Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorVargas Duarte, Jimmy Jolman
dc.contributor.advisorGómez Ramírez, Arlen Patricia
dc.contributor.authorGalindo Acosta, Camilo Andrés
dc.date.accessioned2022-04-08T20:03:53Z
dc.date.available2022-04-08T20:03:53Z
dc.date.issued2021-04
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81453
dc.descriptionilustraciones, diagramas, fotografías, mapas, tablas
dc.description.abstractLas principales especies de escarabajos asociados a las instalaciones avícolas son Alphitobius diaperinus, Carcinops pumilio y Carcinops troglodytes y pueden actuar como reservorios y/o vectores de microorganismos. El objetivo de este trabajo fue identificar la población coleópteros presentes en granjas de pollo de engorde en una de las regiones avícolas más importantes del país como lo es Fusagasugá, Cundinamarca. Se tomaron muestras cada 7 días hasta el día 35, se realizó conteo de coleópteros y posteriormente se hizo una clasificación taxonómica y genómica con el uso del gen de ADN mitocondrial (mtDNA) citocromo oxidasa I (COI); también se realizó un estudio de poblaciones bacterianas presentes en A. diaperinus y en cama de los galpones con el uso del gen 16S rRNA. La clasificación taxonómica de los coleópteros dio como más frecuente a A. diaperinus con 95,1% y C. troglodytes con 4,9%. Del gen COI se obtuvo que A. diaperinus tiene una similitud del 98,68% con genes de referencia pertenecientes a la misma especie, C. troglodytes no posee un genoma de referencia con el cual hacer un comparativo, por lo tanto, el gen COI detectado en esta investigación se convierte en el primer reporte para la construcción del genoma de esta especie. El microbioma presente en A. diaperinus dio una alta presencia de bacterias de la familia Enterobacteriaceae, principalmente Salmonella enterica y Escherichia coli. En la cama de la unidad productiva muestreada, la familia con mayor presencia fue Staphylococcaceae. Los resultados de esta investigación corroboran la utilidad de las herramientas moleculares para la caracterización de insectos como complemento a las claves taxonómicas reportadas. Asimismo, los análisis del gen 16S rRNA demuestran la importancia que desempeñan estos coleópteros como reservorios de patógenos de interés en salud pública humana y veterinaria. Esta investigación también se destaca como el primer reporte de secuencias y microbiota de coleópteros asociados a granjas avícolas. (Texto tomado de la fuente)
dc.description.abstractThe main species of beetles associated with poultry facilities are Alphitobius diaperinus, Carcinops pumilio and Carcinops troglodytes and can act as reservoirs and / or vectors for microorganisms. The objective of this work was to identify the coleopteran population present in broiler chicken farms in one of the most important poultry regions of the country, such as Fusagasugá, Cundinamarca. Samples were taken every 7 days until day 35, a coleopteran content was made and later a taxonomic and genomic classification was made with the use of the mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene; A study of bacterial populations present in A. diaperinus and in the litter of the houses was also carried out with the use of the 16S rRNA gene. The taxonomic classification of coleopterans gave the most frequent A. diaperinus with 95.1% and C. troglodytes with 4.9%. From the COI gene it was obtained that A. diaperinus has a similarity of 98.68% with reference genes belonging to the same species, C. troglodytes does not have a reference genome with which to make a comparison, therefore, the COI gene detected in this research becomes the first report for the construction of the genome of this species. The microbiome present in A. diaperinus gave a high presence of bacteria of the Enterobacteriaceae family, mainly Salmonella enterica and Escherichia coli. In the litter of the sampled productive unit, the family with the highest presence was Staphylococcaceae. The results of this research corroborate the usefulness of molecular tools for the characterization of insects as a complement to the reported taxonomic keys. Likewise, the analysis of the 16S rRNA gene shows the importance that these coleopterans play as reservoirs of pathogens of interest in human and veterinary public health. This research also stands out as the first report of sequences and microbiota of coleopterans associated with poultry farms.
dc.format.extentxx, 127 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colomboia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.titleIdentificación molecular por medio del Gen COI de escarabajos de importancia sanitaria en la región avícola de Fusagasugá, Cundinamarca
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupControl Genetico en Salud Animal
dc.coverage.cityFusagasugá
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaBiología molecular de agentes infecciosos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Biotecnología (IBUN)
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogota, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAballay, F. H., Arriagada, G., Flores, G. E., & Centeno, N. D. (2013). An illustrated key to and diagnoses of the species of histeridae (coleoptera) associated with decaying carcasses in Argentina. ZooKeys, 261, 61–84. https://doi.org/10.3897/zookeys.261.4226
dc.relation.referencesAbdisa, T., & Tagesu, T. (2017). Review on Newcastle Disease of Poultry and its Public Health Importance. Journal of Veterinary Science & Technology, 8(3). https://doi.org/10.4172/2157-7579.1000441
dc.relation.referencesAgabou, A., & Alloui, N. (2010). Importance of Alphitobius diaperinus (Panzer) as a Reservoir for Pathogenic Bacteria in Algerian Broiler Houses. Veterinary World, 3(2), 71–73.
dc.relation.referencesAlborzi, A., & Rahbar, A. (2012). Introducing Alphitobius diaperinus, (insecta: Tenebrionidae) as a New Intermediate Host of Hadjelia truncata (nematoda). Iranian Journal Parasitology, 7(2), 92–98.
dc.relation.referencesAnonymous. (2009). Darkling beetle found to carry Salmonella. Poultry World, 163(1), 13.
dc.relation.referencesAxtell, R., & Arends, J. (1990). Ecology and management of arthropod pests of poultry. Annual review of entomology. Vol. 35, 35, 101–126. https://doi.org/10.1146/annurev.ento.35.1.101
dc.relation.referencesAxtell, R. C. (1999). Poultry integrated pest management: Status and future. Integrated Pest Management Reviews, 4(1), 53–73. https://doi.org/10.1023/A:1009637116897
dc.relation.referencesBates, C., Hiett, K., & Stern, N. (2004). Relationship of Campylobacter Isolated from Poultry and from Darkling Beetles in New Zealand. Avian Diseases, 48(1), 138–147. https://doi.org/10.1637/7082
dc.relation.referencesBicho, C., Almeida, L., Ribeiro, P., & Júnior, P. (2005). Flutuação populacional circanual de coleópteros em granja avícola ,. Iheringia, Série Zoologia, 95(2), 205–212.
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
dc.relation.referencesCamargo Neto, A., Tallarico, E., Capriogli, M., Soares, V., Meireles, M., & Silva, G. (2006). Seasonal variation of Alphitobius diaperinus population in broiler facilities in the center-north region of the state of São Paulo. Revista Brasileira de Ciência Avícola, 8(3), 183–185. https://doi.org/10.1590/S1516-635X2006000300008
dc.relation.referencesChernaki-Leffer, A., Biesdorf, S., Almeida, L. M., Leffer, E., & Vigne, F. (2002). Isolamento de Enterobactérias em Alphitobius Diaperinus e na Cama de Aviários no Oeste do Estado do Paraná , Brasil Isolation of Enteric and Litter Organisms from Alphitobius Diaperinus in Brooder Chickens Houses in West of Parana State , Brazil. Revista Brasileira de Ciencia Avicola, 4(3), 243–247.
dc.relation.referencesChernaki, A., & Almeida, L. (2001). Morfologia dos estágios imaturos e do adulto de Alphitobius diaperinus (Panzer) (Coleoptera, Tenebrionidae). Revista Brasileira de Zoologia, 18(2), 351–363. https://doi.org/10.1590/s0101-81752001000200004
dc.relation.referencesConway, J. (1973). The micro-fauna of Californian-system poultry houses in Britain. British Poultry Science, Vol. 14, pp. 213–216. https://doi.org/10.1080/00071667308416018
dc.relation.referencesCorpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res., 16(22), 10881–10890.
dc.relation.referencesCouteaudier, M., & Denesvre, C. (2014). Marek’s disease virus and skin interactions. Veterinary Research, 45(1), 1–12. https://doi.org/10.1186/1297-9716-45-36
dc.relation.referencesda Silva Soares, C. E., Weber, A., Scussel, V. M., Soares, C. E. da S., Weber, A., Scusse, V., & Scusse, lVildes M. (2018). Stereo and scanning electron microscopy characteristics of poultry breeding beetle (Alphitobius diaperinus) - a filamentous toxigenic fungi carrier. Emirates Journal of Food and Agriculture, 30(2), 150–156. https://doi.org/10.9755/ejfa.2018.v30.i2.1615
dc.relation.referencesDavies, R. H., & Breslin, M. (2003). Persistence of Salmonella Enteritidis Phage Type 4 in the environment and arthropod vectors on an empty free-range chicken farm. 5, 79–84.
dc.relation.referencesDe Las Casas, E., Harein, P., Deshmukh, D., & Pomeroy, B. (1976). Relationship between the lesser mealworm, fowl pox, and Newcastle disease virus in poultry. Journal of economic entomology, 69(6), 775–779. https://doi.org/10.1093/jee/69.6.775
dc.relation.referencesDe Las Casas, E., Harein, P., & Pomeroy, B. (1972). Bacteria and Fungi within the Lesser Mealworm Collected from Poultry Brooder Houses. Environmental Entomology, 1(1), 27–30. https://doi.org/10.1093/ee/1.1.27
dc.relation.referencesde Oliveira, D. G. P., Miguel, R. F., Bonini, A. K., & Angeli Alves, L. F. (2019). Sampling methodology of alphitobius diaperinus (Coleptera: Tenebrionidae) population in poultry houses. Brazilian Archives of Biology and Technology, 62, 2–5. https://doi.org/10.1590/1678-4324-2019180141
dc.relation.referencesDespins, J., & Axtell, R. (1995). Feeding Behavior and Growth of Broiler Chicks Fed Larvae of the Darkling Beetle, Alphitobius diaperinus. Poultry science, 74, 331–336.
dc.relation.referencesDinev, I. (2013). the Darkling Beetle (Alphitobius Diaperinus) – a Health Hazard for Broiler Chicken Production. Trakia Journal of Sciences, 11(1), 1–4.
dc.relation.referencesDunford, J. C., & Kaufman, P. E. (2015). Lesser Mealworm , Litter Beetle , Alphitobius diaperinus ( Panzer ) ( Insecta : Coleoptera : Tenebrionidae ) 1.
dc.relation.referencesEFSA/ECDC. (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. En Euro surveillance : bulletin européen sur les maladies transmissibles = European communicable disease bulletin (Vol. 15). https://doi.org/10.2903/j.efsa.2012.2597
dc.relation.referencesEidson, C., Schmittle, S., Lal, J., & Goode, R. (1971). THE ROLE OF THE DARKLING BEETLE, ALPHITOBIUS DIAPERINUS, IN THE TRANSMISSION OF ACUTE LEUKOSIS IN CHICKENS. Poultry Science, 50(5), 1366–1367. https://doi.org/10.3382/ps.0501542
dc.relation.referencesElowni, E., & Elbihari, S. (1979). Natural and experimental infection of the beetle, Alphitobius diaperinus (Coleoptera: Tenebrionidae) with Choanotaenia infundibulum and other chicken tapeworms. Veterinary Science Communications, 3(1), 171–173. https://doi.org/10.1007/BF02268965
dc.relation.referencesEmanowicz, M., Meade, J., Bolton, D., Golden, O., Gutierrez, M., Byrne, W., … Whyte, P. (2020). The impact of key processing stages and flock variables on the prevalence and levels of The impact of key processing stages and flock variables on the prevalence and levels of Campylobacter on broiler carcasses. Food Microbiology, 95(September). https://doi.org/10.1016/j.fm.2020.103688
dc.relation.referencesEsquivel, J. F., Crippen, T. L., & Ward, L. A. (2012). Improved visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)-Part I: Morphological features for sex determination of multiple stadia. Psyche, 2012. https://doi.org/10.1155/2012/328478
dc.relation.referencesEterradossi, N., & Saif, Y. M. (2013). Infectious Bursal Disease. En Diseases of Poultry: Thirteenth Edition (pp. 219–246). https://doi.org/10.1002/9781119421481.ch7
dc.relation.referencesFAO. (2007). Poultry in the 21st century avian influenza and beyond (O. Thieme and D. Pilling, Ed.). Bangkok.
dc.relation.referencesFENAVI-FONAV. (2019). Boletín FENAVIQUÍN. Programa de estudios Económicos. 1–15.
dc.relation.referencesFENAVI Programa de Estudios Económicos. (2020). Producción de pollo en canal por Departamentos y regiones.
dc.relation.referencesFoo, J. L., Ling, H., Lee, Y. S., & Chang, M. W. (2017). Microbiome engineering: Current applications and its future. Biotechnology Journal, 12(3), 1–9. https://doi.org/10.1002/biot.201600099
dc.relation.referencesGiangrande, A. (2003). Biodiversity, conservation, and the “Taxonomic impediment”. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(5), 451–459. https://doi.org/10.1002/aqc.584
dc.relation.referencesGoodwin, M. A., & Waltman, W. D. (1996). Transmission and Bacteria To Chicks : Darkling Beetles As Vectors of Pathogens. Journal of Applied Poultry Research, 5, 51–55.
dc.relation.referencesGopal, S., Manoharan, P., Kathaperumal, K., Chidambaram, B., & Divya, K. C. (2012). Differential detection of avian oncogenic viruses in poultry layer farms and Turkeys by use of multiplex PCR. Journal of Clinical Microbiology, 50(8), 2668–2673. https://doi.org/10.1128/JCM.00457-12
dc.relation.referencesGorrín, G., Colas, M., Meireles, T., & Pérez, E. (2018). Efecto de la situación sanitaria del galpón de gallinas sobre los estadios larvarios de endoparásitos en los hospederos intermediarios y en el comportamiento productivo. Revista de Investigaciones Veterinarias del Perú, 29(3), 908–915. https://doi.org/10.15381/rivep.v29i3.14828
dc.relation.referencesHalstead, D. (1969). A Key to the Species of Carcinops Marseul (Coleoptera, Histeridae) Associated with Stored Products, Including C. troglodytes (Paykull) New to this Habitat. Journal of Stored Products Research, 5(1945), 83–85.
dc.relation.referencesHazeleger, W. C., Bolder, N. M., Beumer, R. R., & Jacobs-Reitsma, W. F. (2008). Darkling beetles (Alphitobius diaperinus) and their larvae as potential vectors for the transfer of Campylobacter jejuni and Salmonella enterica serovar Paratyphi B Variant Java between successive broiler flocks. Applied and Environmental Microbiology, 74(22), 6887–6891. https://doi.org/10.1128/AEM.00451-08
dc.relation.referencesHowland, D., & Hewitt, G. (1995). Phylogeny of the Coleoptera based on mitochondrial cytochrome oxidase I sequence data. Insect Molecular Biology, 4(3), 203–215. https://doi.org/10.1111/j.1365-2583.1995.tb00026.x
dc.relation.referencesIchinosé, T., Shibazaki, S., & Ohta, M. (1980). Studies on the Biology and Mode of Infestation of the Tenebrionid Beetle, Alphitobius diaperinus PANZER, Harmful to Broiler-Chicken Houses. Journal of Japan Society of Applied Animal Entomology (Otokun) (1980), 24(3), 167–174.
dc.relation.referencesJaimes Olaya, J. A., Gómez Ramírez, A. P., Álvarez Espejo, D. C. M., Soler Tovar, D., Romero Prada, J. R., & Villamil Jiménez, L. C. (2010). Las enfermedades infecciosas y su importancia en el sector avícola. Revista de Medicina Veterinaria, (20), 49–61. https://doi.org/10.19052/mv.582
dc.relation.referencesJapp, A., Bicho, C., & Fischer, A. (2010). Importância e medidas de controle para Alphitobius diaperinus em aviarios. Ciencia Rural, 40(7), 1668–1673.
dc.relation.referencesJung, S. W., Min, H. K., Kim, Y.-H. H., Choi, H. A., Lee, S. Y., Bae, Y. J., & Paek, W. K. (2016). A DNA barcode library of the beetle reference collection (Insecta: Coleoptera) in the National Science Museum, Korea. Journal of Asia-Pacific Biodiversity, 9(2), 234–244. https://doi.org/10.1016/j.japb.2016.03.005
dc.relation.referencesKaufman, P. E., & Rutz, D. A. (2000). Pest Management Recommendations for Poultry.
dc.relation.referencesKlimaszewski, J., & Watt, J. (1997). Coleoptera: family-group review and keys to identification. En Fauna of New Zealand Number 37 (p. 199). Lincoln, Canterbury, New Zealand: Manaaki Whenua Press, Landcare Research, P.O. Box 40, LincoIn, Canterbury, N.Z.
dc.relation.referencesKress, W. J., & Erickson, D. L. (2008). DNA barcodes: Genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2761–2762. https://doi.org/10.1073/pnas.0800476105
dc.relation.referencesKrishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S16–S21. https://doi.org/10.12980/APJTB.4.2014C95
dc.relation.referencesKumar S., Stecher G., T. K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
dc.relation.referencesLi, X. (2019). Metagenomic screening of microbiomes identifies pathogen-enriched environments. Environmental Sciences Europe, 31(1). https://doi.org/10.1186/s12302-019-0217-x
dc.relation.referencesLiu, R., Wang, Z., Liu, X., Chen, A., & Yang, S. (2020). Rapid on-site detection of Salmonella pullorum based on lateral flow nucleic acid assay combined with recombinase polymerase amplification reaction. Poultry Science, 99(12), 7225–7232. https://doi.org/10.1016/j.psj.2020.10.020
dc.relation.referencesLodish H, Berk A, Zipursky SL, et al. (2000). Integrating Cells into Tissues. En W. H. Freeman (Ed.), Moecular Cell Biology (4a ed.). New York.
dc.relation.referencesLunt, D., Zhang, D., Szymura, J., & Hewitt, G. (1996). The insects and COI gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5(November 1995), 153–165.
dc.relation.referencesMagliano, A., Hava, J., Di Giulio, A., Barone, A., & De Liberato, C. (2017). Mortalità in nidiacei di piccioni causata da larve di coleottero. Veterinaria Italiana, 53(2), 175–177. https://doi.org/10.12834/VetIt.721.3495.2
dc.relation.referencesMcAllister, J., Steelman, C., Newberry, L., & Skeeles, J. (1995). Isolation of infectious bursal disease virus from the lesser mealworm, Alphitobius diaperinus (Panzer). Poultry science, 74(1), 45–49. https://doi.org/10.3382/ps.0740045
dc.relation.referencesMcAllister, J., Steelman, C., & Skeeles, J. (1994). Reservoir competence of the lesser mealworm (Coleoptera: Tenebrionidae) for Salmonella typhimurium (Eubacteriales: Enterobacteriaceae). Journal of Medical Entomology, 31(3), 369–372. https://doi.org/10.1093/jmedent/31.3.369
dc.relation.referencesMcAllister, J., Steelman, C., Skeeles, J., Newberry, L., & Gbur, E. (1996). Reservoir Competence of Alphitobius diaperinus (Coleoptera: Tenebrionidae) for Escherichia coli (Eubacteriales: Enterobacteriaceae). Journal of Medical Entomology, 33(6), 983–987. https://doi.org/10.1093/jmedent/33.6.983
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2019). Sector Avícola. Dirección de cadenas Pecuarias, 38.
dc.relation.referencesMollenhorst, H., van Woudenbergh, C. J., Bokkers, E. G. M., & de Boer, I. J. M. (2005). Risk factors for Salmonella enteritidis infections in laying hens. Poultry Science, 84(8), 1308–1313. https://doi.org/10.1093/ps/84.8.1308
dc.relation.referencesMoore, M. R., & Kaufman, P. E. (2017). A Hister Beetle Carcinops pumilio (Erichson) (Insecta: Coleoptera: Histeridae: Dendrophilinae: Paromalini). Edis, 2017(1), 13. https://doi.org/10.32473/edis-in1163-2017
dc.relation.referencesMoraes, D. M. C., Andrade, M. A., Duarte, S. C., Bastos, T. S. A., Arnhold, E., Jayme, V. de S., & Nunes, I. A. (2016). Phenotypic and molecular detection of Salmonella sp. on growing, rearing and production phases in a commercial group of laying hens. Pesquisa Veterinaria Brasileira, 36(6), 503–508. https://doi.org/10.1590/S0100-736X2016000600007
dc.relation.referencesMottet, A., & Tempio, G. (2017). L1 Global poultry production: current state and future outlook and challenges.
dc.relation.referencesMustač, S., Merdic, E., Drvenkar, D., & Skvorc, V. (2016). Distribution of lesser mealworm, Alphitobius diaperinus (coleoptera:Tenebrionidae) in poultry house throughout three successive poultry breeding cycles. Moscenicka Draga.
dc.relation.referencesNei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. New York: Oxford University Press.
dc.relation.referencesNolan, L. K., Barnes, H. J., Vaillancourt, J., Abdul-aziz, T., & Logue, C. M. (2013). Colibacillosis. En Diseases of Poultry: Thirteenth Edition (pp. 751–805).
dc.relation.referencesOakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann, R. J., Tillman, G. E., … Seal, B. S. (2013). The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057190
dc.relation.referencesOlsen, R. H., Bisgaard, M., Christensen, J. P., Kabell, S., & Christensen, H. (2016). Pathology and Molecular Characterization of Escherichia Coli Associated With the Avian Salpingitis-Peritonitis Disease Syndrome . Avian Diseases, 60(1), 1–7. https://doi.org/10.1637/11237-071715-reg.1
dc.relation.referencesOsimani, A., Milanović, V., Garofalo, C., Cardinali, F., Roncolini, A., Sabbatini, R., … Aquilanti, L. (2018). Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. International Journal of Food Microbiology, 276(March), 54–62. https://doi.org/10.1016/j.ijfoodmicro.2018.04.013
dc.relation.referencesPayne, L. N., & Venugopal, K. (2000). Neoplastic diseases: Marek’s disease, avian leukosis and reticuloendotheliosis. OIE Revue Scientifique et Technique, 19(2), 544–564. https://doi.org/10.20506/rst.19.2.1226
dc.relation.referencesPentinsaari, M., Hebert, P. D. N., & Mutanen, M. (2014). Barcoding beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE, 9(9), e108651. https://doi.org/10.1371/journal.pone.0108651
dc.relation.referencesPereira, P. R. V. da S., & Almeida, L. M. de. (2001). Chaves para a identificação dos principais Coleoptera (Insecta) associados com produtos armazenados. Revista Brasileira de Zoologia, 18(1), 271–283. https://doi.org/10.1590/s0101-81752001000100031
dc.relation.referencesPetherbridge, L., Brown, A. C., Baigent, S. J., Howes, K., Sacco, M. A., Osterrieder, N., & Nair, V. K. (2004). Oncogenicity of Virulent Marek’s Disease Virus Cloned as Bacterial Artificial Chromosomes. Journal of Virology, 78(23), 13376–13380. https://doi.org/10.1128/jvi.78.23.13376-13380.2004
dc.relation.referencesPfeiffer, D., & Axtell, R. (1980). Coleoptera of Poultry Manure in Caged-layer Houses in North Carolina. Environmental Entomology, 9(1), 21–28. https://doi.org/10.1093/ee/9.1.21
dc.relation.referencesPinto, D. M., Duarte, J., Ribeiro, P., Silveira Júnior, P., & Silveira, P. (2009). Collection of Coleoptera from a poultry farm in Pelotas, Rio Grande do Sul, Brazil. Ciência Rural, 39(2), 319–324. https://doi.org/10.1590/s0103-84782008005000060
dc.relation.referencesPinto, D. M., Ribeiro, P. B., & Silveira Jr, P. (2010). Comparison of methods to monitor populations of Alphitobius diaperinus (PANZER, 1797) (Coleoptera: Tenebrionidae) in poultry farm, Pelotas, RS, Brazil. Semina: Ciencias Agrarias, 31(2), 295–300.
dc.relation.referencesPinto, D., Ribeiro, P., & Bernardi, E. (2007). Avaliação De Métodos Para Monitorar Populações De Artrópodes Em Granja Avícola , Em Pelotas , Rio Grande Do Sul, Brasil. Arq. Inst. Biol, 74(2), 95–99.
dc.relation.referencesQuince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Corrigendum: Shotgun metagenomics, from sampling to analysis. Nature biotechnology, 35(12), 1211. https://doi.org/10.1038/nbt1217-1211b
dc.relation.referencesR. C. Axtell. (1994). BIOLOY AND ECONOMIC IMPORTANCE OF THE DARKLING BEETLE IN POULTRY HOUSES. 8–17.
dc.relation.referencesRamírez, A., Varón, A., & Sánchez, M. (2017). Microbiological Profile of Three Commercial Poultry Processing Plants in Colombia. Journal of Food Protection, 80(12), 1980–1986. https://doi.org/10.4315/0362-028X.JFP-17-028
dc.relation.referencesRetamales, J., Vivallo, F., & Robeson, J. (2011). Insects associated with chicken manure in a breeder poultry farm of Central Chile. Arch Med Vet, 43, 79–83.
dc.relation.referencesRevolledo, L., & Ferreira, A. J. P. (2012). Current perspectives in avian salmonellosis : Vaccines and immune mechanisms of protection. Journal of Applied Poultry Research, 21(2), 418–431. https://doi.org/10.3382/japr.2011-00409
dc.relation.referencesRiesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: Genomic Analysis of Microbial Communities. Annual Review of Genetics, 38(1), 525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216
dc.relation.referencesRobert C., E. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.
dc.relation.referencesRueda, L., & Axtel, R. (1997). Arthropods in Litter of Poultry (Broiler Chicken and Turkey) Houses. Journal of Agricultural Entomology, 14(1), 81–91.
dc.relation.referencesSafrit, R.D. and Axtell, R. C. (1984). Evaluation of sampling methods for Darking beetlles in the litter of turkey and broiler houses.pdf. Poultry science, 63, 2368–2375.
dc.relation.referencesSaitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
dc.relation.referencesSalin, C., Delettre, Y. R., Cannavacciuolo, M., & Vernon, P. (2000). Spatial distribution of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) in the soil of a poultry house along a breeding cycle. European Journal of Soil Biology, 36(2), 107–115. https://doi.org/10.1016/S1164-5563(00)01054-2
dc.relation.referencesSantoro, P. H., Neves, P. M. O. J., Alexandre, T. M., Gavaguchi, S. A., & Alves, L. F. A. (2010). Carcinops troglodytes (Erichson) (Coleoptera: Histeridae) predando larvas de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) em aviários. Neotropical Entomology, 39(5), 831–832. https://doi.org/10.1590/S1519-566X2010000500026
dc.relation.referencesSingh, S., Mishra, V., & Bhoi, T. (2017). Insect Molecular Markers and its Utility-A Review. International Journal of Agriculture, Environment and Biotechnology, 10(4), 469. https://doi.org/10.5958/2230-732x.2017.00058.4
dc.relation.referencesSkov, M., Spencer, A., Hald, B., Petersen, L., Nauerby, B., Carstensen, B., & Madsen, M. (2004). The Role of Litter Beetles as Potential Reservoir for Salmonella enterica and Thermophilic Campylobacter spp. Between Broiler Flocks. Avian Diseases, 48(1), 9–18. https://doi.org/10.1637/5698
dc.relation.referencesStafford III, K., Collison, C., Burg, J., & Cloud, J. (1988). Distribution and monitoring lesser mealworms, hide beetles, and other fauna in high-rise, caged-layer poultry houses’. J. Agrie. Entornol., 5(2), 89–102.
dc.relation.referencesTempleton, J., De Jong, A., Blackall, P., & Miflin, J. (2006). Survival of Campylobacter spp. in darkling beetles (Alphitobius diaperinus) and their larvae in Australia. Applied and Environmental Microbiology, 72(12), 7909–7911. https://doi.org/10.1128/AEM.01471-06
dc.relation.referencesTeshome, M., Fentahunand, T., & Admassu, B. (2015). Infectious bursal disease (Gumboro disease) in chickens. British Journal of Poultry Sciences, 4(1), 22–28. https://doi.org/10.5829/idosi.bjps.2015.4.1.95172
dc.relation.referencesTobin, P. C., & Pitts, C. W. (1999). Flotation method for extracting insects from poultry manure samples. Journal of Medical Entomology, 36(1), 121–123. https://doi.org/10.1093/jmedent/36.1.121
dc.relation.referencesTownsend, L. (1988). LESSER MEALWORMS OR LITTER BEETLES (Núm. ENTFACT-507).
dc.relation.referencesTuntufye, H. N., Lebeer, S., Gwakisa, P. S., & Goddeeris, B. M. (2012). Identification of avian pathogenic Escherichia coli genes that are induced In vivo during infection in chickens. Applied and Environmental Microbiology, 78(9), 3343–3351. https://doi.org/10.1128/AEM.07677-11
dc.relation.referencesVaughan, J., Turner, E., & Ruszler, P. (1984). Infestation and Damage of Poultry House Insulation by the Lesser Mealworm, Alphitobius diaperinus (Panzer),. Poultry Science, 63(6), 1094–1100. https://doi.org/10.3382/ps.0631094
dc.relation.referencesVittori, J., Shocken-Iturrino, R., Prochnon, K., Martins, C., Barbosa, G., de Souza, L., & Pigatto, C. (2007). Alphitobius diaperinus como veiculador de Clostridium perfringens em granjas avícolas do interior paulista – Brasil Alphitobius. Ciência Rural, 37(3), 894–896.
dc.relation.referencesWales, A., Carrique-Mas, J., Rankin, M., Bell, B., Thind, B., & Davies, R. (2010). Review of the Carriage of Zoonotic Bacteria by Arthropods, with Special Reference to Salmonella in Mites, Flies and Litter Beetles. Zoonoses and Public Health, 57(5), 299–314. https://doi.org/10.1111/j.1863-2378.2008.01222.x
dc.relation.referencesWatson, D., Guy, J., & Stringham, S. (2000). Limited Transmission of Turkey Coronavirus in Young Turkeys by Adult Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of Medical Entomology, 37(3), 480–483. https://doi.org/10.1603/0022-2585(2000)037[0480:ltotci]2.0.co;2
dc.relation.referencesWatson, D. W., Kaufman, P. E., Rutz, D. A., & Glenister, C. S. (2001). Impact of the darkling beetle Alphitobius diaperinus (Panzer) on establishment of the predaceous beetle Carcinops pumilio (Erichson) for Musca domestica control in caged-layer poultry houses. Biological Control, 20(1), 8–15. https://doi.org/10.1006/bcon.2000.0874
dc.relation.referencesWatt, J. C. (1974). A revised subfamily classification of tenebrionidae (Coleoptera). New Zealand Journal of Zoology, 1(4), 381–452. https://doi.org/10.1080/03014223.1974.9517846
dc.relation.referencesWenzel, R. L. (2011). The Histerid beetles of New Caledonia (Coleoptera: Histeridae). En The Histerid beetles of New Caledonia (Coleoptera: Histeridae). https://doi.org/10.5962/bhl.title.2791
dc.relation.referencesWilson, J. J., Brandon-Mong, G. J., Gan, H. M., & Sing, K. W. (2019). High-throughput terrestrial biodiversity assessments: mitochondrial metabarcoding, metagenomics or metatranscriptomics? Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 30(1), 60–67. https://doi.org/10.1080/24701394.2018.1455189
dc.relation.referencesZhang, D., & Hewitt, G. (1997). Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology, 6(1996), 143–150.
dc.relation.referencesZhang, Q., & Sahin, O. (2013). Campylobacteriosis Pathobiology and. En Diseases of Poultry: Thirteenth Edition (pp. 737–750).
dc.relation.referencesZheng, L., Crippen, T. L., Sheffield, C. L., Poole, T. L., Yu, Z., & Tomberlin, J. K. (2012). Evaluation of Salmonella movement through the gut of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Vector-Borne and Zoonotic Diseases, 12(4), 287–292. https://doi.org/10.1089/vbz.2011.0613
dc.relation.referencesZhou, Y. ying, Kang, X. long, Meng, C., Xiong, D., Xu, Y., Geng, S. zhong, … Jiao, X. an. (2020). Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella Pullorum/Gallinarum identification. Poultry Science, 99(11), 5991–5998. https://doi.org/10.1016/j.psj.2020.07.026
dc.relation.referencesZurek, L., & Ghosh, A. (2014). Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Applied and Environmental Microbiology, 80(12), 3562–3567. https://doi.org/10.1128/AEM.00600-14
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAvícola
dc.subject.proposalAlphitobius diaperinus
dc.subject.proposalCarcinops troglodytes
dc.subject.proposalCitocromo Oxidasa I
dc.subject.proposal16sRNA
dc.subject.proposalEnterobacteriaceae
dc.subject.proposalSalmonella enterica
dc.subject.proposalEscherichia coli
dc.subject.proposalStaphylococcaceae
dc.subject.proposalPoultry
dc.subject.proposalAlphitobius diaperinus
dc.subject.proposalCarcinops troglodytes
dc.subject.proposalCytochrome Oxidase I
dc.subject.proposal16sRNA
dc.subject.proposalEnterobacteriaceae
dc.subject.proposalSalmonella enterica
dc.subject.proposalEscherichia coli
dc.subject.proposalStaphylococcaceae
dc.subject.unescoBiología molecular
dc.subject.unescoMolecular biology
dc.subject.unescoVeterinaria
dc.subject.unescoAve de corral
dc.subject.unescoBiología celular
dc.title.translatedMolecular identification through the COI gene of beetles of sanitary importance in the poultry region of Fusagasugá, Cundinamarca
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito