Birker, “Generalized shape optimization without homogenization”, Structural Optimization Vol 4, pp 250-252.
dc.relation.referencesDiego Hayashi Alonso et al., “Topology Optimization applied to the design of 2D swirl flow devices”, Structural Multidisciplinary Optimization, Department of Mechatronics and Mechanical Systems Engineering, Polythechnic School of the University of Sao Paulo, 2018.
dc.relation.referencesZ.Q.Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat”, Energy 40 (2012) pg:107-115, Institute of Mechanical Engineering, China.
dc.relation.referencesT.Lehnhauser, “A numerical approach for shape optimization of fluid flow domains”, Compu. Methods Appl. Mech. Engrg. 194 (2005) pg: 5221-5241, Department of numerical Methods in Mechanical Engineering, Germany.
dc.relation.referencesGerborg-Hansen, A., Sigmund, O., & Haber, R. B. (2005). Topology optimization of channel flow problems. Structural and Multidisciplinary Optimization, 30 (3), 181-192.
dc.relation.referencesRozvany, G. I. N., & Lewinski, “Topology optimization in structural and continuum mechanics”, in CISM International Centre for Mechanical Sciences (vol. 549).
dc.relation.referencesL.F.N.Sá , “Topology optimization Method applied to laminar flow machine rotor design”, Department of Mechatronics and Mechanical Systems Engineering of Escola Politecnica, University of Sao Paulo, 2016.
dc.relation.referencesW.H.Fraser, Flow recirculation in centrifugal pumps, Proceedings of the Tenth Turbomachinery Symposium (1981) 95-100.
dc.relation.referencesB.Klaus, K. Rainer, Analysis of secondary flows in centrifugal impellers, Internat. J.Rotat. Mach. 1 (2005) 45-52.
dc.relation.referencesW. Montealegre Rubio, “Projeto de ‘MEMS’ eletrotermomecânicos usando o método de otimização topológica,” Master’s thesis, Universidade de São Paulo (USP). Escola Politécnica, Brasil, 2005.
dc.relation.referencesKrister Svanberg, “MMA and GCMMA- two methods for nonlinear optimization”, Optimization and System Theory, Stockholm, Sweden.
dc.relation.referencesEduardo Lenz Cardoso and Jun Sergio Ono Fonseca. Complexity control in the topology optimization of continuum structures. Journal of the brazilian society of mechanical sciences and engineering, 25(3):293–301, 2003.
dc.relation.referencesFrancisco Javier Ramírez Gil. Diseño óptimo de micromecanismos tridimensionales con actuación electrotérmica utilizando optimización topológica y unidades de procesamiento gráfico (gpu). M.Sc. Thesis, Facultad de Minas, 2013.
dc.relation.referencesBenito Stradi-Granados, Cloud Computing for Engineers Applications, Springer, School of material Science, Institute of technology of Costa Rica.
dc.relation.referencesD.B.Kirk and W.W.Hwu, Programming Massively Parallel Processors: A Hands-on Approach,1st ed. Morgan Kaufmann, 2010.
dc.relation.referencesRobert Robey, Yuliana Zamora, Parallalel and High Performance Computing.
dc.relation.referencesHorowitz et al. and Rupp, Computational Scientist, https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.
dc.relation.referencesB. Barney, “Introduction to Parallel Computing,” 16-Jul-2012. Online. Available: https://computing.llnl.gov/tutorials/parallel_comp/. Accessed: 23-Apr-2013.
dc.relation.referencesMichael J. Flynn and Kevin W. Rudd, “Parallel architectures”, ACM Computing Surveys, in press.
dc.relation.referencesMd Lokman Hosain, Rebei Bel Fdhila, “Literature review of accelerated CFD Simulation Methods towards Online Application”, Energy Procedia 75 (2015) 3307 – 3314 (2015)"
dc.relation.referencesR. A. Gingold and J.J. Monaghan, “Smoothed particle hydrodynamics:theory and application to non-spherical stars”, Royal Astronomical Society, vol. 181, pp. 375-389, February 1977.
dc.relation.referencesL. Greengard and V. Rokhlin, “A fast algorithm for particle simulations”, Journal of Computational Physics, vol. 73, pp. 325-348, February 1987.
dc.relation.referencesV.D. Kupradze and M.A. Aleksidze, “The method of functional equations for the approximate solution of certain boundary value problems”, USSR Comput. Math. Phys., vol. 4, pp. 82-126, June 1963.
dc.relation.referencesSudarshan Tiwari and Jorg Kuhnert, “Finite poinset method based on the projection method for simulations of the incompressible navier-stokes equations”, Meshfree Methods for Partial Differential Equations, pp. 373-387, July 2011.
dc.relation.referencesKoshizuka and Oka, “Moving particle semi-implicit method” A Meshfree Particle Method for fluid Dynamics, 1st edition, pp. count: 306, June 2018.
dc.relation.referencesArstid, P., “Reduction of process simulation models: a proper orthogonal approach”, P.h.D. Thesis, Technische Universiteit Eindhoven, January 2004.
dc.relation.referencesFrancis H. Harlow and J. Eddie Welch, “Numerical calculation of time dependent viscous incompressible flow of fluid with free surface”, The Physics of Fluids, vol. 8, number 12, December 1965.
dc.relation.referencesThomas A. Brenner et al., “A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition”, Computers & Chemical Engineering, vol. 43, pp. 68-80, April 2012.
dc.relation.referencesO. Buneman, “Dissipation of currents in ionized media”, Physical Review, vol. 115, number 3, February 1959.
dc.relation.referencesJ.P. Christiansen, “Numerical simulation of hydrodynamics by method of point vortices”, Journal of Computational Physics, vol. 13, pp. 363-379, October 1971.
dc.relation.referencesGuo Z. and Shu., “Lattice Boltzman method and its application in engineering”, World Scientific Publishing Company, pp. count: 420, March 2013.
dc.relation.referencesD. Kandhai et al., “A comparison between Lattice-Bolztmann and finite-element simulations of fluid flow in static mixer reactors”, International Journal of Modern Physics C., vol. 9, pp. 1123-1128, September 1998.
dc.relation.referencesJuan Rodríguez Pérez, “Programación Matlab en paralelo sobre Clúster Computacional: Evaluación de prestaciones”, Tesis de grado, Escueal Técnica Superior de Ingeniería de Telecomunicación,Universidad Politécnica de Cartagena, Febrero 2010.
dc.relation.referencesT. Borrvall and J. Petersson, “Large-scale topology optimization in 3D using parallel computing,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 46-47, pp. 6201-6229, Sep.2001.
dc.relation.referencesR. Farber, CUDA Application Design and Development, 1st ed. Morgan Kaufmann, 2011.
dc.relation.referencesHao Che 1, Min Nguyen 1, “Amdahl’s law for multithreaded multicore processors”, J. Parallel Distrib. Compu. 74 (2014) 3056-3069, 1 Department of Computer Science and Engineering, University of Texas at Arlington, TX 76019, USA.
dc.relation.referencesT. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd Revised edition. MIT Press, 2009.
dc.relation.referencesNiels Aage 1 et al, “Topology optimization of large-scale Stokes flow problems”, Struct. Multidisciplinary Optimization (2008) 35:175-180. 1Department of Mechanical Engineering Technical University of Denmark, DK-2800 Lyngby, Denmark.
dc.relation.referencesKentaro Yaji et al, “Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem.
dc.relation.referencesChen C, Yaji K, Yamada T, Izuki K, Nishiwaki S (2017) Local-in-time adjoint-based topology optimization of unsteady fluid flows using the lattice Boltzman method. Mechanical Engineering Journal 4(3):17-00120.
dc.relation.referencesJoe Alexandersen 1 et al, “Large scale three-dimensional topology optimization of heat sinks cooled by natural convection”, International Journal of Heat and Mass Transfer 100 (2016) 876-891. 1Department of Mechanical Engineering Solid Mechanics, Technical University of Denmark, Nils Koppels, Allé, Building 404, DK-2800 Kgs. Lyngby, Denmark.
dc.relation.referencesVivien J. Challis 1, James K. Guest 2, “Level set topology optimization of fluids in Stokes flow”, International Journal for numerical methods in engineering (2009); 79:1284-1308. 1 Department of Mathematics, The University of Queensland, Brisbane, QLD 4072, Australia. 2Department of Civil Engineering, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.
dc.relation.referencesKazuo Yonekura 1, Yoshihiro Kanno 2, “Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function”, Japan J. Indust. Appl. Math. (2016). 1IHI Corporation, Shin-Nakahara-Cho, Isogo-Ku, Yokohama 2358501, Japan. 2Tokyo Institute of Technology, 4259 Nagatsuta-cho,Midori-ku, Yokohama 2268503, Japan.
dc.relation.referencesHernan Villanueva 1, Kurt Maute 2, “CutFEM topology optimization of 3D laminar incompressible flow problems”, Comput. Methods Appl. Mech. Engrg. 1Department of Mechanical Engineering, University of Colorado Boulder, CO 427 UCB, USA. 2Department of Aerospace Engineering, University of Colorado Boulder, Boulder, CO 427 UCB, USA.
dc.relation.referencesSumer B. Dilgen 1 et al, “Density based topology optimization of turbulent flow heat transfer systems”, Structural and Multidisciplinary Optimization (2017). 1Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.
dc.relation.referencesCetin B. Dilgen 1 et al, “Topology optimization of turbulent flows”, Comput. Methods Appl. Mech. Engrg (2017). 1Department of Electrical Engineering, Technical University of Denmark, Denmark.
dc.relation.referencesJoe Alexandersen 1 et al, “Design of passive coolers for light-emitting diode lamps using topology optimization”, International Journal of Heat and Mass Transfer 122 (2018) 138-149. 1Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Nils Koppels Allé, Building 404, DK-2800, Denmark.
dc.relation.referencesMichat Tomasz Jakóbczyk, “Practical Oracle Cloud Infrastructure”, pag. 16.- Bare Metal Machine v.s. Virtual Machine.
dc.relation.referencesWu, C., & Buyya, R., “Cloud Infrastructure Servers. Cloud Data Centers and Cost Modeling, 371-424, (2015).
dc.relation.referencesM. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation, and Practice. Springer, 2010.
dc.relation.referencesY. W. Kwon and H. Bang, The Finite Element Method Using Matlab. CRC Press, 2000.
dc.relation.referencesD.V.Hutton, Fundamentals of Finite Element Analysis,1st ed.McGraw-Hill,2003.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembBombas centrífugas - Diseño
dc.subject.lembCentrifugal pumps - Design
dc.subject.proposalComputación en la nube
dc.subject.proposalComputación Paralela
dc.subject.proposalOptimización Topológica
dc.subject.proposalMétodo de los elementos finitos
dc.subject.proposalEnergía de disipación
dc.subject.proposalVorticidad
dc.subject.proposalEnergy dissipation
dc.subject.proposalVorticity
dc.subject.proposalTopology Optimization
dc.subject.proposalParallel Computing
dc.subject.proposalCloud
dc.subject.proposalCentrifugal pumps
dc.subject.proposalFinite element method
dc.title.translatedDesign of centrifugal pump rotors by using the topology optimization method and parallel cloud computing
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito