Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.advisorHurtado Benavides, Andrés Mauricio
dc.contributor.authorEraso Grisales, Soany
dc.date.accessioned2022-06-28T15:47:17Z
dc.date.available2022-06-28T15:47:17Z
dc.date.issued2022-06-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81633
dc.descriptionilustraciones. diagramas, tablas
dc.description.abstractLa uchuva (Physalis peruviana L.), es una fruta exótica de la región Andina, la cual presenta una demanda creciente debido a que posee características aromáticas y propiedades nutricionales favoreciendo su uso como alimento funcional. Colombia está entre los principales productores y exportadores de fruta exótica del mundo, principalmente gulupa y uchuva, por consiguiente, es la quinta fruta con mayor mercado después del banano en términos de exportación. La generación de nuevos productos, con sabores innovadores y con mejores características fisicoquímicas ha permitido el desarrollo y la implementación de nuevas metodologías para su obtención. Una alternativa a este contexto es el secado de la pulpa con el fin de obtener un producto en polvo, conservando las propiedades de la fruta. Algunos métodos de secado resultan inapropiados por afectar fuertemente las características sensoriales y las propiedades nutricionales de las frutas. El secado por aspersión, es un método usado en pulpas de frutas que son sensibles al calor, siendo sus principales ventajas el alto rendimiento y la reducción del daño térmico. El objetivo de la investigación fue desarrollar un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante, contribuyendo a mejorar la competitividad de la agrocadena. En este contexto, la investigación se planteó en tres etapas: En la 1ª etapa se realizó la evaluación de la influencia del proceso de hidrólisis enzimática sobre la estabilidad fisicoquímica de un sistema coloidal a base de pulpa, piel y semilla de uchuva (CSU), con fines a ser utilizado en secado por aspersión. La pulpa con semilla y piel fue homogenizada inicialmente por cizalla en un sistema rotor-estator a 10000 rpm durante 10 minutos y para la evaluación enzimática, se empleó el complejo multienzimático Viscozyme L y se utilizó un diseño factorial completamente aleatorizado, considerando las variables independientes: concentración de enzima [Enzima] (50, 125 y 200 ppm) y tiempo de hidrólisis (TH) (0, 30, 60, 90 y 120 minutos), y las variables dependientes: viscosidad (), potencial zeta (ζ), tamaño de partícula (percentiles D10, D50 y D90), Span, índice de absorción espectral (R) y sólidos solubles (SS). La [Enzima] tuvo un efecto significativo (p < 0.05) sobre la μ, SS, D50, D90 y R, el TH sobre la μ, SS y D10; además, existe un efecto de la interacción [Enzima]-HT sobre el aumento de la μ y los SS. La optimización de la formulación presentó una deseabilidad del 74.2%, con una [Enzima] = 78.5 ppm y TH = 120 minutos; siendo las variables dependientes calculadas por un modelo cuadrático: µ = 356.9 cP, SS = 15.5,  = -18.5 mV, D10 = 3.2 m, D50 = 118.2 m; D90 = 480.8 m; Span = 4.1, R = 0.605. La combinación de procesos de homogenización por cizalla y el tratamiento enzimático aplicado, contribuyeron a la obtención de sistema coloidal estable fisicoquímicamente, sin embargo, se pretendía obtener una mayor reducción de tamaños de partícula, lo cual se logra mediante un proceso de homogenización de alta presión y adición de hidrocoloides que favorecieron la estabilidad de la suspensión. En la 2ª etapa se planteó la evaluación del proceso de secado por aspersión y la composición de la alimentación sobre los atributos de calidad de las microcápsulas de uchuva. El secado por aspersión operó en condiciones subatmosféricas a 0.37 kPa (1.5” H2O) y utilizando el equipo Vibrasec SA, referencia PASLAB1.5, con una capacidad de evaporación de 1.5L/h. El proceso de secado por aspersión se optimizó utilizando la metodología de superficie de respuesta, con un diseño experimental central compuesto cara centrada, teniendo en cuanta las variables independientes: goma arábiga (AG) (1 - 3%), maltodextrina (MD) (9.5 – 13.5%), temperatura de entrada de aire (TEA) (130-160°C), temperatura del aire de salida (TSA) (75-85°C) y velocidad del disco atomizador (VDA) (18000-22000 rpm), las variables dependientes evaluadas fueron: humedad (Xw), solubilidad (S), higroscopicidad (H), humectabilidad (Hu), coordenadas de color L* y b*, fenoles totales (FT), capacidad antioxidante (DPPH y ABTS) y rendimiento (Y). La optimización experimental de múltiples respuestas presentó una deseabilidad del 68.4%, definiendo las variables independientes: GA = 2.2%, MD = 10.1%, TEA = 160 °C, TSA = 77.8 °C y VDA = 21450 rpm, y las variables dependientes: Xw = 2.7±0.1%,.S = 86.2±2.3%, H = 16.2±0.0%, Hu = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg AGE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs y Y = 56.1±1.6%. El secado por aspersión como proceso de microencapsulación del extracto de uchuva, fue una tecnología efectiva que permitió la obtención microcápsulas de uchuva con excelentes atributos de calidad. En el proceso se dio un mayor aprovechamiento de la estructura de la uchuva (pulpa, semilla y cáscara), que otorgó un alto contenido de solidos de uchuva al producto obtenido. En la 3ª etapa se evaluó el sistema de aglomeración por lecho fluidizado, el cual se optimizó utilizando la metodología de superficie de respuesta, con diseño experimental central compuesto cara centrada, teniendo en cuenta las variables independientes: temperatura del aire de fluidización (T) (50 – 70 °C), presión de atomización de la solución ligante (P) (1.0 – 2.0 bar) y tiempo de aglomeración (t) (20 – 40 min), y como variables dependientes: humedad (Xw), solubilidad (S), humectabilidad (Hu), higroscopicidad (H), densidad aparente (a), índice de Carr (IC), relación de Hausner (RH), tamaño de partícula D[4,3], fenoles totales (FT), flavonoides totales (FLT), capacidad antioxidante (DPPH y ABTS), vitamina C (Vit.C), -caroteno (-car) y el rendimiento (Y). La optimización experimental de múltiples repuestas presentó una deseabilidad del 63.8%, definiendo las variables independientes: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, y las variables dependientes: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), Hu (2.3±0.1 s), a (0.588±0.021 g/mL), IC (11.9 ± 2.5%), RH (1.11±0.02), D[4,3] (136.0 2.2 µm), FT (366.7±2.5 mg AGE/100 g bs), FLT (26.5±0.9 mg QE/100 g bs), DPPH (163.5±2.6 mg TE/100 g bs) y ABTS (133.0±1.1 mg TE/100 g bs), Vit.C (42.2±2.5 mg/100 g bs), -car (72.4±2.1 mg/100 g bs) y Y (62.5±3.3%). El proceso de aglomeración por lecho fluidizado del polvo de uchuva, fue efectivo, resultando en la mejora de las propiedades físicas relacionadas con las características funcionales de instantanización y fluidez. (Texto tomado de la fuente)
dc.description.abstractThe cape gooseberry (Physalis peruviana L.) is an exotic fruit from the Andean region, growing demand due to its aromatic characteristics and nutritional properties that favor its use as a functional food. Colombia is among the primary producers and exporters of exotic fruit globally, mainly purple passion fruit and cape gooseberry, and is, therefore, the fifth fruit with the largest market after bananas in terms of exports. The generation of new products with innovative flavors and better physicochemical characteristics has allowed the development and implementation of new methodologies. An alternative to this context is the drying of the pulp to obtain a powdered product, preserving the properties of the fruit. Some drying methods are inappropriate because they strongly affect its sensory characteristics and nutritional properties. Spray drying is a method used for fruit pulps that are sensitive to heat, its main advantages being high yield and reduction of thermal damage. The objective of the research was to develop an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effect, contributing to improving the competitiveness of the agribusiness chain. In this context, the research was carried out in three stages: In the first stage, the influence of the enzymatic hydrolysis process on the physicochemical stability of a colloidal system based on cape gooseberry pulp, skin, and seed (CSU), is to be used in spray drying, was evaluated. The pulp with seed and skin was initially homogenized by shearing in a rotor-stator system at 10000 rpm for 10 minutes. For the enzymatic evaluation, the multi-enzyme complex Viscozyme L and a completely randomized factorial design were used, considering the independent variables: [Enzyme] enzyme concentration (50, 125, and 200 ppm) and hydrolysis time (HT) (0, 30, 60, 90 and 120 minutes), and the dependent variables: viscosity (μ), zeta potential (ζ), particle size (percentiles D10, D50, and D90), Span, spectral absorption index (R) and soluble solids (SS). Enzyme] had a significant effect (p <0.05) on μ, SS, D50, D90 and R, HT on μ, SS and D10; furthermore, there is an effect of [Enzyme]-HT interaction on the increase of μ and SS. The formulation optimization presented a desirability of 74.2%, with [Enzyme] = 78.5 ppm and TH = 120 min; being the dependent variables calculated by a quadratic model: µ = 356.9 cP, SS = 15.5, ζ = -18.5 mV, D10 = 3.2 μm, D50 = 118.2 μm; D90 = 480.8 μm; Span = 4.1, R = 0.605. The combination of shear homogenization processes and the enzymatic treatment applied contributed to obtaining a physicochemically stable colloidal system; however, it was intended to reduce particle size, which is achieved through a high-pressure homogenization process and addition of hydrocolloids that favored the stability of the suspension. In the second stage, the evaluation of the spray drying process and the composition of the feed on the quality attributes of the cape gooseberry microcapsules was proposed. The spray drying process operated under subatmospheric conditions at 0.37 kPa (1.5" H2O) and using the Vibrasec SA equipment, reference PASLAB1.5, with an evaporation capacity of 1.5L/h. The spray drying process was optimized using the response surface methodology, with a face-centered central composite experimental design, taking into account the independent variables: gum arabic (GA) (1 - 3%), maltodextrin (MD) (9.5 - 13. 5%), air inlet temperature (AIT) (130 - 160°C), air outlet temperature (AOT) (75-85°C) and atomizing disk speed (ADS) (18000-22000 rpm), the dependent variables evaluated were: moisture (Xw), solubility (S), hygroscopicity (H), wettability (We), color coordinates L* and b*, total phenols (TP), antioxidant capacity (DPPH and ABTS) and yield (Y). The experimental optimization of multiple responses presented a desirability of 68.4%, defining the independent variables: GA = 2.2%, MD = 10.1%, AIT = 160 °C, AOT = 77.8 °C and ADS = 21450 rpm, and the dependent variables: Xw = 2.7±0.1%, S = 86.2±2.3%, H = 16.2±0.0%, We = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg GAE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs and Y = 56.1±1.6%. Spray drying is a process of microencapsulation of cape gooseberry extract was an effective technology that allowed obtaining cape gooseberry microcapsules with excellent quality attributes. In the process, greater use was made of the structure of the cape gooseberry (pulp, seed, and peel), which gave a high content of cape gooseberry solids to the product obtained. In the third stage, the fluidized bed agglomeration system was evaluated, which was optimized using the response surface methodology, with face-centered central composite experimental design, taking into account the independent variables: fluidization air temperature (T) (50 - 70 °C), binder solution atomization pressure (P) (1.0 - 2. 0 bar) and agglomeration time (t) (20 - 40 min), and as dependent variables: moisture (Xw), solubility (S), wettability (We), hygroscopicity (H), bulk density (ρa), Carr's index (CI), Hausner's ratio (RH), particle size D[4,3], total phenols (TP), total flavonoids (TFL), antioxidant capacity (DPPH and ABTS), vitamin C (Vit.C), β-carotene (β-car) and yield (Y). The multiple-response experimental optimization presented a desirability of 63.8%, defining the independent variables: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, and the dependent variables: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), We (2.3±0.1 s), ρa (0.588±0.021 g/mL), CI (11.9±2.5%), RH (1.11±0.02), D[4,3] (136.0±2.2 µm), TP (366.7±2.5 mg GAE/100 g db), TFL (26.5±0.9 mg QE/100 g db), DPPH (163.5±2.6 mg TE/100 g db) and ABTS (133.0±1.1 mg TE/100 g db), Vit.C (42.2±2.5 mg/100 g db), β-car (72.4±2.1 mg/100 g db) and Y (62.5±3.3%). The fluidized bed agglomeration process of cape gooseberry powder was effective, resulting in improved physical properties related to the functional characteristics of instantaneousness and flowability.
dc.description.sponsorshipPROEXCAR SAS
dc.format.extentxviii, 113 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleDesarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.researchgroupAlimentos y Nutraceuticos
dc.contributor.researchgroupGaf (Grupo de Alimentos Funcionales)
dc.contributor.researchgroupTecnologías Emergentes en Agroindustria (TEA) - UDENAR
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentos
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbberger, T., Seo, A., & Schæfer, T. (2002). The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. 249, 185–197.
dc.relation.referencesAgarwal, R., & Bosco, S. (2014). Optimization of Viscozyme-L assisted extraction of coconut milk and virgin coconut oil. Asian Journal of Dairy and Food Research, 33(4), 276–284. https://doi.org/10.5958/0976-0563.2014.00617.4
dc.relation.referencesAgronet. (2021). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesAhmad, S., Malik, A., Yasmin, R., Ullah, N., Gul, W., Muhammad, P., Nawaz, R., & Afza, N. (1999). Withanolides from Physalis peruviana. Phytochemistry, 50, 647–651.
dc.relation.referencesAkhavan, S., Mahdi, S., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin , gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
dc.relation.referencesAlcantara, Y., Alcantara, Y., Tejada, A., & Ros, G. (2018). Effect of different concentrations of pulverized mesocarp of Citrus paradisi Macf. on the bromatological characteristics of spray-dried lemon juice powder. Food Science and Nutrition, 6(5), 1261–1268. https://doi.org/10.1002/fsn3.679
dc.relation.referencesÁlvarez García, C. (2018). Application of Enzymes for Fruit Juice Processing. In G. Rajauria & B. Tiwari (Eds.), Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 201–216). Academic Press. https://doi.org/10.1016/B978-0-12-802230-6.00011-4
dc.relation.referencesAmao, I. (2016). Health Benefits of Fruits and Vegetables: Review from Sub-Saharan Africa. In M. Asaduzzaman & T. Asao (Eds.), Vegetables. Importance of Quality Vegetables to Human Health: Vol. i (1st ed., p. 13). IntechOpen. https://doi.org/10.5772/intechopen.74472 Abstract
dc.relation.referencesAnaldex, A. N. de C. E. (2019). Comportamiento de la uchuva. 2018–2020.
dc.relation.referencesAnaldex, A. N. de C. E. (2021). Informe de las exportaciones de uchuva. In Analdex.org (Issue 13).
dc.relation.referencesAOAC, A. of O. A. C. (2012). Official Methods of Analysis (K. Helrich (ed.); 19th ed.).
dc.relation.referencesAraujo, H. C. S., Jesus, M. S., Leite Neta, M. T. S., Gualberto, N. C., Matos, C. M. S., Rajan, M., Rajkumar, G., Nogueira, J. P., & Narain, N. (2020). Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology, 39(3), 392–404. https://doi.org/10.1080/07373937.2020.1839487
dc.relation.referencesArias, F., & Rendón, S. (2015). Inteligencia de mercados para la cadena del lulo (Solanum quitoense). Journal of Agricultural and Animal Science, 3(2), 38–47.
dc.relation.referencesAreiza, N., Robles, J., Zamudio, J., Giraldez, L., Echeverria, V., Barrera, B., Aliev, G., Sahebkar, A., Ashraf, G., & Barreto, G. (2018). Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Frontiers in Chemistry, 6(276), 1–13. https://doi.org/10.3389/fchem.2018.00276
dc.relation.referencesAtalar, I., Kurt, A., Saricaoğlu, F., Gül, O., & Gençcelep, H. (2021). Agglomerated mushroom (Agaricus bisporus) powder: Optimization of top spray fluidized bed agglomeration conditions. Journal of Food Process Engineering, 44(6), 1–12. https://doi.org/10.1111/jfpe.13687
dc.relation.referencesAtalar, I., & Yazici, F. (2018). Influence of top spray fluidized bed agglomeration conditions on the reconstitution property and structure modification of skim yoghurt powder. Journal of Food Processing and Preservation, 42(1), 1–10. https://doi.org/10.1111/jfpp.13414
dc.relation.referencesAtalar, I., & Yazici, F. (2019). Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology, 37(13), 1656–1664. https://doi.org/10.1080/07373937.2018.1529038
dc.relation.referencesAtalar, I., & Yazici, F. (2021). Top-Spray Agglomeration Process Applications in Food Powders : A Review of Recent Research Applications in Food Products. European Food Science and Engineering, 2(1), 18–25.
dc.relation.referencesAugusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Time-dependent and steady-state shear. Journal of Food Engineering, 111(4), 570–579. https://doi.org/10.1016/j.jfoodeng.2012.03.015
dc.relation.referencesBalaguera, H., Martínez, C., & Herrera, A. (2016). Comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.): Efecto de diferentes dosis y tiempos de exposición al 1-metilciclopropeno. Bioagro, 28(1), 21–28.
dc.relation.referencesBazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 17(4), 408–415. https://doi.org/10.1016/j.jssas.2016.09.007
dc.relation.referencesBarkouti, A., Turchiuli, C., Carcel, J. A., & Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 93(4–5), 523–535. https://doi.org/10.1007/s13594-013-0132-7
dc.relation.referencesBernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4–10. https://doi.org/10.1016/j.carres.2018.03.003
dc.relation.referencesBhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of Food Powders: Processes and Properties. In Handbook of Food Powders: Processes and Properties. https://doi.org/10.1533/9780857098672
dc.relation.referencesBhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354–364. https://doi.org/10.1016/j.powtec.2014.06.038
dc.relation.referencesBorchani, M., Masmoudi, M., Ben Amira, A., Abbès, F., Yaich, H., Besbes, S., Blecker, C., Garvin, A., Ibarz, A., & Attia, H. (2019). Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT, 113, 108314. https://doi.org/10.1016/j.lwt.2019.108314
dc.relation.referencesBraga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375, 409–419. https://doi.org/10.1016/j.powtec.2020.08.012
dc.relation.referencesBravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126
dc.relation.referencesBravo, K., Sepulveda-Ortega, S., Lara-Guzman, O., Navas-Arboleda, A. A., & Osorio, E. (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 95(7), 1562–1569. https://doi.org/10.1002/jsfa.6866
dc.relation.referencesCabrera O, Y. A., Estrada M, E. M., & Cortés R, M. (2017). The influence of drying on the physiological quality of cape gooseberry (Physalis peruviana L.) fruits added with active components. Acta Agronomica, 66(4), 512–518. https://doi.org/10.15446/acag.v66n4.59507
dc.relation.referencesCal, K., & Sollohub, K. (2010). Spray Drying Technique . I : Hardware and Process Parameters. Journal of Pharmaceutical Sciences, 99(2), 575–586. https://doi.org/10.1002/jps
dc.relation.referencesCano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., Alamilla-Beltrán, L., García, H., & Gutiérrez-López, G. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-z
dc.relation.referencesCastro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2017). Alternativas de procesamiento de uchuva (Physalis peruviana L) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939
dc.relation.referencesCerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT - Food Science and Technology, 73, 326–333. https://doi.org/10.1016/j.lwt.2016.06.030
dc.relation.referencesChang, L., Karim, R., Sabo, A., & Mohd, H. (2018). Characterization of enzyme-liquefied soursop (Annona muricata L.) puree. LWT - Food Science and Technology, 94, 40–49. https://doi.org/10.1016/j.lwt.2018.04.027
dc.relation.referencesChen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-z
dc.relation.referencesCheng, Y., Lan, H., Zhao, L., Wang, K., & Hu, Z. (2018). Characterization and Prebiotic Potential of Longan Juice Obtained by Enzymatic Conversion of Constituent Sucrose into Fructo-Oligosaccharides. Molecules, 23(10), 2596. https://doi.org/10.3390/molecules23102596
dc.relation.referencesCorazza, G. O., Bilibio, D., Zanella, O., Nunes, A. L., Bender, J. P., Carniel, N., dos Santos, P. P., & Priamo, W. L. (2018). Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food and Bioproducts Processing, 112, 63–68. https://doi.org/10.1016/j.fbp.2018.09.001
dc.relation.referencesCortés, M., Hernández, G., & Estrada, E. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. VITAE, 24(1), 59–67.
dc.relation.referencesCortés R, M., Estrada M, E. M., & Hernández, G. (2017). Optimization of the Spray Drying Process for Obtaining Cape Gooseberry Powder: an Innovative and Promising Functional Food. Revista Vitae, 24(1), 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07
dc.relation.referencesCortés, M., Herrera, E. A., & Gil, J. (2016). Impregnación de uchuva Impregnación de uchuva (Physalis peruviana L.) de forma semiesférica con una emulsión fortificante. Biotecnología En El Sector Agropecuario y Agroindustrial, 14(1), 27–36.
dc.relation.referencesCuq, B., Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150
dc.relation.referencesDacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573. https://doi.org/10.1016/j.powtec.2010.06.023
dc.relation.referencesDag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 83, 86–94. https://doi.org/10.1016/j.lwt.2017.05.007
dc.relation.referencesDahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006
dc.relation.referencesDahdouh, L., Wisniewski, C., Ricci, J., Vachoud, L., Dornier, M., & Delalonde, M. (2016). Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentration. Journal of Food Engineering, 174, 15–20. https://doi.org/10.1016/j.jfoodeng.2015.11.008
dc.relation.referencesDaza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001
dc.relation.referencesDecco, N. P. (2019). Claves para reducir las pérdidas poscosecha. Claves Para Reducir Las Pérdidas Poscosecha. https://www.deccoiberica.es/claves-para-reducir-las-perdidas-poscosecha/
dc.relation.referencesde Figueiredo, V., Yamashita, F., Vanzela, A., Ida, E., & Kurozawa, L. (2018). Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 55(4), 1508–1517. https://doi.org/10.1007/s13197-018-3067-4
dc.relation.referencesDe la Vega, J., Cañarejo, M., Cabascango, O., & Lara, M. (2019). Dehydrated Physalis peruviana L. In Two Ripening States and its Effect on Total Phenolic Compounds, Antioxidant Capacity, Carotenes, Color and Ascorbic acid. Informacion Tecnologica, 30(5), 91–100. https://doi.org/10.4067/S0718-07642019000500091
dc.relation.referencesde los Rios, C., Cortés, M., & Arango, J. (2021). Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15498
dc.relation.referencesde Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9–14. https://doi.org/10.1016/j.lwt.2013.02.002
dc.relation.referencesde Souza, M. M. B., Santos, A. M. P., Converti, A., & Maciel, M. I. S. (2020). Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. Journal of Microencapsulation, 37(3), 230–241. https://doi.org/10.1080/02652048.2020.1720031
dc.relation.referencesDewhirst, R. A., & Fry, S. C. (2018). The oxidation of dehydroascorbic acid and 2 , 3- diketogulonate by distinct reactive oxygen species. 0, 3451–3470.
dc.relation.referencesDhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441. https://doi.org/10.1080/10408391003646270
dc.relation.referencesDiab, M. M. S., Aref, A. M., Othman, M. S., Al-Quraishy, S., Abdel Moneim, A. E., & Dkhil, M. A. (2014). The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 74, 98–106. https://doi.org/10.1016/j.fct.2014.09.013
dc.relation.referencesDuque, A., Giraldo, G., & Quintero, V. (2018). Caracterización de la fruta, pulpa y concentrado de uchuva (Physalis peruviana L.). Temas Agrarios, 16(1), 75. https://doi.org/10.21897/rta.v16i1.686
dc.relation.referencesEl Sheikha, A. F., Mohammed S, Z., Bakr, A. A., El Habashy, M. M., & Montet, D. (2010). Biochemical and sensory quality of physalis (physalis pubescens l.) juice. Journal of Food Processing and Preservation, 34(3), 541–555. https://doi.org/10.1111/j.1745-4549.2009.00382.x
dc.relation.referencesElahi Jan, N., & Kawabata, S. (2011). Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato. J. Japan. Soc. Hort. Sci, 80(3), 314–321. www.jstage.jst.go.jp/browse/jjshs1JSHS
dc.relation.referencesEllong, E. N., Billard, C., Adenet, S., & Rochefort, K. (2015). Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food and Nutrition Sciences, 06(03), 299–313. https://doi.org/10.4236/fns.2015.63030
dc.relation.referencesErmiş, E. (2015). Food Powders: Properties and Characterization. In E. Ermiş (Ed.), Food Engineering Series. https://doi.org/https://doi.org/10.1007/978-3-030-48908-3
dc.relation.referencesEstrada, M., Cortés, M., & Gil, J. (2017). Guacamole powder: Standardization of the spray drying process. Vitae, 24(2), 102–112. https://doi.org/10.17533/udea.vitae.v24n2a03
dc.relation.referencesEtzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3(November 2019), 73–81. https://doi.org/10.1016/j.crfs.2020.03.002
dc.relation.referencesEtzbach, L., Pfeiffer, A., Schieber, A., & Weber, F. (2019). Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology, 100, 69–74. https://doi.org/10.1016/j.lwt.2018.10.032
dc.relation.referencesEun, J. B., Maruf, A., Das, P. R., & Nam, S. H. (2020). A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition, 60(21), 3547–3572. https://doi.org/10.1080/10408398.2019.1698511
dc.relation.referencesFAO. (1995). Codex Alimentarius : Food Additives. In General standard for food additives (p. 480). https://sis.binus.ac.id/2016/12/15/pasar-monopoli/
dc.relation.referencesFAO, F. and A. O. of the U. N. (2003). Food energy – methods of analysis and conversion factors. In FOOD AND NUTRITION PAPER 77.
dc.relation.referencesFavaro, R., Gomes, J., Andreola, K., & Pereira, O. (2020). Wettability improvement of pea protein isolate agglomerated in pulsed fluid bed. Particulate Science and Technology, 38(4), 511–521. https://doi.org/10.1080/02726351.2019.1574940
dc.relation.referencesFazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675. https://doi.org/10.1016/j.fbp.2012.04.006
dc.relation.referencesFennema, O., & Tannenbaum, S. (2010). Introducción a la química de los alimentos. Quimica de Los Alimentos, 3–27.
dc.relation.referencesFerrari, C., Marconi, S., Alvim, I., & de Aguirre, J. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478. https://doi.org/10.1080/07373937.2012.742103
dc.relation.referencesFerrari, C., Marconi, S., Alvim, I., Vissotto, F., & de Aguirre, J. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x
dc.relation.referencesFigueroa, P. M., Ceballos, M. A., & Hurtado, A. M. (2016). Microencapsulação por secagem por atomização de óleo de amora (Rubus glaucus) extraído com CO2 supercrítico. Revista Colombiana de Quimica, 45(2), 39–47. https://doi.org/10.15446/rev.colomb.quim.v45n2.57481
dc.relation.referencesFINAGRO. (2014). Perspectiva del sector agropecuario Colombiano. Fondo Para El Finanaciamiento Del Sector Agropecuario, 28. https://www.finagro.com.co/sites/default/files/2014_09_09_perspectivas_agropecuarias.pdf
dc.relation.referencesFischer, G., Almanza-Merchán, P., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 40. https://doi.org/10.1590/0100-2945-441/13
dc.relation.referencesFischer, G., Herrera, A., & Almanza, P. (2011). Cape gooseberry ( Physalis peruviana L.). In Elsevier (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 374-397e). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374
dc.relation.referencesFischer, Gerhard, Almanza-merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13
dc.relation.referencesFischer, Gerhard, Miranda, D., Piedrahita, W., & Romero, J. (2005). Avances en cultivo, poscosecha y exportación de la uchuva en Colombia. Universidad Nacional de Colombia, Unibiblos.
dc.relation.referencesFitzpatrick, J., Salmon, J., Ji, J., & Miao, S. (2017). Characterisation of the wetting behaviour of poor wetting food powders and the influence of temperature and film formation. KONA Powder and Particle Journal, 34(34), 282–289. https://doi.org/10.14356/kona.2017019
dc.relation.referencesFlórez, V., Fischer, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Unibiblos.
dc.relation.referencesFuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., & Puente, L. (2020). Physalis peruviana l. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 700. https://doi.org/10.3390/nu12030700
dc.relation.referencesFustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion delivery systems for functional foods. In J. Smith & E. Charter (Eds.), Functional Food Product Development (pp. 79–97). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444323351.ch4
dc.relation.referencesGallón, M., Cortés, M., & Gil, J. (2020). Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation, 44(9), 1–10. https://doi.org/10.1111/jfpp.14705
dc.relation.referencesGarcía, J., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702–709. https://doi.org/10.1016/j.powtec.2018.08.061
dc.relation.referencesGarofulic, I. E., Zoric, Z., Pedisic, S., & Dragovic-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technology and Biotechnology, 54(4), 441–449. https://doi.org/10.17113/ft b.54.04.16.4601
dc.relation.referencesGenovese, D., & Lozano, J. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids 20, 20, 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003
dc.relation.referencesGhosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: Effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96(2), 222–228. https://doi.org/10.1016/j.jfoodeng.2009.07.016
dc.relation.referencesGomes, W. F., França, F. R. M., Denadai, M., Andrade, J. K. S., da Silva Oliveira, E. M., de Brito, E. S., Rodrigues, S., & Narain, N. (2018). Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 55(6), 2095–2102. https://doi.org/10.1007/s13197-018-3124-z
dc.relation.referencesGouvêa, R. F., Ribeiro, L. O., Souza, É. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54(7), 2176–2180. https://doi.org/10.1007/s13197-017-2630-8
dc.relation.referencesGranados, W., Muñoz, C., & Aguillón, D. (2019). Cadena de la uchuva. In Ministerio de agricultura. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales UCHUVA.pdf
dc.relation.referencesGülçin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2
dc.relation.referencesHaas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104–115. https://doi.org/10.1016/j.powtec.2020.04.065
dc.relation.referencesHandique, J., Bora, S., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-z
dc.relation.referencesHassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94(2017), 1129–1137. https://doi.org/10.1016/j.biopha.2017.08.014
dc.relation.referencesHennart, S., Wildeboer, W., van Hee, P., & Meesters, G. (2010). Stability of particle suspensions after fine grinding. Powder Technology, 199(3), 226–231. https://doi.org/10.1016/j.powtec.2010.01.010
dc.relation.referencesHincapié, M. A., & Zapata, J. E. (2019). Study of the dehydration kinetics of uchuva (physalis peruviana l.) in a fluidized bed dryer. Informacion Tecnológica, 30(2), 115–124. https://doi.org/10.4067/S0718-07642019000200115
dc.relation.referencesHirata, T. A. M., Dacanal, G. C., & Menegalli, F. C. (2013). Effect of operational conditions on the properties of pectin powder agglomerated in pulsed fluid bed. Powder Technology, 245, 174–181. https://doi.org/10.1016/j.powtec.2013.04.047
dc.relation.referencesHorie, K., Tanaka, S., & Akabori, T. (1976). Determination of Emulsion Stability by Spectal Absorption; Part 1. Journal of Society of Cosmetic Chemists of Japan, 10(1–2), 28–33. https://doi.org/10.5107/sccj1976.10.28
dc.relation.referencesHua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry, 232, 443–449. https://doi.org/10.1016/j.foodchem.2017.04.003
dc.relation.referencesHuang, X., Liu, Q., Yang, Y., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. LWT, 125, 109245. https://doi.org/10.1016/j.lwt.2020.109245
dc.relation.referencesICONTEC. (1999). Fresh fruits. Cape gooseberry. Specifications. In Norma técnica colombiana (p. 17). https://repository.agrosavia.co/bitstream/handle/20.500.12324/1271/81660_58968.pdf?sequence=1&isAllowed=y
dc.relation.referencesIgual, M., Contreras, C., Camacho, M. M., & Martínez-Navarrete, N. (2014). Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food and Bioprocess Technology, 7(1), 191–203. https://doi.org/10.1007/s11947-013-1088-6
dc.relation.referencesIslam, M. Z., Kitamura, Y., Kokawa, M., Monalisa, K., Tsai, F. H., & Miyamura, S. (2017). Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, 101(2012), 132–144. https://doi.org/10.1016/j.fbp.2016.11.002
dc.relation.referencesIzli, N., Yildiz, G., Ünal, H., Işik, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266
dc.relation.referencesJafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070
dc.relation.referencesJaniszewska, E. (2017). Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Research International, 99, 891–901. https://doi.org/10.1016/j.foodres.2017.02.001
dc.relation.referencesJeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R., & Nill, J. (2017). Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnology and Bioengineering, 114(7), 1369–1385. https://doi.org/10.1002/bit.26277
dc.relation.referencesJinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032
dc.relation.referencesJuarez, E., Olivas, G., Zamudio, P., Ortega, E., Perez, S., & Sepulveda, D. (2017). Effect of water content on the flowability of hygroscopic powders. Journal of Food Engineering, 205, 12–17. https://doi.org/10.1016/j.jfoodeng.2017.02.024
dc.relation.referencesJunqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072
dc.relation.referencesJurado, T. B., Aparcana Ataurima, I., Villarreal Inca, L., Ramos Llica, E., Calixto Cotos, M., Hurtado Manrique, P., & Acosta Alfaro, K. (2016). Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. Revista de La Sociedad Química Del Perú, 82(3), 272–279. https://doi.org/10.1016/j.jadohealth.2005.06.010
dc.relation.referencesKaderides, K., & Goula, A. M. (2017). Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International, 100(July), 612–622. https://doi.org/10.1016/j.foodres.2017.07.057
dc.relation.referencesKaufman, V., & Garti, N. (1981). Spectral absorption measurements for determination of ease of formation and stability of oil in water emulsions. Journal of Dispersion Science and Technology, 2(4), 475–490. https://doi.org/10.1080/01932698108943925
dc.relation.referencesKhazraji, A. C., & Robert, S. (2013). Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/409676
dc.relation.referencesKhenpet, u K., Charoenjarasrerk, N., Jaijit, S., Arayapoonpong, S., & Jittanit, W. (2016). Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources, 50(2), 139–145. https://doi.org/10.1016/j.anres.2015.08.003
dc.relation.referencesKitrytė, V., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., & Venskutonis, P. R. (2017). Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food and Bioproducts Processing, 105, 36–50. https://doi.org/10.1016/j.fbp.2017.06.001
dc.relation.referencesKoley, T. K., Walia, S., Nath, P., Awasthi, O. P., & Kaur, C. (2011). Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber ): effect of enzyme-assisted processing. International Journal of Food Sciences and Nutrition, 62(3), 276–279. https://doi.org/10.3109/09637486.2010.526930
dc.relation.referencesLan, Y., Chang, F., Pan, M., Wu, C., Wu, S., Chen, S., Wang, S., Wu, M., & Wu, Y. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116(2), 462–469. https://doi.org/10.1016/j.foodchem.2009.02.061
dc.relation.referencesLanchero, O., Velandia, G., Fischer, G., Varela, N., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Revista Corpoica - Ciencia y Tecnologiía Agropecuaria, 8(1), 61–68.
dc.relation.referencesLargo, E., Cortés, M., & Ciro, H. (2015). Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520. https://doi.org/10.15446/rfnam.v68n1.47839
dc.relation.referencesLee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Science and Biotechnology, 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7
dc.relation.referencesLee, K., Yoon, S., Li, F., & Eun, J. (2017). Effects of inlet air temperature and concentration of carrier agents on physicochemical properties , sensory evaluation of spray-dried mandarin ( Citrus unshiu ) beverage powder. Applied Biological Chemistry, 60(33–40). https://doi.org/10.1007/s13765-016-0246-8
dc.relation.referencesLeite, T., Augusto, P., & Cristianini, M. (2015). Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophysics, 10(2), 169–180. https://doi.org/10.1007/s11483-014-9385-9
dc.relation.referencesLiu, Y., Chen, F., & Guo, H. (2017). Optimization of bayberry juice spray drying process using response surface methodology. Food Science and Biotechnology, 26(5), 1235–1244. https://doi.org/10.1007/s10068-017-0169-0
dc.relation.referencesLoan, N. T. ., Hoa, N. D. ., & Ha, N. V. . (2016). Effects of Spray-Drying Conditions on Antioxidant Properties of Mango. Journal of Biotechnology, 14(1A), 427–438.
dc.relation.referencesLópez-Esparza, R., Balderas, M., Pérez, E., & Goicochea, A. G. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716
dc.relation.referencesLópez, V. (2017). Vista de La uchuva en el contexto de la producción agrícola colombiana y los TLC’s. Ensayos, 10(10), 131–144. https://revistas.unal.edu.co/index.php/ensayos/article/view/72501/66251
dc.relation.referencesLópez-Gaytán, E., Ayala-Hernández, J. J., Ponce-Aguirre, D., Mora-Aguilar, R., & Peña-Lomelí, A. (2006). Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Revista Chapingo Serie Horticultura, 12(1), 57–63. https://doi.org/10.5154/r.rchsh.2005.10.011
dc.relation.referencesLourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2020). Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, 9(6), 1–17. https://doi.org/10.3390/FOODS9060718
dc.relation.referencesLucas, J. C., Tobon, C., & Cortes, M. (2018). Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Advance Journal of Food Science and Technology, 14(3), 77–92. https://doi.org/10.19026/ajfst.14.5841
dc.relation.referencesLuchese, C. L., Gurak, P. D., & Marczak, L. D. F. (2015). Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation ofwater loss and sucrose incorporation and the quantification ofcarotenoids. LWT - Food Science and Technology, 63(2), 1128–1136. https://doi.org/10.1016/j.lwt.2015.04.060
dc.relation.referencesMachado, B., Costa, A., Oliveira, R., Barreto, G., Silva, R., & Umsza-Guez, M. (2016). Effect of applying pectinolytic enzymes in Spondias tuberosa Arr. Cam. Pulp. Revista Virtual de Quimica, 8(4), 1067–1078. https://doi.org/10.21577/1984-6835.20160076
dc.relation.referencesMachado, V. G., Hirata, T. A. M., & Menegalli, F. C. (2014). Agglomeration of soy protein isolate in a pulsed fluidized bed: Experimental study and process optimization. Powder Technology, 254, 248–255. https://doi.org/10.1016/j.powtec.2014.01.040
dc.relation.referencesMaktouf, S., Neifar, M., Drira, S. J., Baklouti, S., Fendri, M., & Châabouni, S. E. (2014). Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food and Bioproducts Processing, 92(1), 14–19. https://doi.org/10.1016/j.fbp.2013.07.003
dc.relation.referencesMareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004
dc.relation.referencesMarín, Z., Cortés, M., & Montoya, O. (2010). Capegooseberry (Physalis peruvian L.) Colombian ecotype, minimally processed inoculated with native strain lactobacillus plantarum lpbm10 by means of vaccum impregnation technique. Revista Chilena de Nutricion, 37(4), 461–472. https://doi.org/10.4067/s0717-75182010000400007
dc.relation.referencesMatusiak, J., & Grządka, E. (2017). Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemia, 72(1), 33. https://doi.org/10.17951/aa.2017.72.1.33
dc.relation.referencesMathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12(7), 409–417. https://doi.org/10.1016/S0956-7135(01)00032-9
dc.relation.referencesMehr, H. M., Elahi, M., & Razavi, S. M. A. (2012). Experimental Study on Optimization of the Agglomeration Process for Producing Instant Sugar by Conical Fluidized Bed Agglomerator. Drying Technology, 30(5), 505–515. https://doi.org/10.1080/07373937.2011.647995
dc.relation.referencesMendoza, H., Rodriguez, A., & Millán, P. (2012). Caracterización físico química de la uchuva (physalis peruviana) en la región de Silvia Cauca. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 10(2), 188–196.
dc.relation.referencesMettler Toledo. (2014). Brix - Sugar determination by density and refractometry. In Density and Refractometry. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/technical-bulletins/mettler-toledo-brix-sugar-determination-techinical-bulletin.pdf
dc.relation.referencesMidilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864
dc.relation.referencesMinSalud, M. de salud y protección social. (2021). Resolución No. 810 de 2021 (p. 50).
dc.relation.referencesMirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 47–56. https://doi.org/10.1016/j.colsurfa.2007.07.007
dc.relation.referencesMishra, P., Mishra, S., & Mahanta, C. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003
dc.relation.referencesMishra, Poonam, Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003
dc.relation.referencesMoelants, K., Cardinaels, R., Jolie, R., Verrijssen, T., Van Buggenhout, S., Zumalacarregui, L., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2013). Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food and Bioprocess Technology, 6(5), 1127–1143. https://doi.org/10.1007/s11947-011-0718-0
dc.relation.referencesMoghaddam, A. D., Pero, M., & Askari, G. R. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology, 54(1), 174–184. https://doi.org/10.1007/s13197-016-2449-8
dc.relation.referencesMokhtar, S. M., Swailam, H. M., & Embaby, H. E. S. (2018). Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry, 248, 1–7. https://doi.org/10.1016/j.foodchem.2017.11.117
dc.relation.referencesMuzaffar, K., Nayik, A., & Kumar, P. (2018). Production of Fruit Juice Powders by Spray Drying Technology. International Journal of Advance Research in Science and Engineering, 7(3), 59–67.
dc.relation.referencesMuzaffar, K., & Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279, 179–184. https://doi.org/10.1016/j.powtec.2015.04.010
dc.relation.referencesMuzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness Problem Associated with Spray Drying of Sugar and Acid Rich Foods: A Mini Review. https://doi.org/10.4172/2155-9600.1000S12003
dc.relation.referencesMuzaffar, K., Wani, S. A., Dinkarrao, B. V., & Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1144444
dc.relation.referencesNarváez, C., Mateus, Á., & Restrepo, L. (2014). Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. In Agronomía Colombiana (Vol. 32, Issue 2).
dc.relation.referencesNeikov, O. (2019). Safety Engineering in the Production of Powders. In O. Neikov, S. Naboychenko, & N. Yefimov (Eds.), Handbook of Non-Ferrous Metal Powders (2nd ed., pp. 865–928). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00027-0
dc.relation.referencesNishad, J., Selvan, C. J., Mir, S. A., & Bosco, S. J. D. (2017). Effect of spray drying on physical properties of sugarcane juice powder (Saccharum officinarum L.). Journal of Food Science and Technology, 54(3), 687–697. https://doi.org/10.1007/s13197-017-2507-x
dc.relation.referencesNocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386
dc.relation.referencesNovozymes. (2001). Product Sheet Viscozyme ® L Description. www.novozymes.com
dc.relation.referencesOjovan, M. I. (2004). Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. JETP Letters, 79(12), 632–634. https://doi.org/10.1134/1.1790021
dc.relation.referencesOlivares, M., Dekker, M., Verkerk, R., & van Boekel, M. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(Part A), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009
dc.relation.referencesOlivares, M. (2017). Exploring The Potential of An Andean fruit: An Interdisciplinary Study On The Cape Gooseberry (Physalis peruviana L.) Value Chain [Wageningen University by]. https://doi.org/10.18174/393622
dc.relation.referencesOrdóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114
dc.relation.referencesOzkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205
dc.relation.referencesOzyurt, V. H., & Ötles, S. (2016). Effect of food processing on the physicochemical properties of dietary fibre. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(3), 233–245. https://doi.org/10.17306/J.AFS.2016.3.23
dc.relation.referencesPatil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230–236. https://doi.org/10.1016/j.powtec.2013.11.033
dc.relation.referencesPalzer, S. (2007). Chapter 13 Agglomeration of dehydrated consumer foods. Handbook of Powder Technology, 11, 591–671. https://doi.org/10.1016/S0167-3785(07)80048-0
dc.relation.referencesPatiño, D., Garcia, E., Barrera, E., Quejada, O., Rodriguez, H., & Arroyave, I. (2014). Manual del Cultivo de Técnico Uchuva Buenas Prácticas. In Fransiscovelez (Vol. 0, Issue colombia). file:///C:/Users/USUARIO/Documents/cultivo de zona de origen/CULTIVO DE UCHUVA/cartilla de uchuva.pdf
dc.relation.referencesPérez, A., Martínez, G., León, F., & Sánchez, M. (2020). The effect of the presence of seeds on the nutraceutical, sensory and rheological properties of Physalis spp. Fruits jam: A comparative analysis. Food Chemistry, 302(July 2019), 125141. https://doi.org/10.1016/j.foodchem.2019.125141
dc.relation.referencesPhisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. In International Food Research Journal (Vol. 19, Issue 4).
dc.relation.referencesPhuong, N., & Tuan, Q. (2016). Application of hydrolytic enzymes for improvement of red dragon fruit juice processing. Asia Pacific Journal of Sustainable Agriculture Food and Energy (APJSAFE), 4(1), 1–4.
dc.relation.referencesPragati, S., & Preeti, B. (2014). Technological Revolution in Drying of Fruit and Vegetables. International Hournal of Science and Research, 3(10), 705–711.
dc.relation.referencesProcolombia. (2020). Uchuva. Procolombia, 2.
dc.relation.referencesPuente, L., Pinto, C., Castro, E., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034
dc.relation.referencesPuente, L., Spolmann, O., Nocetti, D., Zura, L., & Lemus, R. (2020). Effects of infrared-assisted refractance windowTM drying on the drying kinetics, microstructure, and color of Physalis fruit purée. Foods, 9(343). https://doi.org/10.3390/foods9030343
dc.relation.referencesQuek, S., Chok, N., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020
dc.relation.referencesQuirino, E., De Araújo, V., Monteiro, M., Finotelli, V., Guedes, A., & Perrone, D. (2016). Starch , inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093
dc.relation.referencesRamadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778z
dc.relation.referencesRamadan, M., & Moersel, J. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452–460. https://doi.org/10.1002/jsfa.2728
dc.relation.referencesRamadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778z
dc.relation.referencesRamadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391
dc.relation.referencesRamadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391
dc.relation.referencesRamadan, M., Sitohy, M., & Moersel, J. (2008). Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 226(6), 1445–1458. https://doi.org/10.1007/s00217-007-0676-y
dc.relation.referencesRamadan, M. (2011b). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042
dc.relation.referencesRamadan, M. (2018). Enzymes in fruit juice processing. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 45–59). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00004-9
dc.relation.referencesRamakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018
dc.relation.referencesRamírez, M., Giraldo, G., & Orrego, C. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. https://doi.org/10.1016/j.powtec.2015.02.060
dc.relation.referencesRayo, L., Chaguri, L., Sardá, F., Dacanal, G., Menezes, E., & Tadini, C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed- fluidized bed agglomeration. LWT - Food Science and Technology, 63, 461–469. https://doi.org/10.1016/j.lwt.2015.03.059
dc.relation.referencesRestrepo, A., Cortés, M., & Márquez, C. (2009). Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. VITAE, 16(1), 19–30. http://www.scielo.org.co/pdf/vitae/v16n1/v16n1a03
dc.relation.referencesReyes-Medina, A. J., Pinzón, E. H., & Álvarez-Herrera, J. G. (2017). Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics o
dc.relation.referencesReyes, M. E. D., Guanilo, C. K., Ibáñez, M. W., García, C. E., Idrogo, J. J., & Huamán, J. J. (2015). Efecto del conumo de Physalis peruviana L. (aguaymanto) sobre el pérfil lípido de pacientes con hiperemia. Acta Médica Peruana, 32(4), 195–201.
dc.relation.referencesRieck, C., Bück, A., & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanism in spray fluidized bed processes. AIChE Journal, 66(January), 1–18. https://doi.org/10.1002/aic.16920
dc.relation.referencesRigon, R., & Zapata, C. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus). Journal of Food Science and Technology, 53(3), 1515–1524. https://doi.org/10.1007/s13197-015-2111-x
dc.relation.referencesRíos, E. V, Giraldo G, G. A., & Lucia Duque, A. C. (2007). Predicción de la Actividad de Agua en Frutas Tropicales. In Revista de Investigaciones (Issue 17).
dc.relation.referencesRondet, E., Cuq, B., Cassan, D., & Ruiz, T. (2016). Agglomeration of wheat powders by a novel reverse wet agglomeration process. Journal of Food Engineering, 173, 92–105. https://doi.org/10.1016/j.jfoodeng.2015.10.046
dc.relation.referencesRodrigues, G., Gomes, L., Nitz, M., & Andreola, K. (2020). A protein powder agglomeration process using açaí pulp as the binder: An analysis of the process parameters. Advanced Powder Technology, 31(8), 3551–3561. https://doi.org/10.1016/j.apt.2020.07.001
dc.relation.referencesRodríguez, N., & Bueno, M. (2006). Study of the cytogenetic diversity of physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85.
dc.relation.referencesRoos, Y., & Drusch, S. (2015). Phase Transitions in Foods (Academic Press (ed.); Second Edi). Elsevier Inc. https://doi.org/10.1016/C2012-0-06577-5
dc.relation.referencesSaad, M. M., Barkouti, A., Rondet, E., Ruiz, T., & Cuq, B. (2011). Study of agglomeration mechanisms of food powders: Application to durum wheat semolina. Powder Technology, 208(2), 399–408. https://doi.org/10.1016/j.powtec.2010.08.035
dc.relation.referencesSablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271. https://doi.org/10.1016/j.jfoodeng.2005.09.025
dc.relation.referencesSadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. In Bioresources and Bioprocessing (Vol. 5, Issue 1, p. 1). Springer. https://doi.org/10.1186/s40643-017-0187-z
dc.relation.referencesSagar, V. R., & Suresh, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15–26. https://doi.org/10.1007/s13197-010-0010-8
dc.relation.referencesSamborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., Rostamabadi, H., Falsafi, S. R., Shaddel, R., Akbari-Alavijeh, S., & Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108(January), 297–325. https://doi.org/10.1016/j.tifs.2021.01.008
dc.relation.referencesSanthalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016
dc.relation.referencesSang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., Ruf, M., Lorch, S. E., Leong, E., Pezzuto, J. M., & Chang, L. C. (2016). Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 26(12), 2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077
dc.relation.referencesSantos, D., Maurício, A., Sencadas, V., Santos, J., Fernandes, M., & Gomes, P. (2018). Spray Drying: An Overview. In Biomaterials - Physics and Chemistry - New Edition. InTech. https://doi.org/10.5772/intechopen.72247
dc.relation.referencesSarabandi, K., Jafari, S., Mahoonak, A., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of egg plant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
dc.relation.referencesSathyashree, H., Ramachandra, C., Udaykumar, N., Mathad, P., & Nagaraj, N. (2018). Rehydration properties of spray dried sweet orange juice. ~ 120 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 120–124.
dc.relation.referencesSchuck, P. (2011). Dehydrated Dairy Products: Milk Powder: Physical and Functional Properties of Milk Powders. Encyclopedia of Dairy Sciences: Second Edition, 117–124. https://doi.org/10.1016/B978-0-12-374407-4.00122-9
dc.relation.referencesSelvamuthukumaran, M., & Khanum, F. (2014). Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. Journal of Food Science and Technology, 51(12), 3731–3739. https://doi.org/10.1007/s13197-012-0901-y
dc.relation.referencesShishir, M., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
dc.relation.referencesShittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100(1), 91–98. https://doi.org/10.1016/j.foodchem.2005.09.013
dc.relation.referencesShofinita, D., Feng, S., & Langrish, T. A. G. (2015). Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Advanced Powder Technology, 26(6), 1633–1638. https://doi.org/10.1016/j.apt.2015.09.007
dc.relation.referencesShrivastava, A., Tripathi, A. D., Paul, V., & Chandra Rai, D. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lwt, 151(May), 112091. https://doi.org/10.1016/j.lwt.2021.112091
dc.relation.referencesSilva, V. M., Sato, A. C. K., Barbosa, G., Dacanal, G., Ciro-Velásquez, H. J., & Cunha, R. L. (2010). The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science & Technology, 45(10), 2127–2133. https://doi.org/10.1111/j.1365-2621.2010.02386.x
dc.relation.referencesSobulska, M., & Zbicinski, I. (2020). Advances in spray drying of sugar-rich products. Drying Technology, 0(0), 1–26. https://doi.org/10.1080/07373937.2020.1832513
dc.relation.referencesSonam, K. S., & Guleria, S. (2017). Synergistic antioxidant activity of natural products. Annals of Pharmacology and Pharmaceutics, 2(8), 1–6.
dc.relation.referencesSuescún, L., Erika, P., Betancourt, S., Gómez, M., Francy, M., García, L., Víctor, A., & Zarantes, M. N. (2011). Physalis peruviana. www.kimpres.com.co
dc.relation.referencesSun, T., Powers, J. R., & Tang, J. (2007). Effect of Enzymatic Macerate Treatment on Rutin Content, Antioxidant Activity, Yield, and Physical Properties of Asparagus Juice. Journal of Food Science, 72(4), S267–S271. https://doi.org/10.1111/j.1750-3841.2007.00345.x
dc.relation.referencesStrenzke, G., Dürr, R., Bück, A., & Tsotsas, E. (2020). Influence of operating parameters on process behavior and product quality in continuous spray fluidized bed agglomeration. Powder Technology, 375, 210–220. https://doi.org/10.1016/j.powtec.2020.07.083
dc.relation.referencesSzulc, K., & Lenart, A. (2013). Surface modification of dairy powders : Effects of fluid-bed agglomeration and coating. International Dairy Journal, 33(1), 55–61. https://doi.org/10.1016/j.idairyj.2013.05.021
dc.relation.referencesTamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033
dc.relation.referencesTan, H. S., Salman, A. D., & Hounslow, M. J. (2006). Kinetics of fluidised bed melt granulation I : The effect of process variables. Chemical Engineering Science, 61, 1585–1601. https://doi.org/10.1016/j.ces.2005.09.012
dc.relation.referencesTontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009
dc.relation.referencesTorres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). Journal of Supercritical Fluids, 138(March), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005
dc.relation.referencesUzuner, S., & Cekmecelioglu, D. (2018). Enzymes in the beverage industry. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 29–43). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00003-7
dc.relation.referencesValenzuela, A., & Ronco, A. (2004). Fitoesteroles y fitoestanoles: aliados naturales para la protección de la salud cardiovascular. Revista Chilena de Nutrición, 21(1), 161–169. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182004031100003&lng=es&nrm=iso&tlng=es
dc.relation.referencesVásquez, J., Ochoa, C., & Bustos, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119(3), 648–654. https://doi.org/10.1016/j.jfoodeng.2013.06.037
dc.relation.referencesVengateson, U., & Mohan, R. (2016). Experimental and modeling study of fluidized bed granulation: Effect of binder flow rate and fluidizing air velocity. Resource-Efficient Technologies, 2, S124–S135. https://doi.org/10.1016/j.reffit.2016.10.003
dc.relation.referencesVega-Gálvez, A., Díaz, R., López, J., Galotto, M. J., Reyes, J. E., Perez-Won, M., Puente-Díaz, L., & Di Scala, K. (2016). Assessment of quality parameters and microbial characteristics of Cape gooseberry pulp (Physalis peruviana L.) subjected to high hydrostatic pressure treatment. Food and Bioproducts Processing, 97, 30–40. https://doi.org/10.1016/j.fbp.2015.09.008
dc.relation.referencesVerma, A., & Singh, S. V. (2015). Spray Drying of Fruit and Vegetable Juices—A Review. Critical Reviews in Food Science and Nutrition, 55(5), 701–719. https://doi.org/10.1080/10408398.2012.672939
dc.relation.referencesVijayanand, P., Kulkarni, S. G., & Prathibha, G. V. (2010). Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. Journal of Food Science and Technology, 47(2), 235–239. https://doi.org/10.1007/s13197-010-0023-3
dc.relation.referencesVidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P., & Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technology, 258, 209–215. https://doi.org/10.1016/j.powtec.2014.03.038
dc.relation.referencesVong, W. C., & Liu, S. Q. (2019). The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. LWT, 100, 196–204. https://doi.org/10.1016/j.lwt.2018.10.059
dc.relation.referencesWan, Y.-J., Xu, M.-M., Gilbert, R. G., Yin, J.-Y., Huang, X.-J., Xiong, T., & Xie, M.-Y. (2018). Colloid chemistry approach to understand the storage stability of fermented carrot juice. https://doi.org/10.1016/j.foodhyd.2018.11.017
dc.relation.referencesWan, Y., Xu, M., Gilbert, R., Yin, J., Huang, X., Xiong, T., & Xie, M. (2019). Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 89, 623–630. https://doi.org/10.1016/j.foodhyd.2018.11.017
dc.relation.referencesWardy, W., Pujols, K., Xu, Z., No, H., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013
dc.relation.referencesWellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279
dc.relation.referencesWu, D., & Sun, D. (2013). Colour measurements by computer vision for food quality control e A review. Trends in Food Science & Technology, 29, 5–20. https://doi.org/10.1016/j.tifs.2012.08.004
dc.relation.referencesYıldız, G., İzli, N., Ünal, H., & Uylaşer, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4), 2320–2327. https://doi.org/10.1007/s13197-014-1280-3
dc.relation.referencesYu, Z., Jiang, S., Cao, X., Jiang, S., & Pan, L. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042
dc.relation.referencesYüksel, H., Çalışkan Koç, G., & Dirim, S. N. (2019). Physical characterization of spray-dried milk powders and their agglomerates with the addition of carob, cinnamon, and ginger powders. Pamukkale University Journal of Engineering Sciences, 25(7), 824–833. https://doi.org/10.5505/pajes.2019.56798
dc.relation.referencesYuksel, H., & Dirim, N. (2018). Agglomeration process in the fluidized bed, the effecting parameters and some applications. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 159–163. https://doi.org/10.31895/hcptbn.13.3-4.10
dc.relation.referencesYuksel, H., & Dirim, S. N. (2021). Application of the agglomeration process on spinach juice powders obtained using spray drying method. Drying Technology, 39(1), 19–34. https://doi.org/10.1080/07373937.2020.1832515
dc.relation.referencesZapata, J., Ciro, G., & Marulanda, P. (2016). Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology. Agronomia Colombiana, 34(2), 228–238. https://doi.org/10.15446/agron.colomb.v34n2.54920
dc.relation.referencesZhang, J., Zhang, C., Chen, X., & Quek, S. Y. (2020). Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. Journal of Food Engineering, 269(October 2019), 109744. https://doi.org/10.1016/j.jfoodeng.2019.109744
dc.relation.referencesZhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255. https://doi.org/10.1080/10408398.2014.97928
dc.relation.referencesZhou, L., Guan, Y., Bi, J., Liu, X., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2017). Change of the rheological properties of mango juice by high pressure homogenization. LWT - Food Science and Technology, 82, 121–130. https://doi.org/10.1016/j.lwt.2017.04.038
dc.relation.referencesZhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 126967. https://doi.org/10.1016/j.foodchem.2020.126967
dc.relation.referencesZiyani, L., & Fatah, N. (2014). Use of experimental designs to optimize fluidized bed granulation of maltodextrin. Advanced Powder Technology, 25(3), 1069–1075. https://doi.org/10.1016/j.apt.2014.02.013
dc.relation.referencesZotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFrutas Deshidratadas
dc.subject.lembUchuvas deshidratadas
dc.subject.lembDried fruit
dc.subject.proposalAntioxidantes
dc.subject.proposalSistemas coloidales
dc.subject.proposalDeshidratación de alimentos
dc.subject.proposalGranulación de polvos de frutas
dc.subject.proposalPhysalis peruviana L.
dc.title.translatedDevelopment of an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effect
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleMacroproyecto Fortalecimiento de la competitividad de las cadenas productivas de mora, fresa y uchuva en el departamento de Antioquia, mediante el desarrollo y escalamiento industrial de alimentos funcionales aglomerados con potencial efecto antioxidante.
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentos


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito