Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorBolaños Martinez, Freddy (Thesis advisor)
dc.contributor.advisorPérez Gonzales, Ernesto
dc.contributor.authorCardona Posada, Juan Camilo
dc.date.accessioned2022-06-29T14:09:03Z
dc.date.available2022-06-29T14:09:03Z
dc.date.issued2022-06-27
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81652
dc.descriptionIlustraciones, diagramas, tablas
dc.description.abstractEl análisis de fallas eléctricas en Sistemas Eléctricos de Potencia ha visto un avance significativo en la implementación de metodologías fundamentadas en el Procesamiento Digital de Señales, como el análisis en tiempo y frecuencia. En este trabajo se propone una metodología para utilizar filtros con Respuesta Infinita al Impulso como Funciones Madre para computar la Transformada Wavelet Continua mediante la evaluación del concepto del remuestreo digital de señales. Esta metodología es evaluada al compararla con la metodología más comúnmente reportada en la literatura (Transformada Wavelet Discreta con Función Madre tipo Daubechies 4) y se investigan los efectos de los parámetros más relevantes inherentes al método y a las señales. La implementación del código se realiza en el software de MATLAB y los resultados se validan comparando la energía espectral asociada a los coeficientes Wavelet obtenidos. Por otro lado, se propone evaluar las etapas de detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica utilizando una serie de señales simuladas en el Software ATP/EMTP y redes neuronales artificiales. Los resultados obtenidos validan la metodología propuesta además de presentar una mejora notoria en cuanto a la tasa de detección y clasificación de eventos al compararla con el método tradicional. Finalmente, se resumen las limitaciones de la investigación y se propone una serie de recomendaciones a modo de trabajo futuro con el objetivo de continuar la evaluación de la metodología propuesta. (Texto tomado de la fuente)
dc.description.abstractElectric fault analysis in Power Systems has seen significant progress in the adoption of methodologies based on Digital Signal Processing, such as time and frequency analysis. In this work, a novel method is proposed to use filters with Infinite Impulse Response as Mother Functions to compute the Continuous Wavelet Transform by evaluating the concept of digital signal resampling. This methodology is evaluated by comparing it with the most common method in the literature (Discrete Wavelet Transform with Daubechies 4-type Mother Function) and the effects of the most relevant parameters inherent to the method and to the signals are investigated. The implementation of the code is carried out in the MATLAB software and the results are validated by comparing the spectral energy associated with the Wavelet Coefficients obtained. On the other hand, an evaluation of the stages of detection and classification of electrical faults in electrical power distribution systems is proposed by using a series of simulated signals in the ATP/EMTP Software and artificial neural networks. The results obtained validate the proposed methodology in addition to presenting a notable improvement in the rate of detection and classification of events when compared to the traditional method. Finally, the limitations of the research are summarized, and a series of recommendations are proposed for future work with the aim of continuing the evaluation of the proposed method.
dc.format.extentxxi, 136 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDetección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunal
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctrica
dc.description.researchareaProtección de Sistemas Eléctricos de Potencia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automática
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesC. Zapata, Confiabilidad de Sistemas Eléctricos de Potencia. Pereira: Universidad Tecnológica de Pereira, 2011. doi: 10.2307/j.ctt1zk0m77.5.
dc.relation.referencesP. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, 2004, doi: 10.1109/TPWRS.2004.825981.
dc.relation.referencesM. Ventosa, P. Linares, and I. J. Pérez-Arriaga, “Power System Economics,” Power Systems, vol. 61, no. October 1982, pp. 47–123, 2013, doi: 10.1007/978-1-4471-5034-3_2.
dc.relation.referencesS. Silva, P. Costa, M. Santana, and D. Leite, “Evolving neuro-fuzzy network for real-time high impedance fault detection and classification,” Neural Computing and Applications, vol. 32, no. 12, pp. 7597–7610, 2020, doi: 10.1007/s00521-018-3789-2.
dc.relation.referencesP. Jafarian and M. Sanaye-Pasand, “A traveling-wave-based protection technique using wavelet/pca analysis,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 588–599, 2010, doi: 10.1109/TPWRD.2009.2037819.
dc.relation.referencesD. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.
dc.relation.referencesM. Parsi, P. Crossley, P. L. Dragotti, and D. Cole, “Wavelet based fault location on power transmission lines using real-world travelling wave data,” Electric Power Systems Research, vol. 186, no. February, p. 106261, 2020, doi: 10.1016/j.epsr.2020.106261.
dc.relation.referencesL. Y. Bewley, “Traveling Waves on Transmission Systems,” Transactions of the American Institute of Electrical Engineers, 1931, doi: 10.1109/T-AIEE.1931.5055827.
dc.relation.referencesM. Pourahmadi-Nakhli and A. A. Safavi, “Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks,” IEEE Transactions on Power Delivery, 2011, doi: 10.1109/TPWRD.2010.2050218.
dc.relation.referencesS. M. Korobeynikov, N. Y. Ilyushov, Y. A. Lavrov, S. S. Shevchenko, and V. A. Loman, “High-Frequency Transients Suppression at Substation,” 2019. doi: 10.1109/ICHVE.2018.8641972.
dc.relation.referencesY. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1279–1284, 2000, doi: 10.1109/61.891515.
dc.relation.referencesF. H. Magnago and A. Abur, “A new fault location technique for radial distribution systems based on high frequency signals,” 1999. doi: 10.1109/PESS.1999.784386.
dc.relation.referencesT. M. Lai, L. A. Snider, E. Lo, and D. Sutanto, “High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 397–407, 2005, doi: 10.1109/TPWRD.2004.837836.
dc.relation.referencesM. Goudarzi, B. Vahidi, R. A. Naghizadeh, and S. H. Hosseinian, “Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 67, no. May, pp. 423–430, 2015, doi: 10.1016/j.ijepes.2014.12.014.
dc.relation.referencesS. Khokhar, A. A. B. Mohd Zin, A. S. B. Mokhtar, and M. Pesaran, “A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.07.068.
dc.relation.referencesA. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1469–1476, 1999, doi: 10.1109/61.796242.
dc.relation.referencesA. R. Sedighi, M. R. Haghifam, O. P. Malik, and M. H. Ghassemian, “High impedance fault detection based on wavelet transform and statistical pattern recognition,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2414–2421, 2005, doi: 10.1109/TPWRD.2005.852367.
dc.relation.referencesZ. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.
dc.relation.referencesC. L. Tu, W. L. Hwang, and J. Ho, “Analysis of singularities from modulus maxima of complex wavelets,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 1049–1062, 2005, doi: 10.1109/TIT.2004.842706.
dc.relation.referencesK. M. Silva, B. A. Souza, and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 2058–2063, 2006, doi: 10.1109/TPWRD.2006.876659.
dc.relation.referencesL. O. Barthold and G. K. Carter, “Digital Traveling-Wave Solutions: I—Single-Phase Equivalents,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1961, doi: 10.1109/AIEEPAS.1961.4501145.
dc.relation.referencesF. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.
dc.relation.referencesM. Vrhel, C. Lee, and M. Unser, “THE CONTINUOUS WAVELET TRANSFORM: A TOOL FOR SIGNAL INVESTIGATION AND UNDERSTANDING,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1995.
dc.relation.referencesL. U. Iurinic, A. S. Bretas, and E. S. Guimaraes, “Continuous-wavelet transform fault location algorithm inferred from faulty signal,” 2012. doi: 10.1109/PESGM.2012.6344853.
dc.relation.referencesA. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone, and A. Abur, “Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3139–3146, 2010, doi: 10.1109/TPWRD.2010.2046655.
dc.relation.referencesH. w. Dommel and J. M. Michels, “HIGH SPEED RELAYING USING TRAVELING WAVE TRANSIENT ANALYSIS.,” 1978.
dc.relation.referencesM. T. Hagh, K. Razi, and H. Taghizadeh, “Fault classification and location of power transmission lines using artificial neural network,” 2007.
dc.relation.referencesA. Abdollahi and S. Seyedtabaii, “Comparison of fourier & wavelet transform methods for transmission line fault classification,” PEOCO 2010 - 4th International Power Engineering and Optimization Conference, Program and Abstracts, no. June, pp. 579–584, 2010, doi: 10.1109/PEOCO.2010.5559232.
dc.relation.referencesL. J. Collazo and E. O’Neill-Carrillo, “Comparison of windowed Fourier transform and dynamic phasors for power quality analysis,” 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, pp. 1–5, 2009, doi: 10.1109/PSCE.2009.4840147.
dc.relation.referencesD. Donnelly, “The Fast Fourier and Hilbert-Huang Transforms: A Comparison,” in IMACS Multiconference on “Computational Engineering in Systems Applications” (CESA), 2006, vol. 12, no. 3, pp. 84–88.
dc.relation.referencesS. Vandeput, Heart rate variability : linear and nonlinear analysis with applications in human physiology. 2010.
dc.relation.referencesJ. B. Allen and L. R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis,” Proceedings of the IEEE, 1977, doi: 10.1109/PROC.1977.10770.
dc.relation.referencesR. Subhashree, C. S. Preethi, and P. Supriya, “Fault distance identification in transmission line using STFT algorithm,” 2016. doi: 10.1109/ICCCI.2016.7480036.
dc.relation.referencesR. Bhattacharjee and A. De, “A robust STFT based algorithm for detection of symmetrical fault during power swing,” 2017. doi: 10.1109/POWERI.2016.8077364.
dc.relation.referencesS. Mallat, A Wavelet Tour of Signal Processing The Sparse Way. 2009.
dc.relation.referencesJ. O. Strömberg, “A modified franklin system and higher-order spline systems on Rn as unconditional bases for hardy spaces,” in Fundamental Papers in Wavelet Theory, 2009. doi: 10.1515/9781400827268.197.
dc.relation.referencesJ. D. Kropotov, Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment. 2016. doi: 10.1016/C2012-0-07144-X.
dc.relation.referencesA. Grossmann and J. Morlet, “Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, vol. 15, no. 4, 1984.
dc.relation.referencesY. Meyer, Wavelets and Operators. 1993. doi: 10.1017/cbo9780511623820.
dc.relation.referencesA. Cohen, I. Daubechies, and J. ‐C Feauveau, “Biorthogonal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1992, doi: 10.1002/cpa.3160450502.
dc.relation.referencesI. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1988, doi: 10.1002/cpa.3160410705.
dc.relation.referencesI. Daubechies, “2. The Continuous Wavelet Transform,” in Ten Lectures on Wavelets, 1992. doi: 10.1137/1.9781611970104.ch2.
dc.relation.referencesI. Daubechies, Ten Lectures on Wavelets. 1992. doi: 10.1137/1.9781611970104.
dc.relation.referencesP. Qi, S. Jovanovic, J. Lezama, and P. Schweitzer, “Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks,” Electric Power Systems Research, vol. 143, no. June 2018, pp. 130–139, 2017, doi: 10.1016/j.epsr.2016.10.008.
dc.relation.referencesD. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.
dc.relation.referencesF. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, 1998, doi: 10.1109/61.714808.
dc.relation.referencesF. B. Costa, B. A. Souza, N. S. D. Brito, J. A. C. B. Silva, and W. C. Santos, “Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform,” IEEE Transactions on Industry Applications, 2015, doi: 10.1109/TIA.2015.2434993.
dc.relation.referencesM. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.
dc.relation.referencesA. Borghetti, S. Corsi, C. A. Nucci, M. Paolone, L. Peretto, and R. Tinarelli, “On the use of continuous-wavelet transform for fault location in distribution power systems,” International Journal of Electrical Power and Energy Systems, 2006, doi: 10.1016/j.ijepes.2006.03.001.
dc.relation.referencesA. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
dc.relation.referencesK. Nanayakkara, A. D. Rajapakse, and R. Wachal, “Fault Location in Extra Long HVDC Transmission Lines using Continuous Wavelet Transform,” 2011.
dc.relation.referencesMATHWORKS, “Continuous Wavelet Analysis,” https://la.mathworks.com/help/wavelet/gs/continuous-wavelet-analysis.html, 2021.
dc.relation.referencesJ. Lilly, “A data analysis package for Matlab,” 2016.
dc.relation.referencesA. R. Adly, S. H. E. Abdel Aleem, M. A. Elsadd, and Z. M. Ali, “Wavelet packet transform applied to a series-compensated line: A novel scheme for fault identification,” Measurement: Journal of the International Measurement Confederation, vol. 151, p. 107156, 2020, doi: 10.1016/j.measurement.2019.107156.
dc.relation.referencesG. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.
dc.relation.referencesE. Y. Hamid and Z. I. Kawasaki, “Wavelet-based data compression of power system disturbances using the minimum description length criterion,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 460–466, 2002, doi: 10.1109/61.997918.
dc.relation.referencesL. Jin, M. Jiang, and G. Yang, “Fault analysis of microgrid and adaptive distance protection based on complex wavelet transform,” 2014. doi: 10.1109/PEAC.2014.7037882.
dc.relation.referencesZ. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.
dc.relation.referencesJ. G. Proakis and D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. 1996.
dc.relation.referencesJ. Klomjit, A. Ngaopitakkul, and B. Sreewirote, “Comparison of mother wavelet for classification fault on hybrid transmission line systems,” 2017. doi: 10.1109/ICAwST.2017.8256514.
dc.relation.referencesC. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), vol. 10, no. 4, pp. 1–16, 2020, doi: 10.3390/app10041203.
dc.relation.referencesW. Fluty and Y. Liao, “Electric Transmission Fault Location Techniques Using Traveling Wave Method and Discrete Wavelet Transform,” Clemson University Power Systems Conference, PSC 2020, 2020, doi: 10.1109/PSC50246.2020.9131271.
dc.relation.referencesB. Rathore and A. G. Shaik, “Wavelet-Alienation Based Transmission Line Protection Scheme,” pp. 1–15.
dc.relation.referencesH. R. Karimi, W. Pawlus, and K. G. Robbersmyr, “Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets,” Neurocomputing, 2012, doi: 10.1016/j.neucom.2012.04.010.
dc.relation.referencesA. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
dc.relation.referencesA. Calderón, “Intermediate spaces and interpolation, the complex method,” Studia Mathematica, 1964, doi: 10.4064/sm-24-2-113-190.
dc.relation.referencesP. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.
dc.relation.referencesU. B. Parikh, B. Das, and R. P. Maheshwari, “Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1789–1794, 2008, doi: 10.1109/TPWRD.2008.919395.
dc.relation.referencesR. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad, “Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015, doi: 10.1109/TIA.2014.2356639.
dc.relation.referencesN. Zhang and M. Kezunovic, “Transmission line boundary protection using wavelet transform and neural network,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 859–869, 2007, doi: 10.1109/TPWRD.2007.893596.
dc.relation.referencesN. Tailor, S. Joshi, and O. P. Mahela, “Transmission line protection schemes based on wigner distribution function and discrete wavelet transform,” PIICON 2020 - 9th IEEE Power India International Conference, 2020, doi: 10.1109/PIICON49524.2020.9113011.
dc.relation.referencesA. K. Pradhan, A. Routray, S. Pati, and D. K. Pradhan, “Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line,” IEEE Transactions on Power Delivery, 2004, doi: 10.1109/TPWRD.2003.822535.
dc.relation.referencesZ. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1560–1568, 2004, doi: 10.1109/TPWRD.2004.835281.
dc.relation.referencesD. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.
dc.relation.referencesM. Dashtdar, M. Esmaeilbeig, M. Najafi, and M. E. N. Bushehri, “Fault Location in the Transmission Network Using Artificial Neural Network,” Automatic Control and Computer Sciences, vol. 54, no. 1, pp. 39–51, 2020, doi: 10.3103/S0146411620010022.
dc.relation.referencesA. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 2016, doi: 10.1109/TPWRD.2015.2464098.
dc.relation.referencesA. H. Osman and O. P. Malik, “Transmission line distance protection based on wavelet transform,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 515–523, 2004, doi: 10.1109/TPWRD.2003.822531.
dc.relation.referencesA. Bermúdez, E. Spinelli, and C. Muravch, “Detección de eventos en señales de EEG mediante Entropía,” 2011. Accessed: Oct. 20, 2021. [Online]. Available: http://www.sabi2011.fi.mdp.edu.ar/proceedings/SABI/Pdf/SABI2011_75.pdf
dc.relation.referencesH. Zheng-you, C. Xiaoqing, and L. Guoming, “Wavelet Entropy Measure Definition and Its Application for Transmission Line Fault Detection and Identification; (Part I: Definition and Methodology),” 2007. doi: 10.1109/icpst.2006.321939.
dc.relation.referencesZ. He, L. Fu, S. Lin, and Z. Bo, “Fault detection and classification in EHV transmission line based on wavelet singular entropy,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2156–2163, 2010, doi: 10.1109/TPWRD.2010.2042624.
dc.relation.referencesS. Khokhar, A. A. Mohd Zin, A. P. Memon, and A. S. Mokhtar, “A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network,” Measurement: Journal of the International Measurement Confederation, vol. 95, pp. 246–259, 2017, doi: 10.1016/j.measurement.2016.10.013.
dc.relation.referencesH. H. Chang and N. V. Linh, “Statistical feature extraction for fault locations in nonintrusive fault detection of low voltage distribution systems,” Energies (Basel), vol. 10, no. 5, pp. 1–19, 2017, doi: 10.3390/en10050611.
dc.relation.referencesH. Lala and S. Karmakar, “Continuous wavelet transform and artificial neural network based fault diagnosis in 52 bus hybrid distributed generation system,” 4th Students Conference on Engineering and Systems, SCES 2015, 2016, doi: 10.1109/SCES.2015.7506463.
dc.relation.referencesY. Y. Hong and M. T. A. M. Cabatac, “Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network,” IEEE Systems Journal, vol. 14, no. 2, pp. 2725–2735, 2020, doi: 10.1109/JSYST.2019.2925594.
dc.relation.referencesB. Rathore and A. G. Shaik, “Wavelet-alienation based transmission line protection scheme,” IET Generation, Transmission and Distribution, vol. 11, no. 4, pp. 995–1003, Mar. 2017, doi: 10.1049/iet-gtd.2016.1022.
dc.relation.referencesP. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.
dc.relation.referencesF. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.
dc.relation.referencesG. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.
dc.relation.referencesM. Hirn, “Lecture 16: Wavelet Modulus Maxima,” 2020. Accessed: Sep. 14, 2021. [Online]. Available: https://matthewhirn.files.wordpress.com/2020/03/math994_spring2020_lecture16-1.pdf
dc.relation.referencesD. Guillen, M. R. A. Paternina, A. Zamora, J. M. Ramirez, and G. Idarraga, “Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm,” IET Generation, Transmission and Distribution, 2015, doi: 10.1049/iet-gtd.2014.1064.
dc.relation.referencesC. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), 2020, doi: 10.3390/app10041203.
dc.relation.referencesP. Lertwanitrot and A. Ngaopitakkul, “Discriminating between Capacitor Bank Faults and External Faults for an Unbalanced Current Protection Relay Using DWT,” IEEE Access, vol. 8, pp. 180022–180044, 2020, doi: 10.1109/ACCESS.2020.3026744.
dc.relation.referencesD. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, 2016, doi: 10.1109/TSG.2015.2487501.
dc.relation.referencesL. Breiman, “Random Forests,” Berkeley, CA: University of California, 2001.
dc.relation.referencesH. Ampadu, “Random Forests Understanding,” https://ai-pool.com/a/s/random-forests-understanding, May 01, 2021.
dc.relation.referencesM. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines, 2015. doi: 10.1007/978-1-4302-5990-9_3.
dc.relation.referencesA. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 428–436, 2016, doi: 10.1109/TPWRD.2015.2464098.
dc.relation.referencesS. Kaewarsa, K. Attakitmongcol, and T. Kulworawanichpong, “Recognition of power quality events by using multiwavelet-based neural network,” Proceedings - 6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007, no. Icis, pp. 993–998, 2007, doi: 10.1109/ICIS.2007.153.
dc.relation.referencesM. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.
dc.relation.referencesO. A. S. Youssef, “Combined fuzzy-logic wavelet-based fault classification technique for power system relaying,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/TPWRD.2004.826386.
dc.relation.referencesJ. Jan, Digital Signal Filtering, Analysis and Restoration. 2000. doi: 10.1049/pbte044e.
dc.relation.referencesR. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the Point of View of Communications Engineering — Part II,” Bell System Technical Journal, vol. 37, no. 2, 1958, doi: 10.1002/j.1538-7305.1958.tb01530.x.
dc.relation.referencesF. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of the IEEE, vol. 66, no. 1, 1978, doi: 10.1109/PROC.1978.10837.
dc.relation.referencesChegg, “Problem 8 (Window Functions),” https://www.chegg.com/homework-help/questions-and-answers/problem-8-window-functions-figure-71-shows-three-window-functions-corresponding-amplitude--q51974895.
dc.relation.referencesS. W. Smith, Properties of Convolution:The Scientist and Engineer’s Guide to Digital Signal Processing. 1999.
dc.relation.referencesS. Bon, M. Vigny, and J. Massoulie, “Order A Journal On The Theory Of Ordered Sets And Its Applications,” Biochemistry, vol. 76, no. 6, 1979.
dc.relation.referencesW. K. Chen, Passive, active, and digital filters. 2009. doi: 10.1201/9781315219141.
dc.relation.referencesR. B. Randall, J. Antoni, and P. Borghesani, “Applied Digital Signal Processing,” in Handbook of Experimental Structural Dynamics, 2020. doi: 10.1007/978-1-4939-6503-8_6-1.
dc.relation.referencesR. Holmes, “Applied Underwater Acoustics,” Physics Bulletin, vol. 18, no. 1, 1967, doi: 10.1088/0031-9112/18/1/021.
dc.relation.referencesA. Borghetti, M. Bosetti, M. di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.
dc.relation.referencesT. Carsey and J. Harden, Monte Carlo Simulation and Resampling Methods for Social Science. 2014. doi: 10.4135/9781483319605.
dc.relation.referencesMATHWORKS, “FILTER REFERENCE,” https://la.mathworks.com/help/matlab/ref/filter.html.
dc.relation.referencesK. P. Balanda and H. L. Macgillivray, “Kurtosis: A critical review,” American Statistician, vol. 42, no. 2, 1988, doi: 10.1080/00031305.1988.10475539.
dc.relation.referencesMATHWORKS, “KURTOSIS REFERENCE,” https://la.mathworks.com/help/stats/kurtosis.html.
dc.relation.referencesATRIA Innovation, “Qué son las redes neuronales y sus funciones,” https://www.atriainnovation.com/que-son-las-redes-neuronales-y-sus-funciones/, Oct. 19, 2019.
dc.relation.referencesB. Yegnanarayana, “Artificial neural networks for pattern recognition,” Sadhana, vol. 19, no. 2, 1994, doi: 10.1007/BF02811896.
dc.relation.referencesK. Mehrotra, C. Mohan, and S. Ranka, Elements of Artificial Neural Networks. 2019. doi: 10.7551/mitpress/2687.001.0001.
dc.relation.referencesI. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Artificial neural networks: A practical course. 2016. doi: 10.1007/978-3-319-43162-8.
dc.relation.referencesP. J. Braspenning, F. Thuijsman, and A. Weijters, Artificial neural networks: an introduction to ANN theory and practice, vol. 931. 1995.
dc.relation.referencesPICO, “https://www.pico.net/kb/the-role-of-bias-in-neural-networks/,” https://www.pico.net/kb/the-role-of-bias-in-neural-networks/.
dc.relation.referencesR. Tadeusiewicz, “Neural networks: A comprehensive foundation,” Control Engineering Practice, vol. 3, no. 5, 1995, doi: 10.1016/0967-0661(95)90080-2.
dc.relation.referencesI. S. Korovin and M. v. Khisamutdinov, “Hybrid method of dynamograms wavelet analysis for oil-production equipment state identification,” in Advanced Materials Research, 2014, vol. 909. doi: 10.4028/www.scientific.net/AMR.909.252.
dc.relation.referencesJ. Villanueva, “Redes neuronales desde cero (I) – Introducción,” https://www.iartificial.net/redes-neuronales-desde-cero-i-introduccion/.
dc.relation.referencesIEEE, “IEEE PES Test Feeder,” https://cmte.ieee.org/pes-testfeeders/resources/.
dc.relation.referencesDistribution System Analysis Subcommittee IEEE, “IEEE 13 Node Test Feeder.”
dc.relation.referencesD. A. Sánchez Muñoz, “Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica,” Medellín, 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembLocalización de fallas eléctricas
dc.subject.lembElectric fault location
dc.subject.lembElectric power distribution
dc.subject.lembDistribución de energía eléctrica
dc.subject.proposalTransformada Wavelet
dc.subject.proposalAnálisis de Fallas Eléctricas
dc.subject.proposalSistemas de Distribución de Energía Eléctrica
dc.subject.proposalFunciones Madre
dc.subject.proposalRespuesta al Impulso de Filtros Digitales
dc.subject.proposalWavelet Transform
dc.subject.proposalElectric Fault Analysis
dc.subject.proposalPower Distribution Systems
dc.subject.proposalMother Functions
dc.subject.proposalDigital Filter Impulse Response
dc.title.translatedDetection and classification of electrical faults in electrical power distribution systems using the continuous wavelet transform and infinite support mother functions
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito