Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMonsalve Mejía, Gaspar
dc.contributor.authorLeón Vasco, Santiago
dc.date.accessioned2022-07-07T15:20:19Z
dc.date.available2022-07-07T15:20:19Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81688
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractThe growth of accretionary orogens, such as the northern Andes, involves both subduction-related tectonics and the collision of exotic terranes, including oceanic plateaus and island arcs. These contrasting tectonic regimes control the spatiotemporal evolution of deformational patterns and topography, whose signal is preserved in the tectonostratigraphic record of marginal basins, which is particularly true for forearc systems. This work presents a detailed geochronological and compositional characterization of Cretaceous magmatic rocks and Neogene strata of the northern Colombian forearc basin (Atrato Basin), which record the long-term evolution of the northwesternmost Andean region, since the early interactions with the Caribbean plate to the most recent shallow subduction of the Nazca plate. New petrochronological data from the Cupica and Tribugá gulfs allowed the recognition of a previously undocumented Upper-Cretaceous arc-related magmatic unit, which likely represents the earliest activity of the intra-oceanic Central American arc and the coeval island arc nowadays exposed along the north-Andean Western Cordillera. The collision of the latter and its plateau-like basement caused a major topographic uplift of the Colombian Central Cordillera during the Late Cretaceous-Paleocene, as suggested by new paleoelevation estimations presented in this work. Such collisional episode marked the early constitution of the northwestern Colombian forearc, whose evolution was subsequently controlled by the Neogene transition from the collision of the Central American arc and the subduction of the Nazca plate. A comprehensive tectonostratigraphic analysis of the Neogene infill of the Atrato Basin allowed identifying three main tectonic phases, which drove changes in the configuration of source areas and the depositional settings. First, the collision of the Central American arc against northwestern South America was recorded by the accumulation in a tectonically active back-arc basin of Oligocene-middle Miocene deep-marine strata sourced by both colliding domains. The advance of the collision triggered basin inversion and shallowing of accumulation depths during the middle Miocene, as well as accelerated erosional exhumation of the continental paleomargin and increased siliciclastic input to suture-related and the colliding back-arc basin. Second, the transition from collision to the subduction of the Nazca plate during the middle-late Miocene caused the formation of a post-collisional arc in northwestern Colombia, as well as the initial topographic uplift of the newly established forearc basin (former allochthonous back-arc) nearby the suture zone. This was accompanied by a major shallowing of accumulation depths and a dramatic change in the detrital signal of forearc deposits, which were isolated from continental source areas (i.e. Western Cordillera) by newly uplifted ranges. Finally, the late Miocene flattening of the subducting Nazca slab beneath northern Colombia caused widespread deformation that drove the uplift of the outer forearc high, represented by the coastal Baudó Range, and the establishment of the modern physiographic configuration. This episode led to the fragmentation of the forearc basin into an outer (coastal) and inner (inland) segments and strong reworking of older strata, as suggested by the provenance of late Miocene to Pliocene rocks accumulated in high-energy fluvial environments. The pulsated nature of Miocene mountain building along the northwesternmost Andean forearc, as a consequence of interspersed collisional and subduction-related tectonics, seemingly played a major role in the biogeographic evolution of the region and the constitution of the modern extremely humid tropical rainforest that hosts a biodiversity hotspot. This work allowed proving how valuable the tectonostratigraphic record of forearc basins and the surrounding mountain ranges is to disentangle the effects of a changing subduction system on the upper-plate landscape evolution, which, as demonstrated in this work, could be successfully studied through a combination of petrochronological, stratigraphic and structural analyses
dc.description.abstractEl crecimiento de orógenos acrecionarios como los Andes del norte, involucra procesos tectónicos relacionados con subducción, así como la colisión de terrenos exóticos, incluyendo plateaux oceánicos y arcos de islas. Estos regímenes tectónicos contrastantes controlan la evolución espaciotemporal de los patrones de deformación y la topografía, cuya señal es preservada en el registro tectonoestratigráfico de las cuencas marginales, lo cual es particularmente cierto para sistemas de antearco. Este trabajo presenta una caracterización geocronológica y composicional detallada de las rocas magmáticas Cretácicas y sedimentos Neógenos del antearco norte de Colombia (Cuenca Atrato), las cuales registran la evolución de largo plazo de la región más noroccidental de los Andes, desde las interacciones tempranas con la placa Caribe hasta la más reciente subducción plana de la placa de Nazca. Nuevos datos petrocronológicos de sedimentos modernos de los golfos de Cupica y Tribugá permitieron reconocer una unidad magmática del Cretácico Tardío afín con un arco de islas que no había sido previamente documentada, la cual podría representar la actividad más temprana del arco Centro Americano y el arco de islas ahora expuesto a lo largo de la Cordillera Occidental de los Andes del norte. La colisión de este último, en conjunto con su basamento de tipo plateau, durante el Cretácico Tardío-Paleoceno, causó un importante levantamiento topográfico de la Cordillera Central Colombiana, como lo sugieren nuevas estimaciones de paleoelevación presentadas en este trabajo. Este episodio colisional marcó la conformación temprana del antearco noroccidental Colombiano, cuya evolución fue subsecuentemente controlada por la transición Neógena de colisión del arco Centro Americano y la subducción de la placa de Nazca. Un análisis tectonoestratigráfico integral del relleno Neógeno de la Cuenca Atrato permitió identificar tres fases tectónicas principales, las cuales detonaron cambios en la configuración de las áreas fuente y de los ambientes deposicionales. Primero, la colisión del arco Centro Americano con el noroccidente de Suramérica fue registrado por la acumulación, en una cuenca tras-arco tectónicamente activa, de rocas marinas profundas del Oligoceno-Mioceno medio con procedencia de ambos dominios en colisión. El avance del evento colisional detonó la inversión de la cuenca y la somerización de las profundidades de acumulación durante el Mioceno Medio, así como la exhumación por erosión acelerada de la paleomargen continental y el incremento del flujo siliciclástico hacia la cuenca de sutura y la cuenca de tras-arco en colisión. Segundo, la transición de colisión a subducción de la placa de Nazca durante el Mioceno medio-tardío causó la formación de un arco poscolisional en el noroccidente de Colombia, y también el levantamiento topográfico inicial de la recientemente establecida cuenca de antearco (antes tras-arco alóctono) en cercanías a la zona de sutura. Esto fue acompañado por una somerización importante de los ambientes de acumulación y un cambio dramático en la señal detrítica de los depósitos de antearco, los cuales fueron aislados de fuentes continentales (i.e. Cordillera Occidental) por montañas recientemente levantadas. Finalmente, el aplanamiento de la losa subducente de la placa de Nazca por debajo del norte de Colombia causó deformación ampliamente distribuida y condujo al levantamiento del alto externo del antearco, representado por la Serranía de Baudó, y al establecimiento de las condiciones fisiográficas modernas. Este episodio llevó a la fragmentación de la cuenca de antearco en un segmento externo (costero) y uno interno (continental), así como al fuerte retrabajamiento de rocas más antiguas, como lo sugiere la procedencia de rocas del Mioceno tardío al Plioceno acumuladas en ambientes fluviales de alta energía. La naturaleza episódica de la construcción de montañas durante el Mioceno a lo largo del antearco más noroccidental de los Andes, como consecuencia de tectónica colisional y de subducción, jugó, aparentemente, un papel importante en la evolución biogeográfica de la región y en la constitución del bosque tropical extremadamente húmedo de la actualidad, el cual hospeda un punto caliente de biodiversidad. Este trabajo permitió probar lo valioso que es el registro tectonoestratigráfico de las cuencas de antearco y las cadenas de montaña adyacentes para revelar los efectos de un sistema de subducción cambiante en la evolución del paisaje de la placa superior. Esto, como pudo demostrarse en este trabajo, puede ser exitosamente estudiado a través de la integración de análisis petrocronológicos, estratigráficos y estructurales. (Texto tomado de la fuente)
dc.format.extentxviii, 170 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleForearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaGeodinámica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAizprua, C., Witt, C., Johansen, S.E., Barba, D., 2019. Cenozoic stages of forearc evolution following the accretion of a sliver from the Late Cretaceous-Caribbean Large Igneous Province: SW Ecuador-NW Peru. Tectonics 38, 1441–1465. https://doi.org/10.1029/2018TC005235
dc.relation.referencesAllen, P.A., Allen, J.R., 2013. Basin analysis: Principles and application to petroleum play assessment, 3rd ed. Wiley-Blackwell
dc.relation.referencesAlmeida, J.J., Villamizar, F., 2012. Petrografía y geoquímica del Batolito Antioqueño en un sector del municipio de Santa Rosa de Osos, Antioquia (Bachelor thesis). Universidad Industrial de Santander, Bucaramanga
dc.relation.referencesÁlvarez-Gómez, J.A., 2019. FMC -arthquake focal mechanis Ems data management, cluster and classification. Softw. X 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008
dc.relation.referencesArnott, R.W.C., 2010. Deep-marine sediments and sedimentary systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 295–322
dc.relation.referencesAvellaneda-Jiménez, D.S., Cardona, A., Valencia, V., Barbosa, J.S., Jaramillo, J.S., Monsalve, G., Ramírez-Hoyos, L.F., 2020. Erosion and regional exhumation of an Early Cretaceous subduction/accretion complex in the Northern Andes. Int. Geol. Rev. 62, 186–209. https://doi.org/10.1080/00206814.2019.1596042
dc.relation.referencesBaes, M., Sobolev, S., Gerya, T., Brune, S., 2020. Plume-induced subduction initiation: Single-slab or multi-slab subduction? Geochemistry, Geophys. Geosystems 21, e2019GC008663. https://doi.org/10.1029/2019GC008663
dc.relation.referencesBaes, M., Stern, R.J., Whattam, S., Gerya, T. V., Sobolev, S. V., 2021. Plume-induced subduction initiation: Revisiting models and observations. Front. Earth Sci. 9, 1032. https://doi.org/10.3389/feart.2021.766604
dc.relation.referencesBaillard, C., Crawford, W.C., Ballu, V., Regnier, M., Pelletier, B., Garaebiti, E., 2015. Seismicity and shallow slab geometry in the central Vanuatu subduction zone. J. Geophys. Res. Solid Earth 120, 5606–5623. https://doi.org/10.1002/2014JB011853
dc.relation.referencesBaker, P.A., Fritz, S.C., Dick, C.W., Eckert, A.J., Horton, B.K., Manzoni, S., Ribas, C.C., Garzione, C.N., Battisti, S., 2014. The emerging field of geogenomics: Constraining geological problems with genetic data. Earth-Science Rev. 135, 38–47. https://doi.org/10.1016/j.earscirev.2014.04.001
dc.relation.referencesBarbosa-Espitia, A.A., Kamenov, G.D., Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., 2019. Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos 348–349, 105185. https://doi.org/10.1016/j.lithos.2019.105185
dc.relation.referencesBayona, G., 2018. El inicio de la emergencia de los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 1–15. https://doi.org/10.18257/raccefyn.632
dc.relation.referencesBayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A.M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez-Marulanda, S., Cárdenas-Rozo, A.L., 2020. Unraveling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Res. https://doi.org/10.1111/bre.12496
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., Ibañez-Mejia, M., 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth Planet. Sci. Lett. 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 120, 1171–1197. https://doi.org/10.1130/B26187.1
dc.relation.referencesBecker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A.R., Miller, M.S., 2014. Static and dynamic support of western United States topography. Earth Planet. Sci. Lett. 402, 234–246. https://doi.org/10.1016/j.epsl.2013.10.012
dc.relation.referencesBelousova, E., Griffin, W., O’Reilly, S.Y., Fisher, N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. to Mineral. Petrol. 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7
dc.relation.referencesBlanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785
dc.relation.referencesBlisniuk, P.M., Stern, L.A., Chamberlain, P., Zeitler, P.K., Ramos, V.A., Sobel, E.R., Haschke, M., Strecker, M. R., Warkus, F., 2006. Links between mountain uplift, climate, and surface processes in the Southern Patagonian Andes, in: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-. J., Ramos, V.A., Strecker, Manfred R., Wigger, P. (Eds.), The Andes, Active Subduction Orogeny. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 429–440. https://doi.org/10.1007/978-3-540-48684-8_20
dc.relation.referencesBlow, W.A., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, in: Bronnimann, P., Renz, H.H. (Eds.), First International Conference on Planktonic Microfossils. Geneva, pp. 199–421
dc.relation.referencesBorrero, C., Pardo, A., Jaramillo, C.M., Osorio, J.A., Cardona, A., Flores, A., Echeverri, S., Rosero, S., García, J., Castillo, H., 2012. Tectonostratigraphy of the Cenozoic Tumaco forearc basin (Colombian Pacific) and its relationship with the northern Andes orogenic build up. J. South Am. Earth Sci. 39, 75–92. https://doi.org/10.1016/j.jsames.2012.04.004
dc.relation.referencesBoschman, L.M., van der Wiel, E., Flores, K.E., Langereis, C.G., van Hinsbergen, D.J.J., 2019. The Caribbean and Farallon plates connected: Constraints from stratigraphy and paleomagnestism of the Nicoya Peninsula, Costa Rica. J. Geophys. Res. Solid Earth 124, 6243–6266. https://doi.org/10.1029/2018JB016369
dc.relation.referencesBostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538. https://doi.org/10.1038/417536a
dc.relation.referencesBoutelier, D., Chemenda, A., Burg, J.P., 2003. Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth Planet. Sci. Lett. 212, 31–45. https://doi.org/10.1016/S0012-821X(03)00239-5
dc.relation.referencesBrown, D., Alvarez-Marrón, J., Pérez-Estaún, A., Puchkov, V., Gorozhanina, Y., Ayarza, P., 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continent collision in the southern Urals. Tectonics 20, 364–375. https://doi.org/10.1029/2001TC900002
dc.relation.referencesBuchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner-Mora, C., Ulianov, A., 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophys. Geosystems 11, 1–35. https://doi.org/10.1029/2009GC002901
dc.relation.referencesBuchs, D.M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., Pitchford, S., 2019a. Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016
dc.relation.referencesBuchs, D.M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., Portugal, E., Franceschi, P., Chichaco, E., Redwood, S.D., 2019b. Volcanic contribution to the emergence of Central Panama in the Early Miocene. Sci. Rep. 9, 1417. https://doi.org/10.1038/s41598-018-37790-2
dc.relation.referencesBuchs, D.M., Kerr, A.C., Brims, J.C., Zapata-Villada, J.P., Correa-Restrepo, T., Rodríguez, G., 2018. Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth Planet. Sci. Lett. 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M., Valencia, V., 2017. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025
dc.relation.referencesCalvo, C., 2003. Provenance of plutonic detritus in cover sandstones of Nicoya Complex, Costa Rica: Cretaceous unroofing history of a Mesozoic ophiolite sequence. Geol. Soc. Am. Bull. 115, 832–844. https://doi.org/10.1130/0016-7606(2003)115<0832:POPDIC>2.0.CO;2
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo-Trujillo, A., Schmitt, A.K., Mejía, D., Arenas, J.C., 2020. Cretaceous record from a Mariana to an Andean-type margin in the Central Cordillera of the Colombian Andes, in: Gómez, J., Pinilla-Pachón, A.O. (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, Bogotá, p. 39. https://doi.org/10.32685/pub.esp.36.2019.10
dc.relation.referencesCardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M.N., Gehrels, G.E., Jaramillo, C., Montes, C., Ojeda, G., Ruiz, J., 2011. Early-subduction-related orogen in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nov. 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x
dc.relation.referencesCardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U.G., Muñoz, C.M., 2014. Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin. J. South Am. Earth Sci. 50, 75–92. https://doi.org/10.1016/j.jsames.2013.12.006
dc.relation.referencesCase, J.E., Duran, L.G., López, A., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Geol. Soc. Am. Bull. 82, 2685–2712.
dc.relation.referencesCassel, E.J., Smith, M.E., Jicha, B.R., 2018. The impact of slab rollback on Earth’s surface: Uplift and extension in the hinterland of the North American Cordillera. Geophys. Res. Lett. 45, 10996–11004. https://doi.org/10.1029/2018GL079887
dc.relation.referencesCawood, P.A., Kröner, Alfred, Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history, in: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318, 1-36
dc.relation.referencesCediel, F., Restrepo, I., Marín-Cerón, M.I., Duque-Caro, H., Cuartas, C., Mora, C., Montenegro, G., García, E., Tovar, D., Muñoz, G., 2009. Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia. Fondo Editorial EAFIT, Medellín
dc.relation.referencesCelestino, M.A.L., Miranda, T.S., Mariano, G., Lima, M.A., Carvalho, B.R.B.M., Falcão, T.C., Topan, J.G., Barbosa, J.A., Gomes, I.F., 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe basin, Brazil, NE, Brazil. J. Struct. Geol. 104116. https://doi.org/10.1016/j.jsg.2020.104116
dc.relation.referencesChampagnac, J.-. D., Molnar, P., Sue, C., Herman, F., 2012. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403. https://doi.org/10.1029/2011JB008348
dc.relation.referencesChang, Z., Vervoort, J.D., McClelland, W.C., Knaack, C., 2006. U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophys. Geosystems 7, 1–14. https://doi.org/10.1029 /2005GC001100
dc.relation.referencesChapman, J.B., Ducea, M.N., DeCelles, P.G., Profeta, L., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 43, 919–922. https://doi.org/10.1130/G36996.1
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048
dc.relation.referencesClift, P.D., Hartley, A.J., 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506. https://doi.org/10.1130/G23584A.1
dc.relation.referencesClift, P.D., MacLeod, C.J., 1999. Slow rates of subbduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology 27, 411–414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2
dc.relation.referencesClift, P.D., Pecher, I., Kukowski, N., Hampel, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22, 1023. https://doi.org/10.1029/2002TC001386
dc.relation.referencesClift, P.D., Vannucchi, P., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001. https://doi.org/10.1029/2003RG000127
dc.relation.referencesCloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715
dc.relation.referencesCoates, A.G., Collins, L.S., Aubry, M.-P., Berggren, W.A., 2004. The Geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geol. Soc. Am. Bull. 116, 1327. https://doi.org/10.1130/B25275.1
dc.relation.referencesCollot, J.-Y., Ratzov, G., Silva, P., Proust, J.-N., Migeon, S., Hernández, M.J., Michaud, F., Pazmino, A., Barba Castillo, D., Alvarado, A., Khurama, S., 2019. The Esmeraldas Canyon: A helpful marker of the Pliocene-Pleistocene tectonic deformation of the North Ecuador-Southwest Colombia convergent margin. Tectonics 38, 3140–3166. https://doi.org/10.1029/2019TC005501
dc.relation.referencesCopete, J.C., Sánchez, M., Cámara-Leret, R., Balslev, H., 2019. Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia 41, 358–369. https://doi.org/10.15446/caldasia.v41n2.66576
dc.relation.referencesCorrea, I., Morton, R., 2010. Pacific coast of Colombia, in: Bird, E.C.F. (Ed.), Encyclopedia of the World’s Coastal Landforms. Springer, Dordrecht, pp. 193–197. https://doi.org/10.1007/978-1-4020-8639-7
dc.relation.referencesCortés, M., Angelier, J., 2005. Current state of stress inthe northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020
dc.relation.referencesCrameri, F., Magni, V., Domeier, M., Shepard, G.E., Chotalia, K., Cooper, G., Eakin, C.M., Grima, A.G., Gürer, D., Király, A., Mulyukova, E., Peters, K., Robert, B., Thielmann, M., 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750. https://doi.org/10.1038/s41467-020-17522-9
dc.relation.referencesDalrymple, R.W., 2010. Tidal depositional systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 201–232.
dc.relation.referencesDavies, J.H., von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102. https://doi.org/10.1016/0012-821X(94)00237-S
dc.relation.referencesDelph, J.R., Thomas, A.M., Levander, A., 2021. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett. 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724
dc.relation.referencesDePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., Mo, X., 2019. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 ans 32 Ma at the southern margin of Tibet. Gondwana Res. 73, 123–135. https://doi.org/10.1016/j.gr.2019.03.011
dc.relation.referencesDickinson, W.R., 1995. Forearc basins, in: Busby, C.J., Ingersoll, R. V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Oxford, UK, pp. 221–261.
dc.relation.referencesDickinson, W.R., 1985. Interpreting provenance relations from detrital modes of Sandstones, in: Zuffa, G.G. (Ed.), Provenance of Arenites. pp. 333–361.
dc.relation.referencesDickinson, W.R., 1973. Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs. J. Geophys. Res. 78, 3376–3389. https://doi.org/10.1029/JB078i017p03376
dc.relation.referencesDielforder, A., Hetzel, R., Oncken, O., 2020. Megathrust shear force controls mountain heigth at convergent plate margins. Nature 582, 225–229. https://doi.org/10.1038/s41586-020-2340-7
dc.relation.referencesDuarte, E., Cardona, A., Lopera, S., Valencia, V., Estupiñan, H., 2018. Provenance and diagenesis from two stratigraphic sections of the Lower Cretaceous Caballos Formation in the Upper Magdalena Valley: Geological and reservoir quality implications. Ciencia, Tecnol. y Futur. 8, 5–29. https://doi.org/10.29047/01225383.88
dc.relation.referencesDuque-Caro, H., 1990a. The Choco Block in the northwestern corner of South America : Structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci. 3, 71–84. https://doi.org/10.1016/0895-9811(90)90019-W
dc.relation.referencesDuque-Caro, H., 1990b. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and evolution of the Panama Seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 203–234. https://doi.org/10.1016/0031-0182(90)90178-A
dc.relation.referencesDuque-Caro, H., 1990c. Estratigrafía, paleoceanografía y paleobiogeografía de la Cuenca del Atrato y la evolución del Istmo de Panamá. Boletín Geológico 31, 4–45.
dc.relation.referencesDuque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, A., Toro-Villegas, G., Hoyos, S., 2019. Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geol. 46, 82–101. https://doi.org/10.5027/andgeoV46n1-3120
dc.relation.referencesDürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.-. A., van den Bogaard, P., Werner, R., 2019. Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province. Lithos 328–329, 69–87. https://doi.org/10.1016/j.lithos.2018.12.021
dc.relation.referencesDziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825
dc.relation.referencesEcheverri, S., Cardona, A., Pardo-Trujillo, A., Borrero, C., Rosero, S., López, S., 2015a. Correlación y geocronología Ar-Ar del basamento Cretácico y el relleno sedimentario Eoceno Superior - Mioceno (Aquitaniano inferior) de la cuenca de ante-arco de Tumaco, SW de Colombia. Rev. Mex. Ciencias Geológicas 32, 179–189.
dc.relation.referencesEcheverri, S., Cardona, A., Pardo-Trujillo, A., Monsalve, G., Valencia, V.A., Borrero, C., Rosero, S., López, S., 2015b. Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the northern Andes. Terra Nov. 27, 356–363. https://doi.org/10.1111/ter.12167
dc.relation.referencesEcheverri, S., Pardo-Trujillo, A., Borrero, C., Cardona, A., Rosero, S., Celis, S.A., López, S.A., 2016. Estratigrafía del Neógeno Superior al sur de la Cuenca Tumaco (Pacífico Colombiano): La Formación Cascajal, propuesta de redefinición litoestratigráfica. Boletín Geol. 38, 43–60. https://doi.org/10.18273/revbol.v38n4-2016003
dc.relation.referencesEkström, G., Nettles, M., Dziewonski, A.M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
dc.relation.referencesEncinas, A., Sagripanti, L., Rodríguez, M.P., Orts, D., Anavalón, A., Giroux, P., Otero, J., Echaurren, A., Zambrano, P., Valencia, V., 2021. Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chila (36°30’-42°S). Earth-Science Rev. 213, 103465. https://doi.org/10.1016/j.earscirev.2020.103465
dc.relation.referencesEngland, P., Molnar, P., 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
dc.relation.referencesEspurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics 27, TC3011. https://doi.org/10.1029/2007TC002175
dc.relation.referencesFaccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C.-, Billi, A., 2011. Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics 30, TC1003. https://doi.org/10.1029/2010TC002694
dc.relation.referencesFaccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201.
dc.relation.referencesFick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086
dc.relation.referencesFinzel, E.S., Enkelmann, E., 2017. Miocene-Recent sediment flux in the south-central Alaskan forearc basin governed by flat-slab subduction. Geochemistry, Geophys. Geosystems 18, 1739–1760. https://doi.org/10.1002/2016GC006783
dc.relation.referencesFinzel, E.S., Enkelmann, E., Falkowski, S., Hedeen, T., 2016. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska. Tectonics 35, 1735–1759. https://doi.org/10.1002/2016TC004171
dc.relation.referencesFinzel, E.S., Trop, J.M., Ridgway, K.D., Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet. Sci. Lett. 303, 348–360. https://doi.org/10.1016/j.epsl.2011.01.014
dc.relation.referencesFolk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas.
dc.relation.referencesFrohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198. https://doi.org/10.1016/0031-9201(92)90130-N
dc.relation.referencesGalvis, J., 1980. Un arco de islas terciarion en el occidente Colombiano. Geol. Colomb. 11, 7–43.
dc.relation.referencesGao, X., Wang, K., 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science (80-. ). 345, 1038–1041. https://doi.org/10.1126/science.1255487
dc.relation.referencesGarzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science (80-. ). 320, 1304–1307. https://doi.org/10.1126/science.1148615
dc.relation.referencesGeldmacher, J., Hanan, B.B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., Kerr, A.C., 2003. Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophys. Geosystems 4, 1062. https://doi.org/10.1029/2002GC000477
dc.relation.referencesGenge, M.C., Witt, C., Chanier, F., Reynaud, J.-. Y., Calderon, Y., 2020. Outer forearc high control in an erosional subduction regime: The case of the central Peruvian forearc (6-10°S). Tectonophysics 228546. Gentry, A., 1986. Species richness and floristic composition of Chocó region plant communities. Caldasia 15, 71–91.
dc.relation.referencesGeorge, S.W.M., Horton, B.K., Vallejo, C., Jackson, L.J., Gutiérrez, E.G., 2021. Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology.
dc.relation.referencesGianni, G.M., Navarrete, C., Echaurren, A., Díaz, M., Butler, K.L., Horton, B.K., Encinas, A., Folguera, A., 2020. Northward propagation of Andean genesis: Insights from Early Cretaceous synorogenic deposits in the Aysén-Río Mayo basin. Gondwana Res. 77, 238–259. https://doi.org/10.1016/j.gr.2019.07.014
dc.relation.referencesGómez-Tapias, J., Montes-Ramírez, N.E., Almanza-Meléndez, M.F., Alcárcel-Gutiérrez, F.A., Madrid-Montoya, C.A., Diederix, H., 2017. Geological map of Colombia. Episodes 40, 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023
dc.relation.referencesGómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A., 2015. Notas explicativas: Mapa Geológico de Colombia, in: Gómez-Tapias, J., Almanza, M.F. (Eds.), Compilando La Geología de Colombia: Una Visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33, Bogotá, pp. 9–33
dc.relation.referencesGómez, E., Jordan, T.E., Allmendinger, R.W., Cardozo, N., 2005. Development of the Colombian foreland-basin system as consequence of diachronous exhumation of the northern Andes. Geol. Soc. Am. Bull. 117, 1272–1292. https://doi.org/10.1130/B25456.1
dc.relation.referencesGómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K., Kelley, S., Heizler, M., 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geol. Soc. Am. Bull. 115, 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2
dc.relation.referencesGonzález, J.L., Shen, Z., Mauz, B., 2014. New constraints on Holocene uplift rates for the Baudo Mountain Range, northwestern Colombia. J. South Am. Earth Sci. 52, 194–202.
dc.relation.referencesGrimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hangøj, K., Schwarts, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35, 643–646. https://doi.org/10.1130/G23603A.1
dc.relation.referencesGrimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. to Mineral. Petrol. 170, 46. https://doi.org/10.1007/s00410-015-1199-3
dc.relation.referencesGroome, W.G., Thorkelson, D.J., 2009. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics 464, 70–83. https://doi.org/10.1016/j.tecto.2008.07.003
dc.relation.referencesGutscher, M.-A., 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. J. South Am. Earth Sci. 15, 3–10. https://doi.org/10.1016/S0895-9811(02)00002-0
dc.relation.referencesGutscher, M.-A., Malavieille, J., Lallemand, S., Collot, J.-Y., 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6
dc.relation.referencesGvirtzman, Z., Faccenna, C., Becker, T.W., 2016. Isostasy, flexure, and dynamic topography. Tectonophysics 683, 255–271. https://doi.org/10.1016/j.tecto.2016.05.041
dc.relation.referencesHaffer, J., 1967. On the geology of the Urabá and northern Chocó regions, northwestern Colombia.
dc.relation.referencesHastie, A.R., Kerr, A.C., 2010. Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Rev. 98, 283–293. https://doi.org/10.1016/j.earscirev.2009.11.001
dc.relation.referencesHawkins Jr., J.W., 1995. The geology of the Lau Basin, in: Taylor, B. (Ed.), Backarc Basins. Springer, Boston, pp. 63–138. https://doi.org/10.1007/978-1-4615-1843-3_3
dc.relation.referencesHayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362, 58–61. https://doi.org/10.1126/science.aat4723
dc.relation.referencesHayward, B.W., Carter, R., Grenfell, H.R., Hayward, J., 2001. Depth distribution of Recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas. New Zeal. J. Geol. Geophys. 44, 555–587. https://doi.org/10.1080/00288306.2001.9514955
dc.relation.referencesHernández, M.J., Michaud, F., Collot, J.-Y., Proust, J.-N., d’Acremont, E., 2020. Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics 781, 228374. https://doi.org/10.1016/j.tecto.2020.228374
dc.relation.referencesHeuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51. https://doi.org/10.1016/j.pepi.2004.08.022
dc.relation.referencesHeuret, A., Lallemand, S., Funiciello, F., Piromallo, C., Faccenna, C., 2011. Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophys. Geosystems 12, Q01004. https://doi.org/10.1029/2010GC003230
dc.relation.referencesHijmans, R., 2017. raster: Geographic data analysis and modeling. R package version 2.6-7 [WWW Document]. URL http://cran.r-project.org/package=raster
dc.relation.referencesHincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Hoyos-Ramírez, L., Bayona, G., 2018. Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: Paleogeographic connections with the Caribbean Plate. Stud. Geophys. Geod. 62, 485–511. https://doi.org/10.1007/s11200-016-0678-y
dc.relation.referencesHolbourn, A., Henderson, A.S., MacLeod, N., 2013. Atlas of benthic foraminifera. John Wiley & Sons, Ltd.
dc.relation.referencesHorton, B.K., 2018a. Sedimentary record of Andean mountain building. Earth-Science Rev. 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
dc.relation.referencesHorton, B.K., 2018b. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37, 402–429. https://doi.org/10.1002/2017TC004624
dc.relation.referencesHoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochemistry 53, 27–62. https://doi.org/10.2113/0530027
dc.relation.referencesHu, F., Wu, F., Chapman, J.B., Ducea, M.N., Ji, W., Liu, S., 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202. https://doi.org/10.1029/2020GL089202
dc.relation.referencesHurtado, C., Roddaz, M., Santos, R. V., Baby, P., Antoine, P.-O., Dantas, E.L., 2018. Cretaceous early-Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 63, 152–168. https://doi.org/10.1016/j.gr.2018.05.012
dc.relation.referencesJaramillo, C., 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic and paleoclimatological implications, in: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.), Mountains, Climate and Biodiversity. John Wiley & Sons, Ltd, pp. 323–338
dc.relation.referencesJaramillo, J.S., Cardona, A., León, S., Valencia, V., Vinasco, C., 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35’N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc-growth and collision. J. South Am. Earth Sci. 76, 460–481. https://doi.org/10.1016/j.jsames.2017.04.012
dc.relation.referencesJaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V., León, S., 2019. Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017
dc.relation.referencesJicha, B.R., Kay, S.M., 2018. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99. https://doi.org/10.1016/j.jvolgeores.2018.06.016
dc.relation.referencesJohnson, H.D., Baldwin, C.T., 1996. Shallow clastic seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 232–280
dc.relation.referencesJones, R.W., 1994. The challenger foraminifera. Oxford University Press
dc.relation.referencesKasaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Makropoulos, K. Popandopoulos, G., Moshou, A., 2014. The April-June 2007 Trichonis Lake earthquake swarm (W. Greece); New implications toward causative fault zone. J. Geodyn. 73, 60–80. https://doi.org/10.1016/j.jog.2013.09.004
dc.relation.referencesKerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous Basaltic Terranes in Western Colombia : Elemental, Chronological and Sr – Nd Isotopic Constraints on Petrogenesis. J. Petrol. 38, 677–702. https://doi.org/10.1093/petrology/38.6.677
dc.relation.referencesKerr, A.C., Pearson, D.G., Nowell, G.M., 2009. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328., pp. 809–827. https://doi.org/10.1144/SP328.31
dc.relation.referencesKerr, A.C., White, R. V., Thompson, P.M.E., Tarney, J., Saunders, A.D., 2003. No oceanic plateau - No Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution, in: Bartolini, C., Buffler, R.T., Blickwede, J.F. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: AAPG Memoir 79. pp. 126–168. https://doi.org/10.1306/M79877C6
dc.relation.referencesLamb, S., 2006. Shear stresses on megathrust: Implications for mountain building behind subduction zones. J. Geophys. Res. Solid Earth 111, B07401. https://doi.org/10.1029/2005JB003916
dc.relation.referencesLamb, S., Davis, P., 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797. https://doi.org/10.1038/nature02049
dc.relation.referencesLara, M., Salazar-Franco, A.M., Silva-Tamayo, J.C., 2018. Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sediment. Geol. 373, 147–162. https://doi.org/10.1016/j.sedgeo.2018.06.003
dc.relation.referencesLaske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658
dc.relation.referencesLeal-Mejía, H., Shaw, R.P., Melgarejo, J.C., 2019. Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 253–410. https://doi.org/10.1007/978-3-319-76132-9_5
dc.relation.referencesLee, C.-T.A., Thurner, S., Patterson, S., Cao, W., 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 425, 105–119. https://doi.org/10.1016/j.epsl.2015.05.045
dc.relation.referencesLefeldt, M., Grevemeyer, I., 2008. Centroid depth and mechanism of trench-outer rise earthquakes. Geophys. J. Int. 172, 240–251. https://doi.org/10.1111/j.1365-246X.2007.03616.x
dc.relation.referencesLeón, S., Avellaneda-Jiménez, D.S., Monsalve, G., Bustamante, C., Valencia, V., In review. Evidence for magmatic activity of the Central American arc at ~100-84 Ma supports its spontaneous origin by plume-lithosphere interaction. Geol. Soc. Am. Bull
dc.relation.referencesLeón, S., Cardona, A., Mejía, D., Botello, G.E., Villa, V., Collo, G., Valencia, V., Zapata, S., Avellaneda-Jiménez, D.S., 2019. Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. J. South Am. Earth Sci. 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition from collisional to subduction-related regimes: an example from Neogene Panama-Nazca-South-America interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785
dc.relation.referencesLeón, S., Monsalve, G., Bustamante, C., 2021a. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, e2021GL093362. https://doi.org/10.1029/2021GL093362
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Miranda, T.S., Echeverri, S., Valencia, V., 2021b. Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics 820, 229132. https://doi.org/10.1016/j.tecto.2021.229132
dc.relation.referencesLeterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series. Earth Planet. Sci. Lett. 59, 139–154. https://doi.org/10.1016/0012-821X(82)90122-4
dc.relation.referencesLoader, M.A., Wilkinson, J.J., Armstrong, R.N., 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 472, 107–119. https://doi.org/10.1016/j.epsl.2017.05.010
dc.relation.referencesLonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011
dc.relation.referencesMacía, C., 1985. Características petrográficas y geoquímicas de rocas basálticas de la península de Cabo Corrientes (Serranía de Baudó), Colombia. Geol. Colomb. 14, 25–37
dc.relation.referencesMalkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L., Graham, S.A., 2019. Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). Am. J. Sci. 319, 846–902. https://doi.org/10.2475/10.2019.02
dc.relation.referencesMamani, M., Wörner, G., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull. 122, 162–182. https://doi.org/10.1130/B26538.1
dc.relation.referencesMann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60.
dc.relation.referencesMarcaillou, B., Collot, J.-Y., 2008. Chronostratigraphy and tectonic deformation of the North Ecuadorian-South Colombian offshore Manglares forearc basin. Mar. Geol. 255, 30–44. https://doi.org/10.1016/j.margeo.2008.07.003
dc.relation.referencesMartinez, F., Parra, M., Gonzalez, R., López, C., Patiño, A., Muñoz, B., Robledo, F., Sobel, E.R., Glodny, J., 2022. Deciphering the Late Paleozoic-Cenozoic tectonic history of the inner Central Andes forearc: An update from the Salar de Punta Negra Basin of northern Chile. Front. Earth Sci. 9, 790526. https://doi.org/10.3389/feart.2021.790526
dc.relation.referencesMartinez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from “Pampean” subduction segment. Basin Res. 33, 2706–2724. https://doi.org/10.1111/bre.12580
dc.relation.referencesMartinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart, S., Carretier, S., 2016. How do subduction processes contribute to forearc Andean uplift? J. Geodyn. 96, 6–18. https://doi.org/10.1016/j.jog.2015.04.001
dc.relation.referencesMason, C.C., Romans, B.W., Stockli, D.F., Mapes, R.W., Fildani, A., 2019. Detrital zircon reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer. Geology 47, 563–567. https://doi.org/10.1130/G45852.1
dc.relation.referencesMcClay, K.R., 1987. The mapping of geological structures. Geological Society of London handbook. Open University Press.
dc.relation.referencesMcDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
dc.relation.referencesMcGirr, R., Seton, M., Williams, S., 2020. Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geol. Soc. Am. Bull. 133, 867–884. https://doi.org/10.1130/B35595.1
dc.relation.referencesMcKay, M.P., Jackson Jr., W.T., Hessler, A.M., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Res. 57, 1–9. https://doi.org/10.1016/j.gr.2018.01.004
dc.relation.referencesMibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S., 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl. Acad. Sci. U. S. A. 108, 8177–8182. https://doi.org/10.1073/pnas.1010968108
dc.relation.referencesMolnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396. https://doi.org/10.1029/93RG02030
dc.relation.referencesMonsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep crustal faults, shear zones, and magmatism in the Eastern Cordillera of Colombia: Growth of a plateau from teleseismic receiver function and geochemical Mio-Pliocene volcanism constraints. J. Geophys. Res. Solid Earth 124. https://doi.org/10.1029/2019JB017835
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodríguez-Parra, L.A., Ramírez, V., Niño, H., 2015. Middle Miocene closure of the Central American Seaway. Science (80-. ). 348, 226–229. https://doi.org/10.1126/science.aaa2815
dc.relation.referencesMontes, C., Cardona, A., McFadden, R., Moron, S.E., Silva, C.A., Restrepo-Moreno, S.A., Ramirez, D.A., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geol. Soc. Am. Bull. 124, 780–799. https://doi.org/10.1130/B30528.1
dc.relation.referencesMontes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V.A., Jaramillo, C., 2010. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Rancheria basins. J. South Am. Earth Sci. 29, 832–848. https://doi.org/10.1016/j.jsames.2009.07.010
dc.relation.referencesMontes, C., Rodríguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to the multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903
dc.relation.referencesMora-Bohórquez, J.A., Ibañez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L., 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. J. South Am. Earth Sci. 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001
dc.relation.referencesMora-Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orosco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
dc.relation.referencesMora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795
dc.relation.referencesMora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic uplift of the Northern Andes: Paleogeographic implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 89–121. https://doi.org/10.32685/pub.esp.37.2019.04
dc.relation.referencesMora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., de Freitas, M., 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Mar. Pet. Geol. 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032
dc.relation.referencesMountney, N.P., Westbrook, G.K., 1997. Quantitative analysis of Miocene to recent forearc basin evolution along the Colombian convergent margin. Basin Res. 9, 177–196. https://doi.org/10.1046/j.1365-2117.1997.00040.x
dc.relation.referencesMoxon, I.W., Graham, S.A., 1987. History and controls of subsidence in the Late Cretaceous-Tertiary Great Vally forearc basin, California. Geology 15, 626–629. https://doi.org/10.1130/0091-7613(1987)15<626:HACOSI>2.0.CO;2
dc.relation.referencesMukasa, S.B., 1986. Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes. Geol. Soc. Am. Bull. 97, 241–254. https://doi.org/10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2
dc.relation.referencesMüller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems 9, Q04006. https://doi.org/0.1029/2007GC001743
dc.relation.referencesMyers, N., Mitteimer, R.A., Mitteimer, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858
dc.relation.referencesNakakuki, T., Mura, E., 2013. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett. 361, 287–297. https://doi.org/10.1016/j.epsl.2012.10.031
dc.relation.referencesNational Hydrocarbons Agency of Colombia, 2010. Total Bouguer Anomalies Map of Colombia. 1:2.500.000.
dc.relation.referencesNoda, A., 2016. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895. https://doi.org/10.1130/B31345.1
dc.relation.referencesO’ Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson, J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883. https://doi.org/10.1126/sciadv.1600883
dc.relation.referencesOdin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology 28, 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x
dc.relation.referencesOguchi, T., Aoki, T., Matsuta, N., 2003. Identificacion of an active fault on the Japanese Alps from DEM-based hill shading. Comput. Geosci. 29, 885–891. https://doi.org/10.1016/S0098-3004(03)00083-9
dc.relation.referencesOjeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408
dc.relation.referencesOncken, O., Chong, G., Franz, G., Giese, P., Gotze, H.-J., Ramos, V.A., Strecker, M.R., Wigger, P., 2006. The Andes: Active Subduction Orogeny, Frontiers in Earth Sciences. Springer-Verlag Berlin Heidelberg
dc.relation.referencesOrdoñez, O., Pimentel, M.M., Armstrong, R.A., Goia, S.M.C.L., Junges, S., 2001. U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith, in: III South American Symposium on Isotope Geology. Pucon, Chile
dc.relation.referencesOsorio-Granada, E., Restrepo-Moreno, S.A., Muñoz-Valencia, J.A., Trejos-Tamayo, R.A., Pardo-Trujillo, A., Barbosa-Espitia, A.A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geol. Acta 15, 201–215. https://doi.org/10.1344/GeologicaActa2017.15.3.4
dc.relation.referencesPacheco, J.F., Sykes, L.R., Scholz, C.H., 1993. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. Solid Earth 98, 14133–14159. https://doi.org/10.1029/93JB00349
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J.A., Echeverri, J.S., Barbosa-Espitia, A.A., Slattery, J., Salazar, A.F., Botello, G.E., Celis, S., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020a. Sedimentary record of the Cretaceous-Paleogene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
dc.relation.referencesPardo-Trujillo, A., Echeverri, S., Borrero, C., Arenas, A., Vallejo, F., Trejos, R., Plata, A., Flores, J.A., Cardona, A., Restrepo, S., Barbosa, A., Murcia, H., Giraldo, C., Celis, S., Osorio, J.A., López, S.A., 2020b. Cenozoic geologic evolution of the southern Tumaco forearc basin (SW Colombian Pacific), in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 215–247. https://doi.org/10.32685/pub.esp.37.2019.08
dc.relation.referencesPardo-Trujillo, A., Moreno-Sánchez, M., Gomez-Cruz, A.D.J., 2002. Estratigrafía de algunos depósitos del Cretáceo Superior en las Cordilleras Central y Occidental de Colombia: Implicaciones Regionales. Geo. Eco. Trop. 26, 113
dc.relation.referencesParis, G., Machette, M.N., Dart, R.L., Haller, K.M., 2000. Map and databse of Quaternary faults and folds in Colombia and its offshore regions. U. S. Geological Survey Open-File Report 00-0284
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., Strecker, M.R., 2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res. 22, 874–903
dc.relation.referencesParra, M., Mora, A., López, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust-belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1
dc.relation.referencesParra, M., Mora, A., Sobel, E.R., Strecker, M.R., González, R., 2009. Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28, TC4004. https://doi.org/10.1029/2008TC002423
dc.relation.referencesPearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. https://doi.org/10.1093/petrology/25.4.956
dc.relation.referencesPearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
dc.relation.referencesPennington, W.D., 1981. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 86, 10753–10770. https://doi.org/10.1029/JB086iB11p10753
dc.relation.referencesPérez-Escobar, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez-Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328. https://doi.org/10.3389/fpls.2019.01328
dc.relation.referencesPerez, N.D., Levine, K.G., 2020. Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth Planet. Sci. Lett. 541, 116263. https://doi.org/10.1016/j.epsl.2020.116263
dc.relation.referencesPhillips, J.D., 2005. Weathering instability and landscape evolution. Geomorphology 67, 255–272. https://doi.org/10.1016/j.geomorph.2004.06.012
dc.relation.referencesPindell, J., Maresch, W. V., Martens, U., Stanek, K., 2012. The Greater Antillan Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int. Geol. Rev. 54, 131–143. https://doi.org/10.1080/00206814.2010.510008
dc.relation.referencesPindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. Geol. Soc. London, Spec. Publ. 328, 1–55. https://doi.org/10.1144/SP328.1
dc.relation.referencesPlint, A.G., 2010. Wave- and storm-dominated shoreline and shallow-marine systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 167–200.
dc.relation.referencesPoveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688
dc.relation.referencesPoveda, E., Monsalve, G., Vargas, C.A., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. J. Geophys. Res. Solid Earth 120, 2408–2425. https://doi.org/10.1002/2014JB011304
dc.relation.referencesPoveda, G., Mesa, O.J., 2000. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. https://doi.org/10.1029/1999GL006091
dc.relation.referencesProfeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Henriquez-Gonzales, S.M., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5, 17786. https://doi.org/10.1038/srep17786
dc.relation.referencesR Development Core Team, 2017. R: A language and environment for statistical computing.
dc.relation.referencesRahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Richardson, K., Rosing, M.T., Whittaker, R.J., Fjeldså, J., 2019. Building mountain biodiversity: Geological and evolutionary processes. Science (80-. ). 365, 1114–1119. https://doi.org/10.1126/science.aax0151
dc.relation.referencesRamírez, D.A., Foster, D.A., Min, K., Montes, C., Cardona, A., Sadove, G., 2016. Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American seaway. Geochemistry, Geophys. Geosystems 17, 1758–1777. https://doi.org/10.1002/2016GC006289
dc.relation.referencesRamos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle, in: Backbone of the Americas: Shallow Subduction, Plateau Uplift and Ridge and Terrane Collision. Geological Society of America Memoir 204. pp. 31–65. https://doi.org/10.1130/2009.1204(02)
dc.relation.referencesRanero, C.R., von Huene, R., 2000. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752. https://doi.org/10.1038/35008046
dc.relation.referencesReiners, P.W., Brandon, M.T., 2006. Using Thermochronology To Understand Orogenic Erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
dc.relation.referencesReyes-Harker, A., Ruiz-Valdivieso, C.F., Mora, A., Ramirez-Arias, J.C., Rodriguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D., Blanco, V., 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. Am. Assoc. Pet. Geol. Bull. 99, 1407–1453. https://doi.org/10.1306/06181411110
dc.relation.referencesRidgway, K.D., Trop, J.M., Finzel, E.S., 2011. Modification of continental forearc basins by flat-slab subduction processes: a case study from southern Alaska, in: Busby, C., Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd, pp. 327–346. https://doi.org/10.1002/9781444347166.ch16
dc.relation.referencesRiley, S.J., DeGloria, S.D., Elliot, R., 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27.
dc.relation.referencesRodríguez-Olarte, D., Mojica-Corzo, J.I., Taphonr-Baechle, D.C., 2011. Northern South America - Magdalena and Maracaibo Basins, in: Albert, J.S., Reis, R.E. (Eds.), Historical Biogeography of Neotropical Freshwaters Fishes. University of California Press, pp. 243–257. https://doi.org/10.1525/california/9780520268685.003.0015
dc.relation.referencesRodríguez, G., Arango, M.I., Zapata, G., Bermúdez-Cordero, J.G., 2016. Estratigrafía, petrografía y análisis multi-método de procedencia de la Formación Guineales, norte de la Cordillera Occidental de Colombia. Boletín Geol. 38, 101–124
dc.relation.referencesRodríguez, G., Sierra, M.I., 2010. Las Sedimentitas de Tripogadí y las Brechas de Triganá : Un registro de Eoceno en el noroccidente de Sur América. Geol. Colomb. 35, 74–86
dc.relation.referencesRodríguez, G., Zapata, G., 2012. Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente Colombiano. Bol. Ciencias la Tierra 31, 5–22.
dc.relation.referencesRodríguez, G., Zapata, G., Gómez, J.F., 2013. Geología de la plancha 114 - Dabeiba. Escala 1:100.000.
dc.relation.referencesRooney, T.O., Franceschi, P., Hall, C.M., 2011. Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib. to Mineral. Petrol. 161, 373–388. https://doi.org/10.1007/s00410-010-0537-8
dc.relation.referencesRosenbaum, G., Mo, W., 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res. 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007
dc.relation.referencesRutledge, S., Mahatsente, R., 2017. Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling. J. Geodyn. 104, 27–35. https://doi.org/10.1016/j.jog.2016.12.003
dc.relation.referencesSalvini, F., Billi, A., Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 21, 1731–1749. https://doi.org/10.1016/S0191-8141(99)00120-0
dc.relation.referencesSarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 673–747. https://doi.org/10.1007/978-3-319-76132-9_10
dc.relation.referencesSaylor, J.E., Horton, B.K., 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. https://doi.org/10.1016/j.epsl.2013.11.015
dc.relation.referencesScheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., Łapińska-Viola, R., 2015. Manual extraction of bedrock lineaments from high-resolution LiDAR data: methodological bias and human perception. GFF 137, 362–372. https://doi.org/10.1080/11035897.2015.1085434
dc.relation.referencesSdrolias, M., Müller, R.D., 2006. Controls on back-arc basin formation. Geochemistry, Geophys. Geosystems 7, Q04016. https://doi.org/10.1029/2005GC001090
dc.relation.referencesSerrano, L., Ferrari, L., López-Martínez, M., Petrone, C.M., Jaramillo, C., 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province. Earth Planet. Sci. Lett. 309, 324–336. https://doi.org/10.1016/j.epsl.2011.07.011
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
dc.relation.referencesSoesoo, A., Bons, P.D., Gray, D.R., Foster, D.A., 1997. Divergent double subduction : Tectonic and petrologic consequences. Geology 25, 755–758. https://doi.org/10.1130/0091-7613(1997)025<0755
dc.relation.referencesSpikings, R.A., Simpson, G., 2014. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics 33, 1–21. https://doi.org/10.1002/2013TC003425
dc.relation.referencesStern, C.R., 2011. Subduction erosion: Rates, mechanisms and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308. https://doi.org/10.1016/j.gr.2011.03.006
dc.relation.referencesStern, R.J., 2002. Subduction zones. Rev. Geophys. 40, 3-1-3–38. https://doi.org/10.1029/2001RG000108
dc.relation.referencesStern, R.J., Gerya, T., 2018. Subduction initiation in nature and models: A review. Tectonophysics 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014
dc.relation.referencesStow, D., Smillie, Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10, 68. https://doi.org/10.3390/geosciences10020068
dc.relation.referencesStow, D.A. V., Reading, H.G., Collinson, J.D., 1996. Deep seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 395–453.
dc.relation.referencesSyracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050
dc.relation.referencesTassara, A., 2010. Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495, 34–47. https://doi.org/10.1016/j.tecto.2010.06.004
dc.relation.referencesTetreault, J.L., Buiter, S.J.H., 2012. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. Solid Earth 117, B08403. https://doi.org/10.1029/2012JB009316
dc.relation.referencesThompson, P.M.E., Kempton, P.D., White, R. V., Saunders, A.D., Kerr, A.C., Tarney, J., Pringle, M.S., 2004. Elemental, Hf-Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles. Lithos 74, 91–116. https://doi.org/10.1016/j.lithos.2004.01.004
dc.relation.referencesTimm, C., Davy, B., Haase, K., Hoernle, K., Graham, I.J., de Ronde, C.E.J., Woodhead, J., Basset, D., Hauff, F., Mortimer, N., Seebeck, H.C., Wysoczanski, R.J., Caratori-Tontini, F., Gamble, J.A., 2014. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat. Commun. 5, 4923. https://doi.org/10.1038/ncomms5923
dc.relation.referencesTistl, M., Burgath, K.P., Höhndorf, A., Kreuzer, H., Muñoz, R., Salinas, R., 1994. Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth Planet. Sci. Lett. 126, 41–59. https://doi.org/10.1016/0012-821X(94)90241-0
dc.relation.referencesTozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R., Wessel, P., 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Sp. Sci. 6, 1847–1864. https://doi.org/10.1029/2019EA000658
dc.relation.referencesTrail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97, 70–87. https://doi.org/10.1016/j.gca.2012.08.032
dc.relation.referencesTrenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 15, 157–171
dc.relation.referencesTschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H., Cebula, G.T., 1974. Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284. https://doi.org/10.1130/0016-7606(1974)85<273
dc.relation.referencesTukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company
dc.relation.referencesUyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res. 84, 1049–1060
dc.relation.referencesVallejo, C., Spikings, R.A., Horton, B.K., Luzieux, L., Romero, C., Winkler, W., Thomsen, T.B., 2019. Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment, in: Horton, B.K., Folguera, A. (Eds.), Andean Tectonics. Elsevier, pp. 209–236. https://doi.org/10.1016/B978-0-12-816009-1.00010-1
dc.relation.referencesVallejo, C., Spikings, R.A., Luzieux, L., Winkler, W., Chew, D.M., Page, L., 2006. The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nov. 18, 264–269. https://doi.org/10.1111/j.1365-3121.2006.00688.x
dc.relation.referencesVargas, C.A., Gutiérrez, G.A., Sarmiento, G.A., 2020. Subduction of an extinct rift and its role in the formation of submarine landslides in NW South America, in: Georgiopoulou, A., Amy, L.A., Benetti, S., Chaytor, J.D., Clare, M.A., Gamboa, D., Haughton, P.D.W., Moernaut, J., Mountjoy, J.J. (Eds.), Subaqueous Mass Movements in the Context of Observations of Contemporary Failure, Geological Society, London, Special Publications, 500. pp. 311–322. https://doi.org/10.1144/SP500-2019-189
dc.relation.referencesVargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328
dc.relation.referencesVermeesch, P., 2021. Maximum depositional age estimation revisited. Geosci. Front. 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008
dc.relation.referencesVermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
dc.relation.referencesVillagómez, D., Spikings, R.A., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008
dc.relation.referencesVillagómez, D., Spikings, R.A., Magna, T., Kammer, A., Winkler, W., Beltrán, A., 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125, 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
dc.relation.referencesViveen, W., Schlunegger, F., 2018. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic. Tectonophysics 730, 48–62. https://doi.org/10.1016/j.tecto.2018.02.018
dc.relation.referencesVogt, K., Gerya, T. V., 2014. From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Res. 25, 494–508. https://doi.org/10.1016/j.gr.2012.11.002
dc.relation.referencesvon Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Rev. 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001
dc.relation.referencesvon Huene, R., Ranero, C.R., Vannucchi, P., 2004. Generic model of subduction erosion. Geology 32, 913–916. https://doi.org/10.1130/G20563.1
dc.relation.referencesvon Huene, R., Scholl, D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316. https://doi.org/10.1029/91RG00969
dc.relation.referencesWagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL073981
dc.relation.referencesWagreich, M., 1995. Subduction erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics 242, 63–78. https://doi.org/10.1016/0040-1951(94)00151-X
dc.relation.referencesWang, J.-G., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Liu, Z.-C., Li, J., Wu, F.-Y., 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Geol. Soc. Am. Bull. 132, 2432–2454. https://doi.org/10.1130/B35314.1
dc.relation.referencesWang, K., He, J., 1999. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res. Solid Earth 104, 15191–15205. https://doi.org/10.1029/1999JB900103
dc.relation.referencesWeber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., Wilson, R., 2009. The Cabo de la Vela Mafic-Ultramafic Complex, Northwestern Colombian Caribbean region: a record of multistage evolution of a Late Cretaceous intra-oceanic arc, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328. pp. 549–568. https://doi.org/10.1144/SP328.22
dc.relation.referencesWeber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., Valencia, V., 2015. Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. J. South Am. Earth Sci. 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002
dc.relation.referencesWegner, W., Wörner, G., Harmon, R.S., Jicha, B.R., 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. Bull. 123, 703–724. https://doi.org/10.1130/B30109.1
dc.relation.referencesWhattam, S.A., Montes, C., Mcfadden, R.R., Cardona, A., Ramirez, D., Valencia, V., 2012. Age and origin of earliest adakitic-like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos 142–143, 226–244. https://doi.org/10.1016/j.lithos.2012.02.017
dc.relation.referencesWhattam, S.A., Montes, C., Stern, R.J., 2020. Early central American forearc follows the subduction initiation rule. Gondwana Res. 79, 283–300. https://doi.org/10.1016/j.gr.2019.10.002
dc.relation.referencesWhattam, S.A., Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63. https://doi.org/10.1016/j.gr.2014.07.011
dc.relation.referencesWise, D.U., Funicello, R., Parotto, M., Salvini, F., 1985. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 96, 952–967. https://doi.org/10.1130/0016-7606(1985)96<952:TLSCTT>2.0.CO;2
dc.relation.referencesWright, J.E., Wyld, S.J., 2011. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?). Geosphere 7, 468–493. https://doi.org/10.1130/GES00577.1
dc.relation.referencesXie, X., Heller, P.L., 2009. Plate tectonics and basin subsidence history. Bull. Geol. Soc. Am. 121, 55–64. https://doi.org/10.1130/B26398.1
dc.relation.referencesYarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006
dc.relation.referencesZagorevski, A., Lissenberg, C.J., van Staal, C.R., 2009. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics 479, 150–164. https://doi.org/10.1016/j.tecto.2008.12.002
dc.relation.referencesZagorevski, A., van Staal, C.R., 2011. The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus, in: Brown, D., Ryan, P.D. (Eds.), Arc-Continent Collision. Springer-Verlag Berlin Heidelberg, pp. 341–371. https://doi.org/10.1007/978-3-540-88558-0_12
dc.relation.referencesZapata-Villada, J.P., Cardona, A., Serna, S., Rodríguez, G., 2021. Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. J. South Am. Earth Sci. 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557
dc.relation.referencesZapata, G., 2000. Geología de las planchas 163 Nuquí, 164 Quibdó, 183 Coquí y 184 Lloró, Departamento del Chocó. Escala 1:100.000. Memoria Explicativa.
dc.relation.referencesZapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castañeda, J.P., 2019. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Res. 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008
dc.relation.referencesZapata, S., Patiño, A., Cardona, A., Parra, M., Valencia, V., Reiners, P., Oboh-Ikuenobe, F., Genezini, F., 2020. Bedrock and detrital zircon thermochronology to unravel exhumation histories of accreted tectonic blocks: An example from the Western Colombian Andes. J. South Am. Earth Sci. 103, 102715. https://doi.org/10.1016/j.jsames.2020.102715
dc.relation.referencesZhu, D.-C., Wang, Q., Cawood, P.A., Zhao, Z.-D., Mo, X.-X., 2017. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 122, 214–223. https://doi.org/10.1002/2016JB013508
dc.relation.referencesZindler, A., Hart, S., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCuencas hidrográficas
dc.subject.lembWatersheds
dc.subject.lembRocas - Análisis
dc.subject.proposalForearc basins
dc.subject.proposalNorthern Andes
dc.subject.proposalArc-continent collision
dc.subject.proposalAtrato Basin
dc.subject.proposalSedimentary provenance
dc.subject.proposalTectonostratigraphy
dc.subject.proposalCuencas antearco
dc.subject.proposalAndes del Norte
dc.subject.proposalColisión arco-continente
dc.subject.proposalCuenca Atrato
dc.subject.proposalProcedencia sedimentaria
dc.subject.proposalTectonoestratigrafía
dc.title.translatedEvolución de cuencas de antearco en respuesta a un régimen de subducción cambiante: Registro geológico Neógeno al Reciente del noroccidente de los Andes Colombianos
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameSmithsonian Tropical Research Institute
oaire.fundernameFundación para la Promoción de la Investigación y la Tecnología - Banco de la República de Colombia
oaire.fundernameAsociación de Geólogos y Geofísicos del Petróleo y Corporación Geológica Ares
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito