Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorZuluaga Castrillón, Carlos Augusto
dc.contributor.advisorRíos Reyes, Carlos Alberto
dc.contributor.authorCastellanos Alarcón, Oscar Mauricio
dc.date.accessioned2022-03-28T20:30:48Z
dc.date.available2022-03-28T20:30:48Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81410
dc.descriptionilustraciones, fotografías, graficas, mapas
dc.description.abstractLas rocas de alta presión del Complejo Arquía, Cordillera Central de Colombia, consisten principalmente de eclogitas retrogradadas y esquistos y neises azules, así como rocas básicas, pelíticas, carbonatadas y ultramáficas metamorfizadas, de protolitos que varían entre basálticos toleíticos tipo N-MORB, a basaltos alcalinos de intra-placa y a basaltos de islas oceánicas, así como un aporte de sedimentos de fuentes oceánicas y continentales. Estas litologías revelan una subducción de régimen térmico tibio, correspondiente a un gradiente aproximado de 10°C/Km, y posteriores procesos de acreción y sutura sobre el margen oeste de la placa suramericana. En el presente estudio se discuten sus implicaciones tectónicas con el fin de plantear un modelo geológico acerca del origen, metamorfismo y exhumación de estas rocas. La trayectoria de P-T se caracteriza por una etapa prógrada que alcanzó la facies eclogita con rangos entre 18-23 kbar y 620-670 °C, mientras que la etapa retrógrada alcanzó las facies epidota-anfibolita y esquistos verdes con rangos entre 9-14 kbar y 540-590 °C. Una granofelsa de cianita, fengita y granate produjo una edad Sm-Nd en granate de 124.2±1.2 Ma con MSWD=1.5 correspondiente a Aptiano-Barremiano, en el Cretácico temprano. Las rocas de alta presión del Complejo Arquía se consideran como el producto de un melange tectónico exhumado por medio de un canal de subducción fósil, como resultado de un proceso convergente de tipo subducción pacífica acrecionaria, suturado en su actual posición tectónica dentro de los Andes Colombianos. (Texto tomado de la fuente)
dc.description.abstractHigh-pressure rocks of the Arquía Complex, Central Cordillera of Colombia, consist mainly of retrograde eclogites and schists and blue gneisses, as well as metamorphosed basic, pelitic, carbonate and ultramafic rocks, of protoliths that vary between toleitic basalts type N-MORB, to intra-plate alkaline basalts and oceanic island basalts, as well as a contribution of sediments from oceanic and continental sources. These lithologies reveal a subduction of a warm thermal regime, corresponding to an approximate gradient of 10 °C/km, and subsequent accretion and suturing processes on the west margin of the South American plate. In this study its tectonic implications are discussed in order to propose a geological model about the origin, metamorphism and exhumation of these rocks. The trajectory of PT is characterized by a prograde stage that reached the eclogite facies with ranges between 18-23 kbar and 620-670 °C, while the retrograde stage reached the epidote-amphibolite and greenschists facies with ranges between 9-14 kbar and 540-590 °C. A granofelsa of kyanite, phengite and garnet produced a Sm-Nd age in garnet of 124.2 ± 1.2 Ma with MSWD = 1.5 corresponding to Aptian-Barremian, in the early Cretaceous. High-pressure rocks of the Arquía Complex are considered to be the product of a tectonic melange exhumed through a fossil subduction channel, as a result of a converging process of a pacific accretionary subduction type, sutured in its current tectonic position within the Colombian Andes.
dc.format.extent303 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc550 - Ciencias de la tierra::552 - Petrología
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.otherSubducción
dc.titleCaracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombia
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Geociencias
dc.contributor.researchgroupTecnicas Aplicadas A Tectonica y Analisis de Cuencas
dc.coverage.regionQuindío, Colombia
dc.coverage.regionPijao, Génova, Quindío
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Geociencias
dc.description.researchareaPetrología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgard, P., Yamato, P., Jolivet, L. y Burov, E. (2009). Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Science Reviews, 92(4), 53–79. Doi:10.1016/j.earscirev.2008.11.002
dc.relation.referencesArcay, D., Tric, E. y Doin, P. (2005). Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics. Physics of the Earth and Planetary Interiors, 149(1), 133-153. Doi: 10.1016y/j.pepi.2004.08.020.
dc.relation.referencesAspden, A. y Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205, 187-204.
dc.relation.referencesBailey, W. (1980). Structure of layer silicates. En: Brindley, G. W. and Brown, G. (eds) Crystal Structures of clay minerals and their X-ray identification. London: Mineralogical Society.
dc.relation.referencesBaldwin, A., Powell, R., Williams, L. y Goncalves, P. (2007). Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield. J. Metamorphic Geol, 25(5), 953–974. Doi:10.1111/j.1525-1314.2007.00737.x
dc.relation.referencesBanno, S. (1970). Classification of eclogites in terms of physical conditions of their origin. Physics of the Earth and Planetary Interiors, 3(45), 405-421. DOI: 10.1016/0031-9201(70)90083-X
dc.relation.referencesBlanco, F., Garcia, A., Rojas, Y., Rodriguez, A., Lázaro, C. y Iturralde, M. (2010). Metamorphic evolution of subducted hot oceanic crust (La Corea Mélange, Cuba). American Journal of Science, 310(4), 889–915. Doi:10.2475/11.2010.01
dc.relation.referencesBlanco, F., Proenza, A., García, A., Tauler, E. y Gali, S. (2011). Serpentinites and serpentinites within a fossil subdution channel: La Corea melange, eastern Cuba. January 2011. Geologica Acta, 9(34), 389-405.
dc.relation.referencesBosch, D., Gabriele, P., Lapierre, H., Malfere, L. y Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): geochemical and isotopic constraints. Tactonophysics, 345(56), 83-1020.
dc.relation.referencesBustamante, A., Juliani, C., Essene, J., Hall, M. y Hyppolito, T. (2012). Geochemical constraints on blueschist- and amphibolite-facies rocks of the Central Cordillera of Colombia: the Andean Barragán region. International Geology Review, 54(9), 1013–1030. http://dx.doi.org/10.1080/00206814.2011.594226
dc.relation.referencesBustamante, A., Juliani, C., Hall, C. y Essene, E. (2011). 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: implications on the styles of accretion in the Northern Andes. Geologica Acta, 9(4), 351-362.
dc.relation.referencesCarswell, A. (1990). Eclogite Facies Rocks. London: Blackie.
dc.relation.referencesCediel, F., Shaw, P. y Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. Mexico and the Caribbean region: plate tectonics, basin formation and hydrocarbon habitats. En C. Bartolini, R. T. Buffler and J. F. Blickwede, American Association of Petroleum Geologists, 2(79), 815-848.
dc.relation.referencesChoi, H., Mukasa, B., Andronikov, V. y Marcano, C. (2007). Extreme Sr-Nd-Pb-Hf isotopic compositions exhibited by the Tinaquillo peridotite massif, northern Venezuela. Implications for geodynamic setting. Contributions to Mineralogy and Petrology, 4(153), 443-463. Doi: 10.1007/s00410-006-0159-3.
dc.relation.referencesChopin, C. (2003). Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 7(212), 1–14.
dc.relation.referencesChristensen, N., Rosenfeld, L. y DePaolo, J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 1(244), 1465-1469.
dc.relation.referencesCloos M., and Shreve R. L. (1988). Subduction-Channel Model of Prism Accretion, Melange formation, sediment subduction and subduction erosion at convergent plate margins: I. Background and Description. Pure and Applied Geophysics, v. 128, 455-500.
dc.relation.referencesCloos, M. y Shreve, R. (1988). Subduction-Channel Model of Prism Accretion, Melange formation, sediment subduction and subduction erosion at convergent plate margins: II. Implications and Discussion. Pure and Applied Geophysics, 12(5), 128, 501-545.
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora A. et al. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 2(22), 382–394. http://dx.doi.org/10.1016/j.lithos.2014.05.031
dc.relation.referencesColeman, G., Lee, E., Beatty, B. y Brannock, W. (1965). Eclogites and Eclogites: Their Differences and Similarities. Geological Society of America Bulletin, 76(5), 1-11. Doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
dc.relation.referencesDharmapriya, P., Malaviarichchi, S., Kriegsman, L., Sajeev, K., Galli, A., Osanai, Y., Subasinghe, N., Dissanayake, C. (2017). Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka. Geoscience Frontiers, 8, 1115-1133.
dc.relation.referencesD’Antonio, M., Kristensen, B. (2004). Serpentinite and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineralogical Magazine, 7(68), 887-904.
dc.relation.referencesDeschamps, F., Godard, M., Guillot, S. y Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos, 4(178), 96-127. Doi: 10.1016/j.lithos.2013.05.019.
dc.relation.referencesDoglioni, C., Tonarini, S. y Innocenti, F. (2009). Mantle wedge asymmetries and geochemical signatures along W- and E-NE-directed subduction zones. Lithos, 4(113), 179-189. Doi: 10.1016/j.lithos.2009.01.012.
dc.relation.referencesDragovic, B., Baxter, F. y Caddick, J. (2015). Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece. Planetary Science Letters, 413(15) 111–122. http://dx.doi.org/10.1016/j.epsl.2014.12.024
dc.relation.referencesDucea, N., Jibamitra, G., Erin, R., Patchett, J., Weiji, C., Clark, I. (2003) Sm-Nd dating of spatially controlled domains of garnet single crystals: a new method of high-temperature thermochronology. Earth and Planetary Science Letters, 4(213), 31-42.
dc.relation.referencesDuque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. Second ISAG, International Symposium on Andean Geodynamics, Oxford (UK). Extended Abstracts, 8(5), 359-362.
dc.relation.referencesEndo, S., Wallis, R., Tsuboi, M., Aoya, M. y Uehara, I. (2012). Slow subduction and buoyant exhumation of the Sanbagawa eclogite. Lithos, 46(7), 183-201
dc.relation.referencesErnst, G. (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices—implications for arcs and continental growth. Physics of the Earth and Planetary Interiors, 1(27), 253–275.
dc.relation.referencesEscuder, J. y Pérez, A. (2006). Subduction-related P–T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. Int J Earth Sci, 5(95), 995–1017. Doi 10.1007/s00531-006-0079-5
dc.relation.referencesEscuder, J., Friedman, R., Castillo, M., Jabites, J. y Pérez-, A. (2011). Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: Insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos, 5(127), 483–504. Doi:10.1016/j.lithos.2011.09.015.
dc.relation.referencesEscuder, J., Pérez, A., Booth, G. y Valverde, P. (2011). Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: Implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge. Lithos, 8(125), 190–210. Doi:10.1016/j.lithos.2011.02.006
dc.relation.referencesEssene, J., Fyfe, W. (1976). Omphacite in Californian metamorphic rocks. Contributions in Mineralogy and Petrology, 15, 1-23.
dc.relation.referencesFaryad, S. y Kachlík, V. (2013). New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31, 63-82. http://www.bgs.ac.uk/scmr/scmr_home_main.html
dc.relation.referencesFederico, L., Capponi, G., Crispini, L. y Scambelluri, M. (2004). Exhumation of alpine high-pressure rocks: Insights from petrology of eclogite clasts in the Tertiary Piedmontese basin (Ligurian Alps, Italy). Lithos, 74(1-2), 21-40. Doi: 10.1016/j.lithos.2003.12.001
dc.relation.referencesFederico, L., Crispín, L., Scambelluri, M. y Capón, G. (2007). Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35(7) 499–502.
dc.relation.referencesFeininger, T. (1978). Geologic map of western El Oro Province. 1/50000. Quito, Ecuador: Escuela Politecnica Nacional.
dc.relation.referencesFeininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from the Andes of Ecuador. Journal of Petrology, 21(1), 107-140.
dc.relation.referencesFesta, A., Pini, A., Dilek, Y. y Codegone, G. (2010). Mélanges and mélanges-formong processes: a historical overview and new concepts. International Geology review, 52(12), 1040-1105.
dc.relation.referencesFitzherbert, J., Clarke, G. y Powell R. (2005). Preferential retrogression of high-P metasediments and the preservation of blueschist to eclogite facies metabasite during exhumation, Diahot terrane, NE New Caledonia. Lithos, 83(12), 67-96.
dc.relation.referencesGarcia, A., Blanco, I., Ruiz, E., Moreno, M., Toro, L., Gomez, A., et al. (2011). Thermobarometry of amphibolites from the Arquía Complex (Central Colombia): Geodynamic implications. Memorias XIV Congreso Latinoamericano de Geología, 4(2), 11-129.
dc.relation.referencesGarcía, A., Proenza, J. y Iturralde, M. (2011). Subduction Zones of the Caribbean: the sedimentary, magmatic, metamorphic and ore-deposit records. UNESCO/iugs igcp Project 546 Subduction Zones of the Caribbean. Geologica Acta, 9(34), 217-224. Doi: 10.1344/105.000001745.
dc.relation.referencesGarcia, A., Torres, R., Millan, G., Monie, P. y Schneider, J. (2002). Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction?. J Metamorph Geol, 20(5), 581–598.
dc.relation.referencesGarcía, C., Ríos, C., Castellanos, O. y Mantilla, L. (2017). Petrology, geochemistry and geochronology of the Arquía complex´s metabasites at the Pijao-Génova sector, central cordillera, Colombian Andes. Boletín de Geología UIS, 39(1), 105–126.
dc.relation.referencesGatewood, M., Dragovic, B., Stowell, H., Baxter, F., Hirsch, D. y Bloomc, R. (2015). Evaluating chemical equilibrium in metamorphic rocks using major element and Sm–Nd isotopic age zoning in garnet, Townshend Dam, Vermont, USA. Chemical Geology, 4(15), 151–168. http://dx.doi.org/10.1016/j.chemgeo.2015.02.017
dc.relation.referencesGerya, T., Stöckhert, B. y Perchuk, A. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 5(21), 6-19.
dc.relation.referencesGomez, T., Karsten, L. y Sanchez, V. (1997). Phase relationships and P-T conditions of coexisting eclogite-blueschists and their transformation to greenschist-facies rocks in the Nerkau Complex (Northern Urals). Tectonophysics, 5(276), 195-216.
dc.relation.referencesGonzález, H. (1997). Metagabros y Eclogitas asociadas en el area de Barragán, Departamento del Valle, Colombia. Geología Colombiana, 22(5), 151-170.
dc.relation.referencesGreen, C., White, W., Diener, A., Powell, R., Holland, J. y Palin, R. (2016). Activity–composition relations for the calculation of partial melting equilibria for metabasic rocks. J. Metamorph. Geol, 3(34), 845–869.
dc.relation.referencesGrosse, E. (1926). El Terciario Carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia, entre el río Arma y Sacaojal. Berlín: Ernst Vohsen.
dc.relation.referencesGuillot, S., Hattori, K., Agard, P., Schwartz, S. y Vidal O. (2009). Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Springer, 4(4), 175–205
dc.relation.referencesHacker, R. y Gerya, T. (2013). Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 4(603), 79–88.
dc.relation.referencesHermann, J., Müntener, O. y Scambelluri, M. (2000). The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 4(327), 225–238.
dc.relation.referencesHey, H. (1954). A new review of the chlorites. Mineralogical Magazine, 3(30), 277-292. Holdaway, J. (1971). Stability of andalusite and aluminum silicate phase diagram. American Journal of Sciences, 5(271), 97-131.
dc.relation.referencesHolland, B. y Powell, R. (2003). Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 5(145), 492–501.
dc.relation.referencesHolland, B. y Powell, R., (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 1(29), 333–383.
dc.relation.referencesHyppolito, T., Angiboust, S., Juliani, C., Glodny, J., Garcia, A., Calderón, M. et al. (2016). Eclogite-, amphibolite- and blueschist-facies rocks from Diego de Almagro Island (Patagonia): Episodic accretion and thermal evolution of the Chilean subduction interface during the Cretaceous. Lithos 4(264), 422–440. http://dx.doi.org/10.1016/j.lithos.2016.09.001
dc.relation.referencesHyppolito, T., Cambeses, A., Angiboust, S., Raimondo, T., García, A. & Juliani, C. (2018). Rehydration of eclogites and garnet-replacement processes during exhumation in the amphibolite facies. Geological Society London Special Publications, 5(478), 1-63. Doi: 10.1144/SP478.3
dc.relation.referencesJohn, T., Scherer, E., Schenk, V., Herms, P., Halama, R. y Garbe, D. (2010) Subducted seamounts in an eclogite-facies opholite sequence: the Andean raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 4(159), 265-284.
dc.relation.referencesKatzir, Y., Avigad, D., Matthews, A., Garfunkel, Z. y Evans, W. (2000). Origin, HP/LT metamorphism and cooling of ophiolitic melanges in southern Evia (NW Cyclades). J. metamorphic Geol, 2(12), 699–718.
dc.relation.referencesKerr, C. y Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 4(33), 269-272.
dc.relation.referencesKerr, C., Marriner, F., Tarney, J., Nivia, A., Saunders, D., Thirlwall, F. y Sinton, C. (1997). Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 1(38), 677–702.
dc.relation.referencesKorenaga, J. y Karato, S. (2008). A new analysis of experimental data on olivine rheology. Journal of geophysical research. Solid Earth. AGU Journal, 113(2), 1-23. Doi: 10.1029/2007JB005100.
dc.relation.referencesKrebs, M., Schertl, H., Maresch, W. y Draper, G. (2011). Mass flow in serpentinite-hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). J Asian Earth Sci, 2(42), 569–595.
dc.relation.referencesKylander, A., Hacker, R., Johnson, M., Beard, L., Mahlen, N. y Lapen, J. (2007). Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chemical Geology, 4(242), 137–154. Doi:10.1016/j.chemgeo.2007.03.006.
dc.relation.referencesKylander, R., Hacker, R. y Mattinson, G. (2012). Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 5(4), 115–120
dc.relation.referencesLázaro, C., Blanco, F., Proenza, A., Rojas, Y., Neubauer, F., Núñez, K., et al. (2016) Petrogenesis and 40Ar/39Ar dating of proto-forearc crust in the Early Cretaceous Caribbean arc: The La Tinta mélange (eastern Cuba) and its easterly correlation in Hispaniola. International Geology Review, 58(8), 1020-1040. http://dx.doi.org/10.1080/00206814.2015.1118647
dc.relation.referencesLeake, E. (1978). Nomenclature of Amphiboles. American Mineralogist, 6(63), 1023-1052.
dc.relation.referencesLi, L., Gao, J. y Wang, S. (2016). A subduction channel model for exhumation of oceanic-type high-pressure to ultrahigh-pressure eclogite-facies metamorphic rocks in SW Tianshan, China. Science China Earth Sciences. Science China Press and Springer-Verlag Berlin Heidelberg. Geochimica et Cosmochimica Acta, 5(65), 1-16. Doi: 10.1007/s11430-016-5103-7
dc.relation.referencesLi, L., Klemd, R., Gao, J. y John, T. (2016). Poly-cyclic metamorphic evolution of eclogite: Evidence for multistage burial-exhumation cycling in a subduction channel. Journal of Petrology, 57(5), 119–146.
dc.relation.referencesLi, P., Rahn, M. y Bucher, K. (2004). Serpentinites of the Zermatt-Saas ophiolite complex and their evolution. Journal of Metamorphic Geology, 1(22), 159-177. Doi: 10-1111/j.1525-1314.2004.00503.x.
dc.relation.referencesLi, S., Jagoutz, E., Chen, Y. y Li, Q. (2000). Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6), 1077-1093.
dc.relation.referencesLi, Z., Yang, J., Xu, Z., Li, T., Xu, X., Ren, Y. y Robinson, P. (2009). T. Geochemistry and Sm–Nd and Rb–Sr isotopic composition of eclogite in the Lhasa terrane, Tibet, and its geological significance. Lithos, 5(109), 240–247. Doi:10.1016/j.lithos.2009.01.004.
dc.relation.referencesLiou, G., Ernst, G., Zhang, Y., Tsujimori T. y Jahn, M. (2009). Ultrahigh pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 2(35), 199–231.
dc.relation.referencesLiu, L., Wang, C., Cao, T., Chen, L., Yang, Q. y Zhu, H. (2012). Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 6(1), 10-26.
dc.relation.referencesLiu, L., Zhang, D., Chen, L., Yang, X., Luo, H. y Wang, C. (2014). Implications based on LA‐ICP‐MS zircon U–Pb ages of eclogite and its country rock from Jianggalesayi Area, Altyn Tagh, China. Earth Science Frontiers, 14(4), 98-107.
dc.relation.referencesLuais, B., Duchêne, S. y De Sigoyerb, J. (2001). Sm–Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks. Tectonophysics, 342(2), 1– 22.
dc.relation.referencesLudwig, R. (2008). A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center Special Publication, 5(4), 1-77.
dc.relation.referencesMallmann, G., O’Neill, H.S.C., 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology. 50, 1765–1794.
dc.relation.referencesMarchesi, C. Garrido, J., Godard, M., Belly, F. y Ferré, E. (2009). Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chemical Geology, 226(5), 171-186.
dc.relation.referencesMaresch, V. y Abraham, K. (1981). Petrography, mineralogy and metamorphic evolution of an eclogite from the Island of Margarita, Venezuela. Journal of Petrology, 22(9), 337-362.
dc.relation.referencesMaresch, V., Kluge, R., Baumann, A., Pindell, J., Krückhans, G., y Stanek, P. (2009). The occurrence and timing of high-pressure metamorphism on Margarita Island, Venezuela: A constraint on Caribbean-South America interaction. Geological Society London Special Publications, 328(1), 705-741. DOI: 10.1144/SP328.28
dc.relation.referencesMaresch, V., Urbani, F., Schertl, P. y Stanek, P. (2010). Subduction/accretion-related high-pressure rocks of Margarita Island, Venezuela. Subduction zoners of the Caribbean, 4(1), 1-28.
dc.relation.referencesMaruyama, S., Liou, G. y Terabayashi, M. (1996). Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(4), 485–594.
dc.relation.referencesMattinson, G., Wooden, L., Liou, G. Bird, K. y Wu, L. (2006). Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China. American Journal of Science, 306(59), 683-711.
dc.relation.referencesMaya, M. y González, H. (1995). Unidades Litodémicas en la Cordillera Central de Colombia. Boletín Geológico Ingeominas, 35(23), 43-57.
dc.relation.referencesMcCourt, W. y Feininger, T. (1984). High pressure metamorphic rocks in the Central Cordillera of Colombia. British Geological Survey Reprint Series, 85(1), 28-35.
dc.relation.referencesMcCourt, W. (1984). The Geology of the Central Cordillera. The Department of Valle del Cauca, Quindío and (N. W.) Tolima. Cali: INGEOMINAS-Misión Británica B.G.S.
dc.relation.referencesMcCourt, W. (1985). Geología de la Plancha 262 – Génova. Esc. 1:100.000. Bogotá: INGEOMINAS.
dc.relation.referencesMcCourt, W., Mosquera, D., Nivia, A. y Nuñez, A. (1984). Mapa geológico preliminar de la Plancha 243 - Armenia. Esc. 1:100.000. Armenia: INGEOMINAS.
dc.relation.referencesMcCourt, W., Mosquera, D., Nivia, A. y Núñez, A. (1985). Geología de la Plancha 243 – Armenia. Esc. 1:100.000. Bogotá: INGEOMINAS.
dc.relation.referencesMcDonough, F. y Sun, S. (1995). The composition of the Earth. Chemical Geology, 120(5), 223-253.
dc.relation.referencesMiddlemost, A. (1994). Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3), 215-224. Doi: 10.1016/0012-8252(04)90029-9.
dc.relation.referencesMiyagi, Y. y Takasu, A. (2005). Prograde eclogites from the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt, central Shikoku, southwest Japan. The Island Arc, 5(14), 215–235.
dc.relation.referencesMiyashiro, A., (1994). Metamorphic Petrology. London: UCL Press Limited.
dc.relation.referencesMorimoto, N. (1988). Nomenclature of pyroxenes. Mineralogical Magazine, 52(4), 535-550.
dc.relation.referencesMosquera, D. (1978). Geología del Cuadrángulo K-8 Manizales. Bogota: INGEOMINAS.
dc.relation.referencesMurcia, A. y González, H. (1980). Una contribución al conocimiento de los esquistos de Glaucofano en Colombia. Popayán: INGEOMINAS.
dc.relation.referencesMurcia, A., y Cepeda, H. (1991). Mapa geológico de la Plancha 429 – Pasto; Escala 1:100.000. Bogota: INGEOMINAS.
dc.relation.referencesMurcia, A., y Cepeda, H. (1991a). Mapa geológico de la Plancha 410 – La Unión; Escala 1:100.000. Bogota: INGEOMINAS.
dc.relation.referencesNakano, N., Osanai, Y., Sajeev, K., Hayasaka, Y., Miyamoto, T., Minh, N., et al. (2010). Triassic eclogite from northern Vietnam: inferences and geological significance. J. metamorphic Geol, 28(7), 59–76.
dc.relation.referencesNivia, A., Marriver, G. y Kerr, A. (1996). El Complejo Quebradagrande una posible cuenca marginal intracratónica del Cretáceo inferior en la Cordillera Central de los Andes Colombianos. Bogotá: Congreso Colombiano.
dc.relation.referencesNorth American Commission on Stratigraphic Nomenclature. (2005). North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 89(11), 1547 – 1591.
dc.relation.referencesNúñez, A. y Murillo, A. (1978). Esquistos de Glaucofana en el Municipio de Pijao, Quindío (Colombia). Ibagué: INGEOMINAS.
dc.relation.referencesNúñez, A. (1979). Metamorfismo regional en la parte media de la Cordillera Central de Colombia. Ibagué: INGEOMINAS.
dc.relation.referencesOrrego, A., Cepeda, H. y Rodríguez, G. (1980). Esquistos glaucofánicos en el área de Jambaló, Cauca (Colombia). Nota Preliminar. Geología Norandina, 1(5), 5-10.
dc.relation.referencesOrrego, A., Restrepo, J., Tousaint, J. y Linares, E. (1980). Datación de un esquisto sericítico de Jambaló - Cauca. Geol. Univ. Nal, 25(1), 1-56.
dc.relation.referencesOta, T., Terabayashi, M. y Katayama, I. (2004). Thermobaric structure and metamorphic evolution of the Iratsu eclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos, 73(12), 95-126.
dc.relation.referencesPalmeri, R., Chmielowski, R., Sandroni, S., Talarico, F. y Ricci. A. (2009). Petrology of the eclogites from western Tasmania: Insights into the Cambro-Ordovician evolution of the paleo-Pacific margin of Gondwana. Lithos, 109(4), 223-239.
dc.relation.referencesPardo, A. y Moreno, M. (2001). Estratigrafía del occidente colombiano y su relación con la evolución de la Provincia Ignea Cretácea del Caribe Colombiano. Manizales: Congreso Colombiano.
dc.relation.referencesParkinson, J. y Pearce, A. (1998). Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), 1577-1618.
dc.relation.referencesParkinson, J., Pearce, A., Thirlwall, F., Johnson, M. y Ingram, G. (1992). Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. Proceedings of Ocean Drilling Program. Scientific Results, 4(125), 487–506.
dc.relation.referencesPearce, A. y Peate, W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual review of Earth and Planetary Sciences, 23(44), 251-285.
dc.relation.referencesPearce, A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental basalts and mantle xenoliths, 3(45), 230-249.
dc.relation.referencesPindell, J. y Dewey, J. (1982). Permo-Triassic reconstruction of Western Pangea and the evolution of the gulf of Mexico/Caribbean region. Tectonics, 1(12), 179–211.
dc.relation.referencesPindell, J. (1985). Alleghenian reconstruction and subsequent evolution of the gulf of Mexico, Bahamas, and Proto Caribbean. Tectonics, 4(1), 1–39.
dc.relation.referencesPindell, L. y Kennan, L., (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James, K., Lorente, M.A., Pindell, J. (eds.). The geology and evolution of the region between North and South America. Geological Society of London, 328(1), 1-55.
dc.relation.referencesPlank, T. (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 9321-944. Doi: 10.1093/petrology/egi005.
dc.relation.referencesPowell, R. y Holland, J. (1988). An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol, 6(45), 173–204.
dc.relation.referencesRaymond, A. (1984). Melanges: Their Nature, Origin, and Significance. USA: GSA.
dc.relation.referencesRestrepo, J. y Toussaint, F. (1974). Algunas consideraciones sobre la evolución estructural de los Andes Colombianos. [Tesis de grado, Universidad Nacional de Colombia]. Medellín, Colombia.
dc.relation.referencesRestrepo, J. y Toussaint, J. (1975). Edades radiométricas de algunas rocas de Antioquia - Colombia. [Tesis de grado, Universidad Nacional de Colombia]. Medellín, Colombia.
dc.relation.referencesRestrepo, J., Ordoñez, O. y Moreno, M. (2009). A comment on “The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombias Andes by Nivia et al.” Journal of South America Earth Sciences, 56(28), 204-205.
dc.relation.referencesRíos, C., Castellanos, O. y García, C. (2017). Petrogenetic significance of the eclogites from the Arquía Complex on southwestern Pijao, Central Cordillera (Colombia Andes). DYNA, 84(200), 291-301. http://dx.doi.org/10.15446/dyna.v84n200.48166
dc.relation.referencesRíos, C., Castellanos, O., Ríos, V. y Gómez, C. (2008). Una contribución al estudio de la evolución tectono-metamórfica de las rocas de alta-P, Cordillera Central, Andes Colombianos. Geología Colombiana, 4(33), 3-22.
dc.relation.referencesRubatto, D. y Hermann, J. (2001). Exhumation as fast as subduction? Geology, 4(29), 3–6.
dc.relation.referencesRuiz, C., Blanco, F., Toro, M., Moreno, M., Vinasco, J., García, A., et al. (2012). Geoquímica y petrología de las metabasitas del Complejo Arquía (Municipio de Santafé de Antioquia y Río Arquía, Colombia): Implicaciones geodinámicas. Boletín Ciencias de la Tierra, 32(5), 65-80.
dc.relation.referencesSalters, J. y Stracke, A. (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). Doi: 10.1029/2003GC000597.
dc.relation.referencesSavov, P., Guggino, S., Ryan, G., Fryer, P. y Mottl, J. (2005). Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778–779, South Chamorro and Conical Seamounts. In: Shinohara, M., Salisbury, M.H., Richter, C. Proceedings of the Ocean Drilling Program, 4(195), 1–49.
dc.relation.referencesSavov, P., Ryan, G., D'Antonio, M., Kelley, K. y Mattie, P. (2005). Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6(4), 1-90. http://dx.doi.org/10.1029/2004GC000777.
dc.relation.referencesSchilling, G., Zajec, M., Evans, R., Johnston, T., White, W., Devine, D., et al. (1983). Petrologic and geochemical variations along the Mid-Atlantic Ridge from. Am. J. Sci, 27(73), 283, 510–586.
dc.relation.referencesShreve, L. y Cloos, M. (1986). Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 5(91), 10229
dc.relation.referencesSisson, B., Ertran, E. y Avé, H. (1997). High-pressure (~2000 MPa) Kyanite- and Glaucophane-bearing pelitic schist and eclogite from Cordillera de la Costa Belt, Venezuela. Journal of Petrology, 38(1), 65-83.
dc.relation.referencesSong, S., Zhang, L., Niu Y., Su L., Song, B. y Liu, D. (2006). Evolution from Oceanic Subduction to Continental Collision: a Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3), 435-455. Doi:10.1093/petrology/egi080
dc.relation.referencesSpear, S. (1993). Metamorphic phase equilibria and Pressure-Temperature- Time paths. Washington: Mineralogical Society of America.
dc.relation.referencesSpear, F., Daniel, C. (1998). 3-dimensional imaging of garnet porphyroblast sizes and chemical zoning. Nucleation and growth history in the garnet zone. Geological Materials Research, 1, 1-43.
dc.relation.referencesSpear, F., Daniel, C., (2001). Diffusion control of garnet growth, Harpswell Neck, Maine, USA. Journal of Metamorphic Geology. 19, 179-195.
dc.relation.referencesSkora, S., Baumgartner, L. (2007). Garnet growth mechanism and equilibrium domains in alpine eclogites. 5th Swiss Geoscience Meeting, Geneve.
dc.relation.referencesDaniel, C., Spear, F. (1998). 3-Dimensional patterns of garnet nucleation and growth. Geology, 26, 503-506.
dc.relation.referencesSpikings, R., Cochrane R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W. et al. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research 27(5), 95–139. http://dx.doi.org/10.1016/j.gr.2014.06.004
dc.relation.referencesStowell, H. (2017). Sm-Nd procedures17.docx; HHS. Sm-Nd sample and isotope Lab techniques. USA: University of Alabama.
dc.relation.referencesStowell, H., Taylor, L., Tinkham, K., Goldberg, S. y Ouderkirk, A. (2001). Contact metamorphic P-T-t Paths from Sm-Nd Garnet Ages, Phase Equilibria Modeling, and Thermobarometry: Garnet Ledge, Southeastern Alaska. Journal of Metamorphic Geology, 19(5), 645-660.
dc.relation.referencesStowell, H., Tulloch, A., Zuluaga, A. y Koenig, A., (2010). Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland. Chemical Geology, 2(73), 91-110.
dc.relation.referencesStreckeisen, A. (1974). Classification and nomenclature of plutonic rocks. Recommendations of the IUGS Subcommission on the systematics of igneous rocks. Geologische Rundschau. Internationale Zeitschrift fur Geologie. Stuttgart, 63(5), 773-785.
dc.relation.referencesTakasu, A. y Kohsoka, Y. (1987). Eclogites from the Iratsu epidote amphibolite mass in the Sambagawa metamorphic belt, Besshi district, Japan. Journal of the Geological Society of Japan, 1(93), 517-520.
dc.relation.referencesTakasu, A. y Makino, K. (1980). Stratigraphy and geologic structure of the Sambagawa metamorphic belt in the Besshi district, Shikoku, Japan-Reexamination of the recumbent structures. Earth Science, 5(34), 16-26.
dc.relation.referencesTakasu, A. y Orozbaev, R. (2009). Variety of chemical compositions of amphiboles from eclogites in the Aktyuz area, northern Kyrgyz Tien-Shan. Japan: Shimane University.
dc.relation.referencesTakasu, A. (1979). Basic intrusive rocks and metamorphism of the Sambagawa belt in the Besshi district, Shikoku. Magma, 56, 8-14.
dc.relation.referencesTakasu, A. (1984). Prograde and retrograde eclogites in the Sambagawa metamorphic belt, Besshi district, japan. Journal of Petrology, 25(4), 619-643.
dc.relation.referencesTakasu, A. (1986). Resorption-overgrowth of garnet from the Sambagawa politic schists in the contact aureole of the Sebadani metagabbro mass, Shikoku, Japan. Journal of the Geological Society of Japan, 92(4), 781-792.
dc.relation.referencesTakasu, A. (1989). P-T histories of peridotite and amphibolite tectonic blocks in the Sambagawa metamorphic belt, Japan. Evolution of the Metamorphic Belts (eds Daly, J. S., Cliff, R. A. and Yardley, B. W. D.), Geological Society Special Publication, 43(4), 533-538.
dc.relation.referencesTakasu, A., Dallmeyer, R. (1990). 40Ar/39Ar mineral age constraints for the tectonothermal evolution of the Sambagawa metamorphic belt, central Shikoku, Japan: a Cretaceous accretionary prism. Tectonophysics, 1(85), 11-139.
dc.relation.referencesTerabayashi, M., Okamoto, K., Yamamoto, H., Kaneko, Y., Ota, T., Maruyama, S. (2005). Accretionary Complex Origin of the Mafic-Ultramafic Bodies of the Sanbagawa Belt, Central Shikoku, Japan. International Geology Review, 47(4), 1058–1073.
dc.relation.referencesToussaint, F. y Restrepo, J. (1978). Edad cretácea de una anfibolita granatífera de Pijao – Quindío. [Tesis de maestría Universidad Nacional de Colombia]. Medellín, Colombia.
dc.relation.referencesToussaint, F. (1996). Evolución geológica de Colombia durante el Cretácico. Medellín: Universidad Nacional de Colombia.
dc.relation.referencesTsai, H., Iizuka, Y. y Ernst, G. (2013). Diverse mineral compositions, textures, and metamorphic P–T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asian Earth Sciences 63(2), 218–233. http://dx.doi.org/10.1016/j.jseaes.2012.09.019
dc.relation.referencesUrbani, F., Camposano, A., Audemard, F. y Avé Lallemant, H. (2005). Cordillera de la Costa. Venezuela: Geological Field Trip.
dc.relation.referencesVance, D. y O’Nions, K. (1990). Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth and Planetary Science Letters, 97(8), 227-240.
dc.relation.referencesVance, D. y O’Nions, K. (1992). Prograde and retrograde thermal histories from the central Swiss Alps. Earth and Planetary Science Letters, 1(14), 113-129.
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. y Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(5), 875–896.
dc.relation.referencesVinasco, J., Cordani, G., Gonzalez, H., Weber, M. y Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo­Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(1), 355­371.
dc.relation.referencesVitale, A., Groppo, C. y Hetenyi, G. (2011). Coexistence of lawsonite –bearing eclogite and blueschist: phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. Journal of Metamorphic Petrology, 29(5), 583-600.
dc.relation.referencesWhite, W., Powell, R. y Johnson, E. (2014). The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J. Metamorph. Geol., 32(4), 809–828.
dc.relation.referencesWinkler, G. (1978). Petrogénesis de Rocas Metamórficas. Madrid: H. Blume.
dc.relation.referencesWu, Q., Feng, M. y Song, G. (1993). Metamorphism and deformation of bluescist belt and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology, 11(8), 523-536.
dc.relation.referencesXia, B., Zhang, L. y Xia, Y. (2014). Petrology and phase equilibrium of newly found eclogites from Kekesu Valley in eastern part of southwest Tianshan HP-UHP metamorphic belt, China and its tectonic significance. Science China Earth Sciences, 57(1), 117-131.
dc.relation.referencesXie, Z., Zhenga, F., Jahn, M., Ballevre, M., Chen, J., Gautier, P., et al. (2004). Sm–Nd and Rb–Sr dating of pyroxene–garnetite from North Dabie in east-central China: problem of isotope disequilibrium due to retrograde metamorphism. Chemical Geology, 206(24), 137– 158. Doi:10.1016/j.chemgeo.2004.01.013
dc.relation.referencesYamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L. y Tiberi, C. (2007). Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps). Journal of Geophysics Research, 112: B07410
dc.relation.referencesYang, J. (1991). Eclogites, Garnet Pyroxenites and related ultrabasic in Shandong and North Jiangsu of East China (in Chinese with brief summary in English). Geological Publishing House, 99(4), 1-180.
dc.relation.referencesYang, S., Liu, L., Wu, L., Xu, Q., Shi, D. y Chen, Y. (2005). Two ultrahigh-pressure metamorphic events recognized in the Central Orogenic Belt of China: evidence from the U–Pb dating of coesite bearing zircons. International Geology Review, 47(4), 327-343.
dc.relation.referencesYardley, D., MacKenzie, S. y Guilford, C. (1990). Atlas of metamorphic rocks and their textures. Addison Wesley Longman Limited, 5(120), 25-65.
dc.relation.referencesZhang, X., Mattinson, G., Yu, Y., Li, P. y Meng, C. (2010). U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28(5), 955-978.
dc.relation.referencesZhang, X., Meng, C. y Wan, S. (2007). A cold early Paleozoic subduction zone in the north Qilian Mountains, NW China: Petrological and U–Pb geochronological constraints. Journal of Metamorphic Geology, 25(5), 285-304.
dc.relation.referencesZhang, X., Zhang, M., Xu, Q., Yang, S. y Cui, W. (2001). Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(5), 187-206.
dc.relation.referencesZheng, F., Chen, X. y Zhao F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475(5), 327–358.
dc.relation.referencesZheng, F., Chen, X., Xu, Z. y Zhang, B. (2016). The transport of water in subduction zones. Science China, Earth Sciences, 59(4), 651-682.
dc.relation.referencesZheng, F., Fu, B., Gong, B. y Li, L. (2003). Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(44), 105-161.
dc.relation.referencesZheng, F., Zhang, L., McClelland, C. y Cuthbert, S. (2012). Processes in continental collision zones: Preface. Lithos, 256(1), 1–9.
dc.relation.referencesZheng, F., Zhao, F. y Chen, X. (2013). Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58(5), 4371–4377.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMetamorfismo
dc.subject.proposalRocas de alta presión
dc.subject.proposalCanal de subducción
dc.subject.proposalComplejo Arquía
dc.subject.proposalEclogitas retrogradadas
dc.subject.proposalEsquistos azules
dc.subject.proposalMetamorphism
dc.subject.proposalHigh-pressure rocks
dc.subject.proposalSubduction channel
dc.subject.proposalArquia Complex
dc.subject.proposalRetrogressed eclogites
dc.subject.proposalBlueschists
dc.subject.unescoRoca metamórfica
dc.subject.unescoMetamorphic rocks
dc.title.translatedCharacterization of high pressure metamorphism for eclogites and blueschists, emplaced within the Arquía Complex, in the Pijao – Génova sector (Quindío), west flank, Central Cordillera, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito