Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRomero Isaza, Carmen María
dc.contributor.authorBeltran Molina, Yuver Alejandro
dc.date.accessioned2022-05-31T19:39:04Z
dc.date.available2022-05-31T19:39:04Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81465
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLa estabilidad termodinámica del α-quimotripsinógeno A, a pH 2,00, 3,00, 3,50 y en soluciones acuosas de los electrolitos NaCl, KCl, NH4NO3 y (NH4)2SO4 fue analizada por espectroscopía UV-Vis, calorimetría diferencial de barrido (DSC), tensión superficial y por medio de los parámetros de interacción preferencial determinados a partir de medidas de densidad. Los resultados obtenidos a partir de medidas de UV-Vis y DSC determinaron que el aumento en la estabilidad del α-quimotripsinógeno está relacionado con el aumento en la concentración de electrolito y con el aumento del pH. El efecto estabilizante que ejercen las sales sobre la estructura de la proteína aumenta en el siguiente orden: NaCl < NH4NO3 < KCl < (NH4)2SO4 A partir del estudio cinético de adsorción de la proteína en la interfase líquido/aire se determinó que este proceso se puede describir mediante un modelo de tres etapas y los valores obtenidos de la constante cinética k1 indicaron que el paso que controla el proceso de adsorción es la penetración y adsorción de la proteína en la interfase y que este paso es dependiente de la naturaleza y la concentración de las sales. Los resultados obtenidos para los parámetros de interacción preferencial indicaron que todos los electrolitos empleados en este estudio son excluidos de la superficie de la proteína y generan una hidratación preferencial que involucra un aumento en la estabilidad de la estructura nativa del α-quimotripsinógeno. Los resultados presentaron la misma tendencia que los obtenidos a partir de UV-Vis y DSC. (Texto tomado de la fuente).
dc.description.abstractThe thermodynamic stability of α-chymotrypsinogen A, at pH 2.00, 3.00, 3.50 and in aqueous solutions of the electrolytes NaCl, KCl, NH4NO3, and (NH4)2SO4 was analyzed by UV-Vis spectroscopy, differential scanning calorimetry (DSC), surface tension and through the preferential interaction parameters determined from density measurements. The results obtained from UV-Vis and DSC measurements determined that the increase in the stability of α-chymotrypsinogen is related to the increase in the electrolyte concentration as well as the increase in pH. The stabilizing effect of salts on protein structure increases in the following order: NaCl < NH4NO3 < KCl < (NH4)2SO4 From the kinetic study of protein adsorption at the liquid/air interface, it was determined that this process can be described by a three-stage model and the values obtained from the kinetic constant k1 indicate that the step that controls the adsorption process is the protein penetration and adsorption at the interface and this step is dependent on the nature and concentration of the salts. The results obtained for the preferential interaction parameters indicate that all the electrolytes used in this study were excluded from the surface of the protein and generated preferential hydration that involves an increase in the stability of the native structure of α-chymotrypsinogen. The results presented follow the same trend as those obtained from UV-Vis and DSC
dc.format.extentxix, 168 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleEstudio de la estabilidad termodinámica de la proteína α-quimotripsinógeno en soluciones acuosas de electrolitos fuertes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.description.notesIncluye anexos
dc.contributor.researchgroupGrupo de Termodinámica Clásica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaTermodinámica de soluciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesC. Vieille, J.G. Zeikus, Thermozymes: Identifying molecular determinants of protein structural and functional stability, Trends Biotechnol. 14 (6) (1996) 183–190.
dc.relation.referencesD. Voet, J.G. Voet, Bioquimica. 3 ed. Médica Panamericana 2006, Buenos Aires. pp 287-320.
dc.relation.referencesP.J. Halling, Proteins: Structures and molecular properties J. Chem. Technol. Biotechnol. 62 (1) (1995) 105–105
dc.relation.referencesM.K. Campbell, S.O. Farrell, Bioquímica 6 ed. Cengage Learning Latin America 2009, Mexico D.F. pp 200-260
dc.relation.referencesT. McKee, J.R. McKee, Bioquímica: la base molecular de la vida, 2 ed McGraw-Hill. 2014, Mexico D.F. 228–259.
dc.relation.referencesA. V. Finkelstein, O. V. Galzitskaya, Physics of protein folding, Phys. Life Rev. 1 (1) (2004) 23–56.
dc.relation.referencesJ. Berg, J. Tymoczko, L. Stryer, Biochemistry. 5ed Freeman, W. H. & Company, 2012, New York. pp. 83-106, 287-290
dc.relation.referencesC.M. Dobson, Protein folding and misfolding, Nature.426 (6968) (2003) 884–890
dc.relation.referencesM. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs, Food Control. 12 (7) (2001) 409–417.
dc.relation.referencesL. Zhang, L. Wang, Y.T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping hydration dynamics around a protein surface, Proc. Natl. Acad. Sci. 104 (47) (2007) 18461–18466.
dc.relation.referencesS. Ebbinghaus, S.J Kim, M. Heyden, An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. U. S. A. 104 (52) (2007) 20749–20752.
dc.relation.referencesV.A. Parsegian, Protein-water interactions, Int. Rev. Cytol. 215 (2) (2002) 1–31.
dc.relation.referencesP.L. Privalov, Thermodynamics of protein folding, J. Chem. Thermodyn. 29 (4) (1997) 447–474.
dc.relation.referencesR.L. Baldwin, How Hofmeister ion interactions affect protein stability, Biophys. J. 71 (4) (1996) 2056-2063.
dc.relation.referencesG. Vogt, S. Woell, P. Argos, Protein thermal stability, hydrogen bonds, and ion pairs, J. Mol. Biol. 269 (4) (1997) 631–643.
dc.relation.referencesW. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14 (1) (1959) 1–63.
dc.relation.referencesD. Lorient, J.C. Cheftel, J.L Cuq, Proteínas alimentarias: bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas 1 ed. Acribia S.A 1989, España. pp 150-200.
dc.relation.referencesT.P. Creamer, R. Srinivasan, G D. Rose, Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility, Biochemistry. 36 (10) (1997) 2832–2835.
dc.relation.referencesP.L. Privalov, S.J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem. 39 (1) (1988) 191–234.
dc.relation.referencesC. Scharnagl, M. Reif, J. Friedrich, Stability of proteins: Temperature, pressure and the role of the solvent, Biochim. Biophys. Acta - Proteins Proteomics. 1749 (2) (2005) 187–213.
dc.relation.referencesK.A. Dill, Dominant forces in protein folding, Biochemistry. 29 (31) (1990) 7133–7155.
dc.relation.referencesC.N. Pace, J.M. Scholtz, G.R. Grimsley, Forces stabilizing proteins, FEBS Lett. 588 (14) (2014) 2177–2184.
dc.relation.referencesK. Takano, Y. Yamagata, K. Yutani, Contribution of polar groups in the interior of a protein to the conformational stability, Biochemistry. 40 (15) (2001) 4853–4858.
dc.relation.referencesC.I. Branden, J. Tooze, Introduction to Protein Structure, 2ed Garland Science 1999, Nueva York. pp 50-120
dc.relation.referencesC.N. Pace, H. Fu, K.L. Fryar, J. Landua, S.R. Trevino, B.A. Shirley, M.N. Hendricks, S. Iimura, K. Gajiwala, J.M. Scholtz, G.R. Grimsley, Contribution of hydrophobic interactions to protein stability, J. Mol. Biol. 408 (3) (2011) 514–528.
dc.relation.referencesJ.D. Bernal, Structure of proteins, Nat. 143 (625) (1939) 663–667.
dc.relation.referencesC. Tanford, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84 (22) (1962) 4240–4247.
dc.relation.referencesL. Wesson, D.. Eisenberg, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci. 1 (2) (1992) 227–235.
dc.relation.referencesS. Romero, D.A. Fernández, M. Costas, Estabilidad termodinámica de proteínas, Educ. Química. 29 (3) (2012) 3-17.
dc.relation.referencesA. Cooper, Protein: A comprehensive treatise. Thermodynamics of protein folding and stability. JAI Press Inc 1999, Scotland, UK. pp 217-270
dc.relation.referencesC. Goméz, J. Sancho, Estructura de proteínas 1 ed. Ariel S.A 2003, Barcelona España. pp 147-198
dc.relation.referencesJ. Sancho, The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time, Arch. Biochem. Biophys. 531 (2) (2013) 4–13.
dc.relation.referencesF. Franks, Protein stability: the value of old literature, Biophys. Chem. 96 (2) (2002) 117–127.
dc.relation.referencesF. Franks, Protein stability: the value of old literature, Biophys. Chem. 96 (2) (2002) 117–127.
dc.relation.referencesT.M. Devlin, Bioquímica : libro de texto con aplicaciones clínicas 4 ed. Reverte S.A, 2004, Barcelona España. pp 365-450
dc.relation.referencesJ.F. Brandts, The thermodynamics of protein denaturation. I. The denaturation of chymotrypsinogen, J. Am. Chem. Soc. 86 (20) (1964) 4291–4301.
dc.relation.referencesR.H. Hatley, F. Franks, The cold-induced denaturation of lactate dehydrogenase at sub-zero temperatures in the absence of perturbants, FEBS Lett. 257 (1) (1989) 171–173.
dc.relation.referencesM. Tollinger, K.A. Crowhurst, L.E. Kay, J.D. Forman-Kay, Site-specific contributions to the pH dependence of protein stability, Proc. Natl. Acad. Sci. 100 (8) (2003) 4545–4550.
dc.relation.referencesN.V. Russo, D.A. Estrin, M.A Marti, A.E. Roitberg, pH-Dependent conformational changes in proteins and their effect on experimental pKa: the case of Nitrophorin 4, PLoS Comput. Biol. 8 (11) (2012) 1-10.
dc.relation.referencesD.L. Nelson, M.M Cox, Lehninger principles of biochemistry 7ed. W.H. Freeman 2017, New York. pp 293–340.
dc.relation.referencesV.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny, High pressure effects on protein structure and function., Proteins. 24 (1) (1996) 81–91.
dc.relation.referencesB.B. Boonyaratanakornkit, C.B. Park, D.S. Clark, Pressure effects on intra- and intermolecular interactions within proteins, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1595 (1-2) (2002) 235–249.
dc.relation.referencesC. Mattos, D. Ringe, Proteins in organic solvents, Curr. Opin. Struct. Biol. 11 (6) (2001) 761–764.
dc.relation.referencesL. Dai, A.M. Klibanov, Striking activation of oxidative enzymes suspended in nonaqueous media, Proc. Natl. Acad. Sci. 96 (17) (1999) 9475–9478.
dc.relation.referencesK.R. Babu, D.J. Douglas, Methanol-induced conformations of myoglobin at pH 4.0, Biochemistry. 39 (47) (2000) 14702–14710.
dc.relation.referencesS.K. Awasthi, S.C. Shankaramma, S. Raghothama, P. Balaram, Solvent-induced-hairpin to helix conformational transition in a designed peptide, Biopolymers. 58 (5) (2001) 465–476.
dc.relation.referencesT.V. Burova, N. V. Grinberg, V.Y. Grinberg, R. V. Rariy, A.M. Klibanov, Calorimetric evidence for a native-like conformation of hen egg-white lysozyme dissolved in glycerol, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1478 (2) (2000) 309–317.
dc.relation.referencesJ.F. Back, D. Oakenfull, M.B. Smith, Increased thermal stability of proteins in the presence of sugars and polyols, Biochemistry. 18 (23) (1979) 5191–5196.
dc.relation.referencesD.R Canchi, A.E. Garcia, Cosolvent effects on protein stability, Annu. Rev. Phys. Chem. 64 (1) (2013) 273–293.
dc.relation.referencesS.N. Timasheff, Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated, Adv. Protein Chem. 51 (1) (1998) 355–432.
dc.relation.referencesM.H. Priya, H.S. Ashbaugh, M.E. Paulaitis, Cosolvent preferential molecular interactions in aqueous solutions, J. Phys. Chem. B. 115 (46) (2011) 13633–13642.
dc.relation.referencesP.E. Smith, Chemical potential derivatives and preferential interaction parameters in biological systems from Kirkwood-Buff theory, Biophys. J. 91 (3) (2006) 849–856.
dc.relation.referencesM.R. Eftink, The use of fluorescence methods to monitor unfolding transitions in proteins., Biophys. J. 66 (2) (1994) 482-501.
dc.relation.referencesT. V. Chalikian, J. Völker, D. Anafi, K.J. Breslauer, The native and the heat-induced denatured states of α-chymotrypsinogen A: thermodynamic and spectroscopic studies, J. Mol. Biol. 274 (2) (1997) 237–252.
dc.relation.referencesS. Komal, D. Shashank, Relationship between the wavelength maximum of a protein and the temperature dependence of its intrinsic tryptophan fluorescence intensity, Eur. Biophys. J. 39 (10) (2010) 1445–1451.
dc.relation.referencesL. Hamborg, E.W. Horsted, K.E. Johansson, M. Willemoës, K. Lindorff-Larsen, K. Teilum, Global analysis of protein stability by temperature and chemical denaturation, Anal. Biochem. 605 (1) (2020) 113-133.
dc.relation.referencesC.M. Romero, J.S. Abella, A. Velázquez, J. Sancho, Thermal denaturation of α-chymotrypsinogen A in presence of polyols at pH 2.0 and pH 3.0, J. Therm. Anal. Calorim. 120 (1) (2015) 489–499.
dc.relation.referencesG. Bruylants, J. Wouters, C. Michaux, Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design, Curr. Med. Chem. 12 (17) (2005) 2011–2020.
dc.relation.referencesS.N. Timasheff, Protein-solvent interactions and protein conformation, Acc. Chem. Res. 3 (2) (1970) 62–68.
dc.relation.referencesT. Arakawa, S.N. Timasheff, The stabilization of proteins by osmolytes, Biophys. J. 47 (3) (1985) 411-414.
dc.relation.referencesT. Arakawa, Protein–solvent interaction, Biophys. Rev. 10 (1) (2018) 203-208.
dc.relation.referencesS.N. Timasheff, Solvent effects on protein stability, Curr. Opin. Struct. Biol. 2 (1) (1992) 35–39.
dc.relation.referencesW.H. Stockmayer, Light scattering in multi-component systems, J. Chem. Phys. 18 (58) (1950) 58–61.
dc.relation.referencesG. Scatchard, Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure, J. Am. Chem. Soc. 68 (11) (1946) 2315–2319.
dc.relation.referencesJ.C. Lee, S.N. Timasheff, Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride, Biochemistry. 13 (2) (1974) 257–265.
dc.relation.referencesJ.C. Lee, K. Gekko, S.N. Timasheff, Measurements of preferential solvent interactions by densimetric techniques, Methods Enzymol. 61 (1) (1979) 26–49.
dc.relation.referencesJ.K. Kaushik, R. Bhat, Thermal stability of proteins in aqueous polyol solutions : role of the surface tension of water in the stabilizing effect of polyols, J. Phys. Chem. 102 (36) (1998) 7058–7066.
dc.relation.referencesT.Y. Lin, S.N. Timasheff, On the role of surface tension in the stabilization of globular proteins., Protein Sci. 5 (2) (1996) 372-381.
dc.relation.referencesA. Nicholls, K.A. Sharp, B. Honig, Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins Struct. Funct. Bioinforma. 11 (4) (1991) 281–296.
dc.relation.referencesO. Sinanoglu, S. Abdulnur, Effect of water and other solvents on the structure of biopolymers, Fed. Proc. 24 (1) (1965) 12-23.
dc.relation.referencesR. Breslow, T. Guo, Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers, Proc. Natl. Acad. Sci. 87 (1) (1990) 167–169.
dc.relation.referencesJ.C. Lee, S.N. Timasheff, The stabilization of proteins by sucrose, J. Biol. Chem. 256 (14) (1981) 7193–7201.
dc.relation.referencesT. Arakawa, S.N. Timasheff, Preferential interactions of proteins with salts in concentrated solutions, Biochemistry. 21 (25) (1982) 6545–6552.
dc.relation.referencesT. Arakawa, S.N. Timasheff, Preferential interactions of proteins with solvent components in aqueous amino acid solutions, Arch. Biochem. Biophys. 224 (1) (1983) 169–177.
dc.relation.referencesY. Kita, T. Arakawa, T.Y. Lin, S.N. Timasheff, Contribution of the surface free energy perturbation to protein-solvent interactions, Biochemistry. 33 (50) (1994) 15178–15189.
dc.relation.referencesC.M. Romero, R.A. Albis, N. Mendieta, Influence of 1-butanol, 1,2-butanediol and 1,2,3,4-butanetreol on the adsorption of β-lactoglobulin at the air-water interface, Rev. Colomb. Química. 40 (3) (2011) 367–380.
dc.relation.referencesC.M. Romero, A. Albis, Influence of polyols and glucose on the surface tension of bovine α -lactalbumin in aqueous solution, J. Solut. Chem. 39 (12) (2010) 1865–1876.
dc.relation.referencesC.M. Romero, J.S. Abella, Surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K, J. Mol. Liq. 285 (1) (2019) 89–95.
dc.relation.referencesD.J. McClements, Modulation of globular protein functionality by weakly interacting cosolvents, Crit. Rev. Food Sci. Nutr. 42 (5) (2002) 417–471.
dc.relation.referencesK. Hill, E. Horvath-Szanics, G. Hajos, E. Kiss, Surface and interfacial properties of water-soluble wheat proteins, Colloids Surf, A Physicochem. Eng. Asp. 319 (3) (2008) 180–187.
dc.relation.referencesM. Auton, A.C. Ferreon, D.W. Bolen, Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal, J. Mol. Biol. 361 (5) (2006) 983–992.
dc.relation.referencesS. Magdassi, Surface activity of proteins : chemical and physicochemical modifications 1ed. Marcel Dekker Inc 1996, New York. pp 5-30
dc.relation.referencesA. Sadana, Protein adsorption and inactivation on surfaces. Influence of heterogeneities, Chem. Rev. 92 (8) (1992) 1799–1818.
dc.relation.referencesT. Sengupta, L. Razumovsky, S. Damodaran, Energetics of protein−interface interactions and Its effect on protein adsorption, Langmuir. 15 (20) (1999) 6991–7001.
dc.relation.referencesG. Yampolskaya, D. Platikanov, Proteins at fluid interfaces: adsorption layers and thin liquid films, Adv. Colloid Interface Sci. 128 (1) (2006) 159–183.
dc.relation.referencesC.S. Rao, S. Damodaran, Is surface pressure a measure of interfacial water activity? Evidence from protein adsorption behavior at interfaces, Langmuir. 16 (24) (2000) 9468–9477.
dc.relation.referencesG. Camejo, G. Colacicco, M.M. Rapport, Lipid monolayers: interactions with the apoprotein of high density plasma lipoprotein, J. Lipid Res. 9 (5) (1968) 562–569.
dc.relation.referencesJ. Mitchell, L. Irons, G.J. Palmer, A study of the spread and adsorbed films of milk proteins, Biochim. Biophys. Acta - Protein Struct. 200 (1) (1970) 138–150.
dc.relation.referencesR. Baeza, C.C. Sanchez, A.M.R. Pilosof, J.M. Rodríguez, Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air–water interface, Food Hydrocoll. 19 (2) (2005) 239–248.
dc.relation.referencesD. Guzey, D.J. McClements, J. Weiss, Adsorption kinetics of BSA at air–sugar solution interfaces as affected by sugar type and concentration, Food Res. Int. 36 (7) (2003) 649–660.
dc.relation.referencesV.S. Alahverdjieva, V.B. Fainerman, E.V. Aksenenko, M.E. Leser, R. Miller, Adsorption of hen egg-white lysozyme at the air–water interface in presence of sodium dodecyl sulphate, Colloids Surf A Physicochem. Eng. Asp. 317 (1-3) (2008) 610–617.
dc.relation.referencesK.D. Martinez, C.C Sanchez, V.P. Henestrosa, J.M. Patino, A.M.R. Pilosof, Soy protein–polysaccharides interactions at the air–water interface, Food Hydrocoll. 21 (5) (2007) 804–812.
dc.relation.referencesR.A. Ganzevles, M.A. Stuart, T. Vliet, H.J. Jongh, Use of polysaccharides to control protein adsorption to the air–water interface, Food Hydrocoll. 20 (6) (2006) 872–878.
dc.relation.referencesW. Melander, C. Horváth, Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series, Arch. Biochem. Biophys. 183 (1) (1977) 200–215.
dc.relation.referencesW. Kunz, P. Lo Nostro, B.W. Ninham, The present state of affairs with Hofmeister effects, Curr. Opin. Colloid Interface Sci. 9 (1-2) (2004) 1–18.
dc.relation.referencesK.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods. 34 (3) (2004) 300–311.
dc.relation.referencesA.A. Zavitsas, Properties of water solutions of electrolytes and nonelectrolytes, J. Phys. Chem. B. 105 (32) (2001) 7805–7817.
dc.relation.referencesL.A. Bromley, Thermodynamic properties of strong electrolytes in aqueous solutions, AIChE J. 19 (2) (1973) 313–320.
dc.relation.referencesP. Lo Nostro, B.W. Niham, Hofmeister phenomena: an update on ion specificity in biology, Chem. Rev. 112 (4) (2012) 2286–2322.
dc.relation.referencesY. Marcus, Effect of Ions on the structure of water: structure making and breaking, Chem. Rev. 109 (3) (2009) 1346–1370.
dc.relation.referencesY. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol. 10 (6) (2006) 658–663.
dc.relation.referencesK.D. Collins, G.W. Neilson, J.E. Enderby, Ions in water: characterizing the forces that control chemical processes and biological structure, Biophys. Chem. 128 (2) (2007) 95–104.
dc.relation.referencesM.T. Ru, S.Y. Hirokane, A.S. Lo, J.S. Dordick, J. A. Reimer, D. S. Clark, On the salt-induced activation of lyophilized enzymes in organic solvents:  effect of salt kosmotropicity on enzyme activity, J. Am. Chem. Soc. 122 (8) (2000) 1565–1571.
dc.relation.referencesJ.M. Scholtz, G.R. Grimsley, C.N. Pace, Solvent denaturation of proteins and interpretations of the m value, Methods Enzymol. 466 (1) (2009) 549–565.
dc.relation.referencesN. Schwierz, D. Horinek, U. Sivan, R.R. Netz, Reversed Hofmeister series: the rule rather than the exception, Curr. Opin. Colloid Interface Sci. 23 (1) (2016) 10–18.
dc.relation.referencesY. Zhang, P.S. Cremer, The inverse and direct Hofmeister series for lysozyme, Proc. Natl. Acad. Sci. 106 (36) (2009) 15249–15253.
dc.relation.referencesN. V. Nucci, J.M. Vanderkooi, Effects of salts of the Hofmeister series on the hydrogen bond network of water, J. Mol. Liq. 143 (2) (2008) 160-170.
dc.relation.referencesP. Jungwirth, P.S. Cremer, Beyond Hofmeister, Nat. Chem. 6 (4) (2014) 261–263.
dc.relation.referencesN. Schwierz, D. Horinek, R.R. Netz, Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity, Langmuir. 26 (10) (2010) 7370–7379.
dc.relation.referencesL.B. Smillie, B.S. Hartley, The disulphide bridges of bovine chymotrypsinogen B, Biochem. J. 105 (3) (1967) 1125-1133.
dc.relation.referencesR.A. Alberty, E.A. Anderson, J. W. Williams, Homogeneity and the electrophoretic behavior of some proteins, J. Phys. Colloid Chem. 52 (1) (1948) 217–230.
dc.relation.referencesV.M. Ingram, Isoelectric point of chymotrypsinogen by a Donnan equilibrium method, Nat. 170 (4319) (1952) 250–251.
dc.relation.referencesV. Kubacki, K.D. Brown, M. Laskowski, Electrophoresis and solubility of chymotrypsinogen B and chymotrypsin B, J. Biol. Chem. 180 (1) (1949) 73–78.
dc.relation.referencesJ.A. Beeley, S.M. Stevenson, J.G. Beeley, Polyacrylamide gel isoelectric focusing of proteins: determination of isoelectric points using an antimony electrode, Biochim. Biophys. Acta - Protein Struct. 285 (2) (1972) 293–300.
dc.relation.referencesM.R. Salaman, A.R. Williamson, Isoelectric focusing of proteins in the native and denatured states. Anomalous behaviour of plasma albumin, Biochem. J. 122 (1) (1971) 93–99.
dc.relation.referencesM. Poitevin, K. Hammad, I. Ayed, P.G Righetti, G. Peltre, S. Descroix, Use of quasi-isoelectric buffers to limit protein adsorption in capillary zone electrophoresis, Electrophoresis. 29 (15) (2008) 3164–3167.
dc.relation.referencesJ.M. Andrews, Non-native aggregation of alpha-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies, Biochemistry. 26 (45) (2007) 7558-7571
dc.relation.referencesW.M. Jackson, J.F. Brandts, Thermodynamics of protein denaturation. Calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation, Biochemistry. 9 (11) (1970) 2294–2301.
dc.relation.referencesF. Khan, R. H. Khan, S. Muzammil, Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH, Biochim. Biophys. Acta. 1481 (2) (2000) 229–236.
dc.relation.referencesN. Poklar, G. Vesnaver, S. Lapanje, Interactions of alpha-chymotrypsinogen A with alkylureas., Biophys. Chem. 57 (2) (1996) 279–289.
dc.relation.referencesC.M. Romero, J.S. Abella, Preferential interaction of chymotrypsinogen in aqueous solutions of polyols at 298.15 K, J. Solut. Chem. 48 (11) (2019) 1591–1602.
dc.relation.referencesC.J. Coen, H.W. Blanch, J.M. Prausnitz, Salting out of aqueous proteins: phase equilibria and intermolecular potentials, AIChE J. 41 (4) (1995) 996–1004.
dc.relation.referencesJ. Osborne, A. Lunasin, R.F. Steiner, The binding of calcium by chymotrypsinogen A, Biochem. Biophys. Res. Commun. 49 (4) (1972) 923–929.
dc.relation.referencesO.D. Velev, E.W. Kaler, A.M. Lenhoff, Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen, Biophys. J. 75 (6) (1998) 2682–2697.
dc.relation.referencesS.D. Allison, A. Dong, J.F. Carpenter, Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration, Biophys. J. 71 (4) (1996) 2022–2032.
dc.relation.referencesC.H. Chervenka, The urea denaturation of chymotrypsinogen as determined by ultraviolet spectral changes. The influence of pH and salts, J. Am. Chem. Soc. 82 (3) (1960) 582–585.
dc.relation.referencesJ. Brandts, R. Lumry, The reversible thermal denaturation of chymotrypsinogen. I. Experimental characterization, J. Phys. Chem. 67 (7) (1963) 1484–1494.
dc.relation.referencesA.M. Kroetsch, E. Sahin, H.Y. Wang, S. Krizman, C.J. Roberts, Relating particle formation to salt- and pH-dependent phase separation of non-native aggregates of alpha-chymotrypsinogen A, J. Pharm. Sci. 101 (10) (2012) 3651–3660.
dc.relation.referencesJ.C. Lee, L.L. Lee, Preferential solvent interactions between proteins and polyethylene glycols, J. Biol. Chem. 256 (2) (1981) 625–631.
dc.relation.referencesI.L. Shulgin, E. Ruckenstein, Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol, Biophys. Chem. 120 (3) (2006) 188–198.
dc.relation.referencesN.N. Khechinashvili, J. Janin, F. Rodier, Thermodynamics of the temperature-induced unfolding of globular proteins, Protein Sci. 4 (7) (1995) 1315–1324.
dc.relation.referencesP.L. Privalov, Stability of proteins small globular proteins, Adv. Protein Chem. 33 (1) (1979) 167–241.
dc.relation.referencesJ.F. Brandts, The thermodynamics of protein denaturation. II. A model of reversible denaturation and interpretations regarding the stability of chymotrypsinogen, J. Am. Chem. Soc. 86 (20) (1964) 4302–4314.
dc.relation.referencesM.A. Eisenberg, G.W. Schwert, The reversible heat denaturation of chymotrypsinogen, J. Gen. Physiol. 34 (5) (1951) 583–606.
dc.relation.referencesC.M. Romero, A. Albis, J.M. Lozano, J. Sancho, Thermodynamic study of the influence of polyols and glucose on the thermal stability of holo-bovine α-lactalbumin, J. Therm. Anal. Calorim. 98 (1) (2009) 165–171.
dc.relation.referencesH. Naghibi, A. Tamura, J.M. Sturtevant, Significant discrepancies between van’t Hoff and calorimetric enthalpies, Proc. Natl. Acad. Sci. 92 (12) (1995) 5597–5599.
dc.relation.referencesN. Poklar, G. Vesnaver, Thermal denaturation of proteins studied by UV spectroscopy, J. Chem. Educ. 77 (3) (2000) 380–382.
dc.relation.referencesR. Singh, M.I. Hassan, A. Islam, F. Ahmad, Cooperative unfolding of residual structure in heat denatured proteins by urea and guanidinium chloride, PLoS One. 10 (6) (2015) 1-16.
dc.relation.referencesP.L. Privalov, N.N. Khechinashvili, A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study, J. Mol. Biol. 86 (3) (1974) 665–684.
dc.relation.referencesJ.A. Schellman, Fifty years of solvent denaturation, Biophys. Chem. 96 (2) (2002) 91–101.
dc.relation.referencesJ.A. Schellman, Protein stability in mixed solvents: a balance of contact interaction and excluded volume, Biophys. J. 85 (1) (2003) 108–125.
dc.relation.referencesJ.K. Myers, C.N. Pace, J.M. Scholtz, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci. 4 (10) (1995) 2138-2148.
dc.relation.referencesR.F. Greene, C.N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin, J. Biol. Chem. 249 (17) (1974) 5388–5393.
dc.relation.referencesZ. Zhang, S. Witham, E. Alexov, On the role of electrostatics on protein-protein interactions, Phys. Biol. 8 (3) (2011) 1-10.
dc.relation.referencesH. Goshima, K.M. Stevens, M. Liu, K.K. Qian, M. Tyagi, M.T. Cicerone, M.J. Pikal, Addition of monovalent electrolytes to improve storage stability of freeze-dried protein formulations, J. Pharm. Sci. 105 (2) (2016) 530–541.
dc.relation.referencesL. Pradeep, J. Udgaonkar, Differential salt-induced stabilization of structure in the initial folding intermediate ensemble of barstar, J. Mol. Biol. 324 (2) (2002) 331–347.
dc.relation.referencesA. Pica, G. Graziano, On the effect of sodium chloride and sodium sulfate on cold denaturation, PLoS One. 10 (7) (2015) 1-13.
dc.relation.referencesY. Goto, N. Ichimura, K. Hamaguchi, Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain, Biochemistry. 27 (5) (1988) 1670–1677.
dc.relation.referencesC. Mitchinson, R.H. Pain, Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from staphylococcus aureus. Implications for the folding pathway of beta-lactamase, J. Mol. Biol. 184 (2) (1985) 331–342.
dc.relation.referencesN. Matubayasi, K. Yamamoto, S.I. Yamaguchi, H. Matsuo, N. Ikeda, Thermodynamic quantities of surface formation of aqueous electrolyte solutions: III. aqueous solutions of alkali metal chloride, J. Colloid Interface Sci. 214 (1) (1999) 101–105.
dc.relation.referencesK. Johansson, J.C. Eriksson, γ and dγ/dT measurements on aqueous solutions of 1,1-electrolytes, J. Colloid Interface Sci. 49 (3) (1974) 469–480.
dc.relation.referencesP.K. Weissenborn, R.J. Pugh, Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence, J. Colloid Interface Sci. 184 (2) (1996) 550–563.
dc.relation.referencesL.M. Pegram, M.T. Record, Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air−water interface, J. Phys. Chem. B. 111 (19) (2007) 5411–5417.
dc.relation.referencesR. Tuckermann, Surface tension of aqueous solutions of water-soluble organic and inorganic compounds, Atmos. Environ. 41 (29) (2007) 6265–6275.
dc.relation.referencesN. Matubayasi, K. Takayama, T. Ohata, Thermodynamic quantities of surface formation of aqueous electrolyte solutions: IX. Aqueous solutions of ammonium salts, J. Colloid Interface Sci. 344 (1) (2010) 209–213.
dc.relation.referencesB.C. Tripp, J.J. Magda, J.D. Andrade, Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics, J. Colloid Interface Sci. 173 (1) (1995) 16–27.
dc.relation.referencesA.P. Santos, A. Diehl, Y. Levin, Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions, Langmuir. 26 (13) (2010) 10778–10783.
dc.relation.referencesJ.M. Gómez, V.P. Henestrosa, C.C. Sánchez, J.M. Patino, The role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films foaming. 1. Dynamic phenomena at the air–water interface, Food Hydrocoll. 22 (7) (2008) 1105–1116.
dc.relation.referencesV.P. Henestrosa, C.C. Sánchez, M.M Escobar, J.P. Jiménez, F.M. Rodríguez, J.M. Patino, Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength, Colloids Surf A Physicochem. Eng. Asp. 309 (3) (2007) 202–215.
dc.relation.referencesE.M. Hernández, E.I. Franses, Adsorption and surface tension of fibrinogen at the air/water interface, Colloids Surf A Physicochem. Eng. Asp. 214 (3) (2003) 249–262.
dc.relation.referencesF.J. Millero, The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures, J. Phys. Chem. 74 (2) (1970) 356–362.
dc.relation.referencesL.A. Dunn, Apparent molar volumes of electrolytes. Part 2. Some 1–1 electrolytes in aqueous solution at 25°C, Trans. Faraday Soc. 64 (1) (1968) 1898–1903.
dc.relation.referencesF.J. Millero, W. Hansen, Apparent molal volumes of aqueous monovalent salt solutions at various temperatures, J. Chem. Eng. Data. 13 (3) (1968) 330–333.
dc.relation.referencesA. Roux, G.M. Musbally, G. Perron, J.E. Desnoyers, P.P. Singh, E.M. Woolley, L.G. Hepler, Apparent molal heat capacities and volumes of aqueous electrolytes at 25 °C: NaClO3, NaClO4, NaNO3, NaBrO3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4, Can. J. Chem. 56 (1) (1978) 24–28.
dc.relation.referencesS.L. Clegg, A.S. Wexler, Densities and apparent molar volumes of atmospherically important electrolyte solutions. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C, J. Phys. Chem. A. 115 (15) (2011) 3393–3460.
dc.relation.referencesW.J. Hamer, Y. Wu, Osmotic coefficients and mean activity coefficients of univalent electrolytes in water at 25°C, J. Phys. Chem. Ref. Data. 1 (4) (2009) 1047.
dc.relation.referencesJ.I. Partanen, Mean activity coefficients and osmotic coefficients in dilute aqueous sodium or potassium chloride solutions at temperatures from (0 to 70) °C, J. Chem. Eng. Data. 61 (1) (2016) 286–306.
dc.relation.referencesA.S. Brown, D.A. MacInnes, The determination of activity coefficients from the potentials of concentration cells with transference. I. Sodium chloride at 25°, J. Am. Chem. Soc. 57 (7) (1935) 1356–1362.
dc.relation.referencesT. Shedlovsky, D.A. MacInnes, The determination of activity coefficients from the potentials of concentration cells with transference. III. Potassium chloride. IV. Calcium chloride, J. Am. Chem. Soc. 59 (3) (1937) 503–506.
dc.relation.referencesH.M. Spencer, The activity coefficients of potassium chloride. An application of the extended Debye-Hückel theory to interpretation of freezing point measurements, J. Am. Chem. Soc. 54 (12) (1932) 4490–4497.
dc.relation.referencesS.L. Clegg, S. Milioto, D.A. Palmer, Osmotic and activity coefficients of aqueous (NH4)2SO4 as a function of temperature, and aqueous (NH4)2SO4−H2SO4 mixtures at 298.15 K and 323.15 K, J. Chem. Eng. Data. 41 (3) (1996) 455–467.
dc.relation.referencesR. Bhat, S.N. Timasheff, Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols, Protein Sci. 1 (9) (1992) 1133–1143.
dc.relation.referencesG. Xie, S.N. Timasheff, Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein, Protein Sci. 6 (1) (1997) 211–221.
dc.relation.referencesK. Gekko, S.N. Timasheff, Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures, Biochemistry. 20 (16) (1981) 4667–4676.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAdsorption
dc.subject.lembAdsorción
dc.subject.lembPeptidase
dc.subject.lembPeptidasas
dc.subject.lembElectrolyte solutions
dc.subject.lembSoluciones electrolíticas
dc.subject.proposalα-quimotripsinógeno
dc.subject.proposalUV-Vis
dc.subject.proposalDSC
dc.subject.proposalα-chymotrypsinogen
dc.subject.proposalUV-Vis
dc.subject.proposalDSC
dc.subject.proposalTensión superficial
dc.subject.proposalElectrolitos
dc.subject.proposalInteracción preferencial
dc.subject.proposalSurface tension
dc.subject.proposalElectrolytes
dc.subject.proposalPreferential interaction
dc.title.translatedStudy of the thermodynamic stability of the α-chymotrypsinogen protein in aqueous solutions of strong electrolytes
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito