Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorOrtiz Corredor, Fernando
dc.contributor.authorParra Durán, Fabián Andrés
dc.contributor.otherMendoza Pulido, Juan Camilo
dc.date.accessioned2022-07-18T19:14:21Z
dc.date.available2022-07-18T19:14:21Z
dc.date.issued2022-07-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81702
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractIntroducción: La exploración del PAMC MScanFit es un método MUNE novedoso que cuantifica el número de unidades motoras, es reproducible, sensible al cambio, preciso y toma un corto tiempo. Objetivo: estimar el número de unidades motoras en el musculo abductor corto del pulgar, usando el método MScanFit en personas adultos sanos de Colombia. Metodología: se realizaron registros en el abductor corto del pulgar en individuos sanos, se determinó la normalidad en la distribución de los datos con la técnica D'Agostino & Pearson. Para la presentación de la estadística descriptiva se calcularon valores mínimos, máximo, mediana, rango intercuartil, percentiles 3 y 97. Resultados: En total se evaluaron 109 individuos, la mediana de la edad fue 29 años (mínimo=18, máximo=49); el valor MUNE fue de (mediana: 103 UM) en el APB, con un error (mediana: 7,4%) y un porcentaje de paso máximo: 17% (mediana: 3,3%). Se encontraron correlaciones de la edad frente al número de UM y paso % sin significancia estadística. Conclusión: es el primer estudio que ofrece valores de corte y normalidad para la estimación del número de unidades motoras (MUNE), para la población adulta joven colombiana. (Texto tomado de la fuente).
dc.description.abstractIntroduction: The CMAP Scan MScanFit is a novel MUNE method that quantifies the number of motor units, is reproducible, sensitive to change, accurate, and takes a short time. Objective: to estimate the number of motor units in the abductor pollicis brevis muscle, using the MScanFit method in healthy adults from Colombia. Methodology: recordings were made in the abductor pollicis brevis in healthy individuals, normality in the distribution of the data was determined with the D'Agostino & Pearson technique. For the presentation of descriptive statistics, minimum, maximum, median, interquartile range, 3rd and 97th percentile values were calculated. Results: A total of 109 individuals were evaluated, the median age was 29 years (minimum=18, maximum=49).; the MUNE value was (median: 103 MU) in the APB, with an error (median: 7.4%) and a percentage of maximum passage: 17% (median: 3.3%). Correlations of age against the number of MU and step % were found without statistical significance. Conclusion: it is the first study that offers cut-off and normality values for the estimation of the number of motor units (MUNE), for the Colombian young adult population.
dc.format.extentxv, 68 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humana
dc.titleEstimación del número de unidades motoras del abductor corto del pulgar mediante el método exploración del potencial de acción muscular compuesto (MScanFit) en adultos sanos: valores de referencia
dc.typeTrabajo de grado - Especialidad Médica
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Medicina Física y Rehabilitación
dc.description.notesIncluye anexos
dc.description.degreelevelEspecialidades Médicas
dc.description.degreenameEspecialista en Medicina Física y Rehabilitación
dc.description.researchareaElectrodiagnóstico y enfermedades neuromusculares
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Medicina Física y Rehabilitacion
dc.publisher.facultyFacultad de Medicina
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesBlok, J. H., Ruitenberg, A., Maathuis, E. M., & Visser, G. H. (2007). The electrophysiological muscle scan. Muscle and Nerve, 36(4), 436–446. https://doi.org/10.1002/mus.20838
dc.relation.referencesBostock, H. (2016). Estimating motor unit numbers from a CMAP scan. Muscle and Nerve, 53(6), 889–896. https://doi.org/10.1002/mus.24945
dc.relation.referencesBromberg, M. B. (1993). Motor unit estimation: Reproducibility of the spike‐triggered averaging technique in normal and ALS subjects. Muscle & Nerve, 16(5), 466–471. https://doi.org/10.1002/mus.880160506
dc.relation.referencesBromberg, M. B., & Brownell, A. A. (2008). Motor Unit Number Estimation in the Assessment of Performance and Function in Motor Neuron Disease. Physical Medicine and Rehabilitation Clinics of North America, 19(3), 509–532. https://doi.org/10.1016/j.pmr.2008.02.006
dc.relation.referencesBurke, D., Kiernan, M. C., & Bostock, H. (2001). Excitability of human axons. Clinical Neurophysiology, 112(9), 1575–1585. https://doi.org/10.1016/S1388-2457(01)00595-8
dc.relation.referencesDaube, J. R. (1995). Estimating the number of motor units in a muscle. Journal of Clinical Neurophysiology, 12(6), 585–594. https://doi.org/10.1097/00004691-199511000-00005
dc.relation.referencesDaube, J. R. (2006). Motor unit number estimates - From A to Z. Journal of the Neurological Sciences, 242(1-2 SPEC. ISS.), 23–35. https://doi.org/10.1016/j.jns.2005.11.011
dc.relation.referencesde Carvalho, M., Barkhaus, P. E., Nandedkar, S. D., & Swash, M. (2018). Motor unit number estimation (MUNE): Where are we now? Clinical Neurophysiology, 129(8), 1507–1516. https://doi.org/10.1016/j.clinph.2018.04.748
dc.relation.referencesDillingham, T., Chen, S., Andary, M., Buschbacher, R., Del Toro, D., Smith, B., Zimmermann, K., & Yuen, S. O. (2016). Establishing high-quality reference values for nerve conduction studies: A report from the normative data task force of the American Association Of Neuromuscular & Electrodiagnostic Medicine. Muscle and Nerve, 54(3), 366–370. https://doi.org/10.1002/mus.25204
dc.relation.referencesDoherty, T. J., & Brown, W. F. (1993). The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle & Nerve, 16(4), 355–366. https://doi.org/10.1002/mus.880160404
dc.relation.referencesDrenthen, J., Islam, B., Islam, Z., Mohammad, Q. D., Maathuis, E. M., Visser, G. H., van Doorn, P. A., Blok, J. H., Endtz, H. P., & Jacobs, B. C. (2021). Changes in motor nerve excitability in acute phase Guillain-Barré syndrome. Muscle and Nerve, 63(4), 546–552. https://doi.org/10.1002/mus.27172
dc.relation.referencesDrenthen, J., Maathuis, E. M., Visser, G. H., van Doorn, P. A., Blok, J. H., & Jacobs, B. C. (2013). Limb motor nerve dysfunction in Miller Fisher syndrome. Journal of the Peripheral Nervous System : JPNS, 18(1), 25–29. https://doi.org/10.1111/jns5.12003
dc.relation.referencesEisen, A., & Kuwabara, S. (2012). The split hand syndrome in amyotrophic lateral sclerosis. In Journal of Neurology, Neurosurgery and Psychiatry (Vol. 83, Issue 4, pp. 399–403). BMJ Publishing Group. https://doi.org/10.1136/jnnp-2011-301456
dc.relation.referencesFarschtschi, S., Gelderblom, M., Buschbaum, S., Bostock, H., Grafe, P., & Mautner, V. F. (2017). Muscle action potential scans and ultrasound imaging in neurofibromatosis type 2. Muscle and Nerve, 55(3), 350–358. https://doi.org/10.1002/mus.25256
dc.relation.referencesFeldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature Reviews. Disease Primers, 5(1), 42. https://doi.org/10.1038/s41572-019-0097-9
dc.relation.referencesGalvez-Jimenez, N., Morren, J. A., & Soriano, A. (2021). Principles of Electrodiagnosis: Introduction. In Electrodiagnostic Medicine (pp. 1–24). Springer, Cham. https://doi.org/10.1007/978-3-030-74997-2_1
dc.relation.referencesGarg, N., Howells, J., Yiannikas, C., Vucic, S., Krishnan, A. V., Spies, J., Bostock, H., Mathey, E. K., Pollard, J. D., Park, S. B., & Kiernan, M. C. (2017). Motor unit remodelling in multifocal motor neuropathy: The importance of axonal loss. Clinical Neurophysiology, 128(10), 2022–2028. https://doi.org/10.1016/j.clinph.2017.07.414
dc.relation.referencesGooch, C. L., Doherty, T. J., Chan, K. M., Bromberg, M. B., Lewis, R. A., Stashuk, D. W., Berger, M. J., Andary, M. T., & Daube, J. R. (2014). Motor unit number estimation: A technology and literature review. Muscle and Nerve, 50(6), 884–893. https://doi.org/10.1002/mus.24442
dc.relation.referencesGunes, T., Sirin, N. G., Sahin, S., Kose, E., & Isak, B. (2021). Use of CMAP, MScan fit-MUNE, and MUNIX in understanding neurodegeneration pattern of ALS and detection of early motor neuron loss in daily practice. Neuroscience Letters, 741(547), 135488. https://doi.org/10.1016/j.neulet.2020.135488
dc.relation.referencesHabeych, M. E., Trinh, T., Issar, T., Kwai, N. C. G., & Krishnan, A. V. (2020). Motor unit number estimation of facial muscles using the M Scan-Fit method. Muscle and Nerve, 62(4), 555–558. https://doi.org/10.1002/mus.27010
dc.relation.referencesHales, J. P., Lin, C. S. Y., & Bostock, H. (2004). Variations in excitability of single human motor axons, related to stochastic properties of nodal sodium channels. Journal of Physiology, 559(3), 953–964. https://doi.org/10.1113/jphysiol.2004.068726
dc.relation.referencesHenderson, R. D., Ridall, G. R., Pettitt, A. N., McCombe, P. A., & Daube, J. R. (2006). The stimulus-response curve and motor unit variability in normal subjects and subjects with amyotrophic lateral sclerosis. Muscle and Nerve, 34(1), 34–43. https://doi.org/10.1002/mus.20561
dc.relation.referencesHenderson, Robert D., & McCombe, P. A. (2017). Assessment of Motor Units in Neuromuscular Disease. In Neurotherapeutics (Vol. 14, Issue 1, pp. 69–77). Springer. https://doi.org/10.1007/s13311-016-0473-z
dc.relation.referencesHenderson, Robert D., Ridall, P. G., Hutchinson, N. M., Pettitt, A. N., & McCombe, P. A. (2007). Bayesian statistical mune method. Muscle and Nerve, 36(2), 206–213. https://doi.org/10.1002/mus.20805
dc.relation.referencesHenderson, Robert D, & McCombe, P. A. (2017). Assessment of Motor Units in Neuromuscular Disease. In Neurotherapeutics (Vol. 14, Issue 1, pp. 69–77). https://doi.org/10.1007/s13311-016-0473-z
dc.relation.referencesHepple, R. T., & Rice, C. L. (2016). Innervation and neuromuscular control in ageing skeletal muscle. In Journal of Physiology (Vol. 594, Issue 8, pp. 1965–1978). John Wiley & Sons, Ltd. https://doi.org/10.1113/JP270561
dc.relation.referencesHigashihara, M., Menon, P., van den Bos, M., Pavey, N., & Vucic, S. (2020). Reproducibility of motor unit number index and MScanFit motor unit number estimation across intrinsic hand muscles. Muscle and Nerve, 62(2), 192–200. https://doi.org/10.1002/mus.26839
dc.relation.referencesJacobsen, A. B., Bostock, H., Fuglsang-Frederiksen, A., Duez, L., Beniczky, S., Møller, A. T., Blicher, J. U., & Tankisi, H. (2017). Reproducibility, and sensitivity to motor unit loss in amyotrophic lateral sclerosis, of a novel MUNE method: MScanFit MUNE. Clinical Neurophysiology, 128(7), 1380–1388. https://doi.org/10.1016/j.clinph.2017.03.045
dc.relation.referencesJacobsen, A. B., Kristensen, R. S., Witt, A., Kristensen, A. G., Duez, L., Beniczky, S., Fuglsang-Frederiksen, A., & Tankisi, H. (2018). The utility of motor unit number estimation methods versus quantitative motor unit potential analysis in diagnosis of ALS. Clinical Neurophysiology, 129(3), 646–653. https://doi.org/10.1016/j.clinph.2018.01.002
dc.relation.referencesJacobsen, Anna B., Bostock, H., & Tankisi, H. (2018). Cmap scan mune (Mscan)-a novel motor unit number estimation (mune) method. Journal of Visualized Experiments, 2018(136), 1–7. https://doi.org/10.3791/56805
dc.relation.referencesJacobsen, Anna Bystrup, Bostock, H., & Tankisi, H. (2019). Following disease progression in motor neuron disorders with 3 motor unit number estimation methods. Muscle and Nerve, 59(1), 82–87. https://doi.org/10.1002/mus.26304
dc.relation.referencesKesim-Sahin, O., Sirin, N. G., Erbas, B., Artug, T., Oguz-Akarsu, E., Kocasoy-Orhan, E., Baslo, M. B., Mammadova, N., Emekli, U., & Oge, A. E. (2020). Compound muscle action potential scan and MScanFit motor unit number estimation during Wallerian degeneration after nerve transections. Muscle and Nerve, 62(2), 239–246. https://doi.org/10.1002/mus.26923
dc.relation.referencesKiernan, M. C., Burke, D., Andersen, K. V., & Bostock, H. (2000). Multiple measures of axonal excitability: A new approach in clinical testing. Muscle and Nerve, 23(3), 399–409. https://doi.org/10.1002/(SICI)1097-4598(200003)23:3<399::AID-MUS12>3.0.CO;2-G
dc.relation.referencesKristensen, A. G., Bostock, H., Finnerup, N. B., Andersen, H., Jensen, T. S., Gylfadottir, S., Itani, M., Krøigård, T., Sindrup, S., & Tankisi, H. (2019). Detection of early motor involvement in diabetic polyneuropathy using a novel MUNE method – MScanFit MUNE. Clinical Neurophysiology, 130(10), 1981–1987. https://doi.org/10.1016/j.clinph.2019.08.003
dc.relation.referencesKristensen, A. G., Khan, K. S., Bostock, H., Khan, B. S., Gylfadottir, S., Andersen, H., Finnerup, N. B., Jensen, T. S., & Tankisi, H. (2020). MScanFit motor unit number estimation and muscle velocity recovery cycle recordings in diabetic polyneuropathy. Clinical Neurophysiology, 131(11), 2591–2599. https://doi.org/10.1016/j.clinph.2020.07.017
dc.relation.referencesKristensen, R. S., Bostock, H., Tan, S. V., Witt, A., Fuglsang-Frederiksen, A., Qerama, E., Andersen, H., & Tankisi, H. (2019). MScanFit motor unit number estimation (MScan)and muscle velocity recovery cycle recordings in amyotrophic lateral sclerosis patients. Clinical Neurophysiology, 130(8), 1280–1288. https://doi.org/10.1016/j.clinph.2019.04.713
dc.relation.referencesKuwabara, S., Sonoo, M., Komori, T., Shimizu, T., Hirashima, F., Inaba, A., Misawa, S., Hatanaka, Y., Kanai, K., Sawai, S., Isose, S., Hoshino, S., Kagamihara, Y., Kugio, Y., Awatsu, Y., Ichikawa, T., Yamada, H., Oishi, C., Ito, E., … Sawada, M. (2008). Dissociated small hand muscle atrophy in amyotrophic lateral sclerosis: Frequency, extent, and specificity. Muscle and Nerve, 37(4), 426–430. https://doi.org/10.1002/mus.20949
dc.relation.referencesLi, X., Zong, Y., Klein, C. S., & Zhou, P. (2018). Motor unit number estimation of human abductor hallucis from a compound muscle action potential scan. Muscle and Nerve, 58(5), 735. https://doi.org/10.1002/mus.26295
dc.relation.referencesLomen-Hoerth, C., & Slawnych, M. P. (2003). Statistical motor unit number estimation: From theory to practice. Muscle and Nerve, 28(3), 263–272. https://doi.org/10.1002/mus.10351
dc.relation.referencesMaathuis, E. M., Drenthen, J., Van Doorn, P. A., Visser, G. H., & Blok, J. H. (2013). The CMAP scan as a tool to monitor disease progression in ALS and PMA. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14(3), 217–223. https://doi.org/10.3109/21678421.2012.732079
dc.relation.referencesMaathuis, E. M., Drenthen, J., Visser, G. H., & Blok, J. H. (2011). Reproducibility of the CMAP scan. Journal of Electromyography and Kinesiology, 21(3), 433–437. https://doi.org/10.1016/j.jelekin.2010.11.007
dc.relation.referencesMaathuis, E. M., Henderson, R. D., Drenthen, J., Hutchinson, N. M., Daube, J. R., Blok, J. H., & Visser, G. H. (2012). Optimal stimulation settings for CMAP scan registrations. Journal of Brachial Plexus and Peripheral Nerve Injury, 7, 1–7. https://doi.org/10.1186/1749-7221-7-4
dc.relation.referencesMcComas, A. J., Fawcett, P. R., Campbell, M. J., & Sica, R. E. (1971). Electrophysiological estimation of the number of motor units within a human muscle. Journal of Neurology, Neurosurgery, and Psychiatry, 34(2), 121–131. https://doi.org/10.1136/jnnp.34.2.121
dc.relation.referencesMcNeil, C. J., Doherty, T. J., Stashuk, D. W., & Rice, C. L. (2005). Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle and Nerve, 31(4), 461–467. https://doi.org/10.1002/mus.20276
dc.relation.referencesMurtazina, A. F., Belyakova-Bodina, A. I., & Brutyan, A. G. (2018). Electrophysiological Techniques for Motor Unit Number Estimation. Human Physiology, 44(8), 827–837. https://doi.org/10.1134/S036211971808008X
dc.relation.referencesNandedkar, B. S. D., & Ph, D. (n.d.). NEURODIAGNOSTICS CMAP Scan : Recording & Analysis.
dc.relation.referencesNandedkar, S. D., Barkhaus, P. E., & Stålberg, E. V. (2010). Motor unit number index (MUNIX): Principle, method, and findings in healthy subjects and in patients with motor neuron disease. Muscle and Nerve, 42(5), 798–807. https://doi.org/10.1002/mus.21824
dc.relation.referencesNandedkar, S. D., Barkhaus, P. E., & Stålberg, E. V. (2011). Reproducibility of munix in patients with amyotrophic lateral sclerosis. Muscle and Nerve, 44(6), 919–922. https://doi.org/10.1002/mus.22204
dc.relation.referencesNandedkar, S. D., Barkhaus, P. E., & Stålberg, E. V. (2022). Clinical Neurophysiology Analysis of the compound muscle action potential scan : Step index ( STEPIX ) and amplitude index ( AMPIX ). Clinical Neurophysiology, xxxx. https://doi.org/10.1016/j.clinph.2022.04.011
dc.relation.referencesNandedkar, S. D., Nandedkar, D. S., Barkhaus, P. E., & Stalberg, E. V. (2004). Motor unit number index (MUNIX). IEEE Transactions on Biomedical Engineering, 51(12), 2209–2211. https://doi.org/10.1109/TBME.2004.834281
dc.relation.referencesNeuwirth, C., Braun, N., Claeys, K. G., Bucelli, R., Fournier, C., Bromberg, M., Petri, S., Goedee, S., Lenglet, T., Leppanen, R., Canosa, A., Goodman, I., Al-Lozi, M., Ohkubo, T., Hübers, A., Atassi, N., Abrahao, A., Funke, A., Appelfeller, M., … Weber, M. (2018). Implementing Motor Unit Number Index (MUNIX) in a large clinical trial: Real world experience from 27 centres. Clinical Neurophysiology, 129(8), 1756–1762. https://doi.org/10.1016/j.clinph.2018.04.614
dc.relation.referencesNeuwirth, C., Nandedkar, S., Stålberg, E., Barkhaus, P. E., Carvalho, M. de, Furtula, J., Dijk, J. P. va., Baldinger, R., Castro, J., Costa, J., Otto, M., Sandberg, A., & Weber, M. (2011). Motor Unit Number Index (MUNIX): A novel neurophysiological marker for neuromuscular disorders; test-retest reliability in healthy volunteers. Clinical Neurophysiology, 122(9), 1867–1872. https://doi.org/10.1016/j.clinph.2011.02.017
dc.relation.referencesNeuwirth, C., Nandedkar, S., Stålberg, E., & Weber, M. (2010). Motor Unit Number Index (MUNIX): A novel neurophysiological technique to follow disease progression in amyotrophic lateral sclerosis. Muscle and Nerve, 42(3), 379–384. https://doi.org/10.1002/mus.21707
dc.relation.referencesOkhovat, A. A., Advani, S., Moradi, K., Ziaadini, B., Panahi, A., Nafissi, S., Haghi Ashtiani, B., & Fatehi, F. (2021). Application of CMAP scan for the evaluation of patients with chronic inflammatory demyelinating polyneuropathy: a prospective study. Neurophysiologie Clinique, 51(2), 175–181. https://doi.org/10.1016/j.neucli.2020.12.005
dc.relation.referencesPagnini, F., Rossi, G., Lunetta, C., Banfi, P., Castelnuovo, G., Corbo, M., & Molinari, E. (2010). Burden, depression, and anxiety in caregivers of people with amyotrophic lateral sclerosis. Psychology, Health and Medicine, 15(6), 685–693. https://doi.org/10.1080/13548506.2010.507773
dc.relation.referencesQuinn, C., & Elman, L. (2020). Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Continuum (Minneapolis, Minn.), 26(5), 1323–1347. https://doi.org/10.1212/CON.0000000000000911
dc.relation.referencesRidall, P. G., Pettitt, A. N., Henderson, R. D., & McCombe, P. A. (2006). Motor unit number estimation - A Bayesian approach. Biometrics, 62(4), 1235–1250. https://doi.org/10.1111/j.1541-0420.2006.00577.x
dc.relation.referencesSchneider, C., Wassermann, M. K., Grether, N. B., Fink, G. R., Wunderlich, G., & Lehmann, H. C. (2021). Motor unit number estimation in adult patients with spinal muscular atrophy treated with nusinersen. European Journal of Neurology, 28(9), 3022–3029. https://doi.org/10.1111/ene.15005
dc.relation.referencesSirin, N. G., Oguz Akarsu, E., Kocasoy Orhan, E., Erbas, B., Artug, T., Dede, H. O., Baslo, M. B., Idrisoglu, H. A., & Oge, A. E. (2019). Parameters derived from compound muscle action potential scan for discriminating amyotrophic lateral sclerosis-related denervation. Muscle and Nerve, 60(4), 400–408. https://doi.org/10.1002/mus.26644
dc.relation.referencesSleutjes, B. T.H.M., Montfoort, I., Maathuis, E. M., Drenthen, J., van Doorn, P. A., Visser, G. H., & Blok, J. H. (2014). CMAP scan discontinuities: Automated detection and relation to motor unit loss. Clinical Neurophysiology, 125(2), 388–395. https://doi.org/10.1016/j.clinph.2013.07.016
dc.relation.referencesSleutjes, Boudewijn T.H.M., Bystrup Jacobsen, A., Tankisi, H., Gorkem Sirin, N., Emre Oge, A., Henderson, R. D., van Doorn, P. A., van den Berg, L. H., & van Eijk, R. P. A. (2021). Advancing disease monitoring of amyotrophic lateral sclerosis with the compound muscle action potential scan. Clinical Neurophysiology, 132(12), 3152–3159. https://doi.org/10.1016/j.clinph.2021.09.014
dc.relation.referencesSleutjes, Boudewijn T.H.M., Ruisch, J., Nassi, T. E., Buitenweg, J. R., van Schelven, L. J., van den Berg, L. H., Franssen, H., & Stephan Goedee, H. (2021). Impact of stimulus duration on motor unit thresholds and alternation in compound muscle action potential scans. Clinical Neurophysiology, 132(2), 323–331. https://doi.org/10.1016/j.clinph.2020.10.026
dc.relation.referencesSleutjes, Boudewijn T.H.M., Wijngaarde, C. A., Wadman, R. I., Otto, L. A. M., Asselman, F. L., Cuppen, I., van den Berg, L. H., Ludo van der Pol, W., & Stephan Goedee, H. (2020). Assessment of motor unit loss in patients with spinal muscular atrophy. Clinical Neurophysiology, 131(6), 1280–1286. https://doi.org/10.1016/j.clinph.2020.01.018
dc.relation.referencesSørensen, D. M., Bostock, H., Ballegaard, M., Fuglsang-Frederiksen, A., Graffe, C. C., Grötting, A., Jones, K., Kallio, M., Krarup, C., Krøigård, T., Lupescu, T., Maitland, S., Moldovan, M., Nilsen, K. B., Pugdahl, K., Santos, M. O., Themistocleous, A. C., Zlateva, S. S., Ööpik, M., & Tankisi, H. (2022). Assessing inter-rater reproducibility in MScanFit MUNE in a 6-subject, 12-rater “Round Robin” setup. Neurophysiologie Clinique, 52(2), 157–169. https://doi.org/10.1016/j.neucli.2021.11.002
dc.relation.referencesStålberg, E., van Dijk, H., Falck, B., Kimura, J., Neuwirth, C., Pitt, M., Podnar, S., Rubin, D. I., Rutkove, S., Sanders, D. B., Sonoo, M., Tankisi, H., & Zwarts, M. (2019). Standards for quantification of EMG and neurography. In Clinical Neurophysiology (Vol. 130, Issue 9, pp. 1688–1729). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.05.008
dc.relation.referencesStikvoort García, D. J. L., Kovalchuk, M. O., Goedee, H. S., van Schelven, L. J., van den Berg, L. H., Franssen, H., & Sleutjes, B. T. H. M. (2022). Motor unit integrity in multifocal motor neuropathy: A systematic evaluation with CMAP scans. Muscle and Nerve, 65(3), 317–325. https://doi.org/10.1002/mus.27469
dc.relation.referencesVan Dijk, J. P., Schelhaas, H. J., Van Schaik, I. N., Janssen, H. M. H. A., Stegeman, D. F., & Zwarts, M. J. (2010). Monitoring disease progression using high-density motor unit number estimation in amyotrophic lateral sclerosis. Muscle and Nerve, 42(2), 239–244. https://doi.org/10.1002/mus.21680
dc.relation.referencesVisser, G. H., & Blok, J. H. (2009). Chapter 6 The CMAP scan. In Supplements to Clinical Neurophysiology (Vol. 60, Issue C, pp. 65–77). Elsevier. https://doi.org/10.1016/S1567-424X(08)00006-8
dc.relation.referencesVucic, S., & Rutkove, S. B. (2018). Neurophysiological biomarkers in amyotrophic lateral sclerosis. In Current opinion in neurology (Vol. 31, Issue 5, pp. 640–647). NLM (Medline). https://doi.org/10.1097/WCO.0000000000000593
dc.relation.referencesWilbourn, A. J. (2000). The “split hand syndrome” [1]. In Muscle and Nerve (Vol. 23, Issue 1, p. 138). John Wiley and Sons Inc. https://doi.org/10.1002/(SICI)1097-4598(200001)23:1<138::AID-MUS22>3.0.CO;2-7
dc.relation.referencesWitt, A., Fuglsang-Frederiksen, A., Finnerup, N. B., Kasch, H., & Tankisi, H. (2020). Detecting peripheral motor nervous system involvement in chronic spinal cord injury using two novel methods: MScanFit MUNE and muscle velocity recovery cycles. Clinical Neurophysiology, 131(10), 2383–2392. https://doi.org/10.1016/j.clinph.2020.06.032
dc.relation.referencesZong, Y., Lu, Z., Chen, M., Deng, L., Xie, Q., & Zhou, P. (2022). Motor Unit Number Estimation of the Second Lumbrical Muscle in Human Hand. Frontiers in Physiology, 13(February), 1–5. https://doi.org/10.3389/fphys.2022.854385
dc.relation.referencesZong, Y., Lu, Z., Chen, M., Li, X., Stampas, A., Deng, L., & Zhou, P. (2021). CMAP scan examination of the first dorsal interosseous muscle after spinal cord injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1199–1205. https://doi.org/10.1109/TNSRE.2021.3088061
dc.relation.referencesZong, Y., Lu, Z., Chen, M., Xie, Q., & Zhou, P. (2022). MScanFit motor unit number estimation of human anconeus muscle. Muscle and Nerve, 65(4), 460–463. https://doi.org/10.1002/mus.27487
dc.relation.referencesZong, Y., Lu, Z., Zhang, L., Li, X., & Zhou, P. (2020). Motor unit number of the first dorsal interosseous muscle estimated from CMAP scan with different pulse widths and steps. Journal of Neural Engineering, 17(1). https://doi.org/10.1088/1741-2552/ab57cc
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsArticulaciones de los Dedos
dc.subject.decsFinger Joint
dc.subject.decsMúsculos
dc.subject.decsMuscles
dc.subject.decsActividad Motora
dc.subject.decsMotor Activity
dc.subject.proposalUnidades motoras
dc.subject.proposalExcitabilidad axonal
dc.subject.proposalExploración del PAMC
dc.subject.proposalMScanFit
dc.subject.proposalMUNE
dc.subject.proposalCMAP scan
dc.subject.proposalAxonal excitability
dc.subject.proposalMotor units
dc.title.translatedMotor unit number estimation of abductor pollicis brevis by the scan compound muscle action potential (MScanFit) method in healthy adults: reference values
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentResponsables políticos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito