Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCalvo Mozo, Benjamín
dc.contributor.advisorMartínez Oliveros, Juan Carlos
dc.contributor.authorMartínez Cifuentes, Angel Daniel
dc.date.accessioned2022-07-19T00:06:33Z
dc.date.available2022-07-19T00:06:33Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81704
dc.descriptionilustraciones, fotograficas, graficas, tablas
dc.description.abstractThis work explored the possibility of the generation of seismic signals on the Sun from a confinement of energy located in the solar interior. This idea was developed through two sections. In the first section, corresponding to the observational part, the computational heliseismic holographic technique was applied to a series of photospheric velocity maps. The results obtained were contrasted with physical observables in the surface of the Sun. The analyzed data corresponded to images of the intensity of the continuum and of the line of sight magnetic and of velocity fields. The images were obtained with the HMI instrument on board the SDO spacecraft, which provides measurements of the entire solar disk at the 6173.3 Å Fe-I absorption line with a spatial resolution of 0.503" and a cadence of 45 s. With this method, we found acoustic signals at high frequencies extending beyond 10 mHz. These results allow to have a better discrimination of the spatial morphology of acoustic transients. On the other hand, taking into account the focus-defocus technique in computational holography, it was possible to analyze these ultra-impulsive signals at different depths in the solar interior. We discovered that these signals are not strictly confined to the solar surface but have a significant degree of vertical extension in the active region. In the second part, a magnetohydrodynamic simulation in 2 and 3 dimensions was developed. In this numerical scheme the magnetic structure immersed in a solar model of the interior was disturbed. We found that disturbances located at different depths are capable of generating seismic signals that can be detected on the surface, reinforcing the hypothesis raised in the observational section. These results open new prospects in helioseismology, which involves the generation of acoustic signals in solar flare events. This would allow a better understanding of the processes that take place in the solar interior as well as their relationship with the generation of acoustic signals, a mystery that still remains in solar astrophysics.
dc.description.abstractEste trabajo exploró la posibilidad de generación de señales sísmicas en el Sol a partir de un confinamiento de energía localizado en el interior solar. Esta idea se desarrolló a través de dos secciones. En la primera sección, correspondiente a la parte observacional, se aplicó la técnica de heliosismología holográfica computacional a series de mapas de velocidad fotosféricos. Los resultados se contrastaron con observables físicos de la superficie del Sol. Los datos analizados correspondieron a imágenes de la intensidad del continuo y del campo magnético y de velocidades en la línea de la visual. Las imágenes fueron obtenidas con el instrumento HMI a bordo del observatorio SDO, cuyos datos de ciencia brindan mediciones del disco solar completo en la línea de absorción Fe-I a 6173.3 Å con una resolución espacial de 0.504" por píxel y una cadencia temporal de 45 s. Con este método, encontramos señales acústicas a altas frecuencias que se extienden más allá de 10 mHz. Dichos resultados permiten tener una mejor discriminación de la morfología espacial de transientes acústicos. Ahora bien, teniendo en cuenta la técnica de enfoque-desenfoque en holografía computacional, fue posible analizar dichas señales ultra-impulsivas a diferentes profundidades en el interior solar. Descubrimos que las señales que se observan no están confinadas estrictamente a la superficie solar sino que tienen un grado de extensión vertical en la región activa. En la segunda parte se desarrolló una simulación magnetohidrodinámica en 2 y 3 dimensiones. En dicho esquema numérico se perturbó la estructura magnética inmersa en un modelo solar del interior. Encontramos que perturbaciones localizadas a diferentes profundidades son capaces de generar señales sísmicas que pueden ser detectadas en la superficie, reforzando la hipótesis planteada en la sección observacional. Dichos resultados abren la posibilidad a una rama de estudio más profunda dentro de la heliosismología, la cual involucra la generación de señales acústicas en eventos de fulguraciones solares. Esto permitiría entender mejor los procesos que se llevan a cabo en el interior solar así como su relación con la generación de señales acústicas, un misterio que permanece todavía en la astrofísica solar. (Texto tomado de la fuente)
dc.format.extentvii, 71 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
dc.titleOn the generation of subphotospheric acoustic sources
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Astronomía
dc.description.researchareaAstrofísica Solar
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentObservatorio Astronómico Nacional
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesConny Aerts, Jørgen Christensen-Dalsgaard, and Donald W. Kurtz. Asteroseismology. 2010.
dc.relation.referencesJ. D. Alvarado-Gómez, J. C. Buitrago-Casas, J. C. Martínez-Oliveros, C. Lindsey, H. Hudson, and B. Calvo-Mozo. Magneto-Acoustic Energetics Study of the Seismically Active Flare of 15 February 2011. Solar Phys., 280(2):335–345, October 2012. doi: 10.1007/s11207-012-0009-6.
dc.relation.referencesJohn N. Bahcall, Aldo M. Serenelli, and Sarbani Basu. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. Lett., 621(1):L85–L88, March 2005. doi: 10.1086/428929.
dc.relation.referencesSarbani Basu. Global seismology of the Sun. Living Reviews in Solar Physics, 13(1):2, August 2016. doi: 10.1007/s41116-016-0003-4.
dc.relation.referencesArnold O. Benz. Flare Observations. Living Reviews in Solar Physics, 14(1):2, December 2017. doi: 10.1007/s41116-016-0004-3.
dc.relation.referencesD. C. Braun. Scattering of p-Modes by Sunspots. I. Observations. Astrophys. J., 451:859, October 1995. doi: 10.1086/176272
dc.relation.referencesD. C. Braun, Jr. Duvall, T. L., and B. J. Labonte. Acoustic Absorption by Sunspots. Astrophys. J. Lett., 319:L27, August 1987. doi: 10.1086/184949.
dc.relation.referencesD. C. Braun, Jr. Duvall, T. L., B. J. Labonte, S. M. Jefferies, J. W. Harvey, and M. A. Pomerantz. Scattering of p-Modes by a Sunspot. Astrophys. J. Lett., 391:L113, June 1992. doi: 10.1086/186410.
dc.relation.referencesD. C. Braun, A. C. Birch, and C. Lindsey. Local Helioseismology of Near-Surface Flows. In D. Danesy, editor, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559 of ESA Special Publication, page 337, October 2004.
dc.relation.referencesJ. C. Buitrago-Casas, J. C. Martínez Oliveros, C. Lindsey, B. Calvo-Mozo, S. Krucker, L. Glesener, and S. Zharkov. A Statistical Correlation of Sunquakes Based on Their Seismic and White-Light Emission. Solar Phys., 290(11):3151–3162, November 2015. doi: 10.1007/s11207-015-0786-9.
dc.relation.referencesR. H. Cameron, L. Gizon, H. Schunker, and A. Pietarila. Constructing Semi-Empirical Sunspot Models for Helioseismology. Solar Phys., 268(2):293–308, February 2011. doi: 10.1007/s11207-010-9631-3.
dc.relation.referencesH. Carmichael. A Process for Flares, volume 50, page 451. 1964.
dc.relation.referencesR. C. Carrington. Description of a Singular Appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc., 20:13–15, November 1859. doi: 10.1093/mnras/20.1. 13.
dc.relation.referencesJ. S. Castellanos Durán, L. Kleint, and B. Calvo-Mozo. A Statistical Study of Photospheric Magnetic Field Changes During 75 Solar Flares. Astrophys. J., 852(1):25, January 2018. doi: 10.3847/1538-4357/aa9d37.
dc.relation.referencesSubrahmanyan Chandrasekhar. Radiative transfer. 1960.
dc.relation.referencesChristensen-Dalsgaard. Lecture Notes on Stellar Oscillations, Fifth Edition. January 2014. URL https://users-phys.au.dk/jcd/oscilnotes/Lecture_Notes_on_Stellar_Oscillations.pdf.
dc.relation.referencesJ. Christensen-Dalsgaard, D. Gough, and J. Toomre. Seismology of the Sun. Science, 229 (4717):923–931, September 1985. doi: 10.1126/science.229.4717.923.
dc.relation.referencesJ. Christensen-Dalsgaard, W. Dappen, S. V. Ajukov, E. R. Anderson, H. M. Antia, S. Basu, V. A. Baturin, G. Berthomieu, B. Chaboyer, S. M. Chitre, A. N. Cox, P. Demarque, J. Donatowicz, W. A. Dziembowski, M. Gabriel, D. O. Gough, D. B. Guenther, J. A. Guzik, J. W. Harvey, F. Hill, G. Houdek, C. A. Iglesias, A. G. Kosovichev, J. W. Leibacher, P. Morel, C. R. Proffitt, J. Provost, J. Reiter, Jr. Rhodes, E. J., F. J. Rogers, I. W. Roxburgh, M. J. Thompson, and R. K. Ulrich. The Current State of Solar Modeling. Science, 272(5266):1286–1292, May 1996. doi: 10.1126/science.272.5266.1286.
dc.relation.referencesJørgen Christensen-Dalsgaard. Helioseismology. Reviews of Modern Physics, 74(4):1073– 1129, November 2002. doi: 10.1103/RevModPhys.74.1073.
dc.relation.referencesSébastien Couvidat, S. P. Rajaguru, Richard Wachter, K. Sankarasubramanian, Jesper Schou, and Philip H. Scherrer. Line-of-Sight Observables Algorithms for the Helioseismic and Magnetic Imager (HMI) Instrument Tested with Interferometric Bidimensional Spectrometer (IBIS) Observations. Solar Phys., 278(1):217–240, May 2012a. doi: 10.1007/s11207-011-9927-y.
dc.relation.referencesSébastien Couvidat, Jesper Schou, Richard A. Shine, Rock I. Bush, John W. Miles, Philip H. Scherrer, and Richard L. Rairden. Wavelength Dependence of the Helioseismic and Magnetic Imager (HMI) Instrument onboard the Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):285–325, January 2012b. doi: 10.1007/s11207-011-9723-8.
dc.relation.referencesMargarida S. Cunha. Theory of Stellar Oscillations. In Tiago L. Campante, Nuno C. Santos, and Mário J. P. F. G. Monteiro, editors, Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, volume 49, page 27, January 2018. doi: 10.1007/978-3-319-59315-9_2.
dc.relation.referencesA. C. Donea and C. Lindsey. Seismic Emission from the Solar Flares of 2003 October 28 and 29. Astrophys. J., 630(2):1168–1183, September 2005. doi: 10.1086/432155.
dc.relation.referencesA. C. Donea, D. C. Braun, and C. Lindsey. Seismic Images of a Solar Flare. Astrophys. J. Lett., 513(2):L143–L146, March 1999. doi: 10.1086/311915.
dc.relation.referencesJr. Duvall, T. L. A dispersion law for solar oscillations. Nature, 300(5889):242–243, November 1982. doi: 10.1038/300242a0.
dc.relation.referencesJr. Duvall, T. L., S. M. Jefferies, J. W. Harvey, and M. A. Pomerantz. Time-distance helioseismology. Nature, 362(6419):430–432, April 1993. doi: 10.1038/362430a0.
dc.relation.referencesA. S. Eddington. The Internal Constitution of the Stars. 1926.
dc.relation.referencesG. H. Fisher, D. J. Bercik, B. T. Welsch, and H. S. Hudson. Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior. Solar Phys., 277(1):59–76, March 2012. doi: 10.1007/s11207-011-9907-2.
dc.relation.referencesL. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P. T. Grigis, H. Ji, W. Liu, R. O. Milligan, and M. Temmer. An Observational Overview of Solar Flares. Space Sci. Rev., 159(1-4): 19–106, September 2011. doi: 10.1007/s11214-010-9701-8.
dc.relation.referencesLaurent Gizon and Aaron C. Birch. Local Helioseismology. Living Reviews in Solar Physics, 2(1):6, December 2005. doi: 10.12942/lrsp-2005-6.
dc.relation.referencesKolja Glogowski, Monica G. Bobra, Nitin Choudhary, Arthur B. Amezcua, and Stuart J. Mumford. drms: A python package for accessing hmi and aia data. Journal of Open Source Software, 4(40):1614, 2019. doi: 10.21105/joss.01614. URL https://doi.org/10. 21105/joss.01614.
dc.relation.referencesPeter Goldreich, Norman Murray, and Pawan Kumar. Excitation of Solar p-Modes. Astrophys. J., 424:466, March 1994. doi: 10.1086/173904.
dc.relation.referencesD. O. Gough. Theory of Solar Oscillations. In Erica Rolfe and Bruce Battrick, editors, Future Missions in Solar, Heliospheric & Space Plasma Physics, volume 235 of ESA Special Publication, page 183, June 1985.
dc.relation.referencesD. O. Gough and M. J. Thompson. The inversion problem., pages 519–561. 1991.
dc.relation.referencesD. O. Gough and J. Toomre. On the Detection of Subphotospheric Convective Velocities and Temperature Fluctuations. Solar Phys., 82(1-2):401–410, Jan 1983. doi: 10.1007/ BF00145579.
dc.relation.referencesFrank Hill. Rings and Trumpets—Three-dimensional Power Spectra of Solar Oscillations. Astrophys. J., 333:996, October 1988. doi: 10.1086/166807.
dc.relation.referencesT. Hirayama. Theoretical Model of Flares and Prominences. I: Evaporating Flare Model. Solar Phys., 34(2):323–338, February 1974. doi: 10.1007/BF00153671.
dc.relation.referencesH. S. Hudson, G. H. Fisher, and B. T. Welsch. Flare Energy and Magnetic Field Variations. In R. Howe, R. W. Komm, K. S. Balasubramaniam, and G. J. D. Petrie, editors, Subsurface and Atmospheric Influences on Solar Activity, volume 383 of Astronomical Society of the Pacific Conference Series, page 221, January 2008.
dc.relation.referencesR. A. Kopp and G. W. Pneuman. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys., 50(1):85–98, October 1976. doi: 10.1007/BF00206193.
dc.relation.referencesA. G. Kosovichev. Helioseismic Response to the X2.2 Solar Flare of 2011 February 15. Astrophys. J. Lett., 734(1):L15, June 2011. doi: 10.1088/2041-8205/734/1/L15.
dc.relation.referencesA. G. Kosovichev and V. V. Zharkova. X-ray flare sparks quake inside Sun. Nature, 393 (6683):317–318, May 1998. doi: 10.1038/30629.
dc.relation.referencesA. G. Kosovichev, Jr. Duvall, T. L. Jr., and P. H. Scherrer. Time-Distance Inversion Methods and Results - (Invited Review). Solar Phys., 192:159–176, March 2000. doi: 10.1023/A:1005251208431.
dc.relation.referencesJohn Leibacher, Takashi Sakurai, Carolus J. Schrijver, and Lidia van Driel-Gesztelyi. Solar Observation Target Identification Convention for use in Solar Physics. Solar Phys., 263 (1-2):1–2, May 2010. doi: 10.1007/s11207-010-9553-0.
dc.relation.referencesRobert B. Leighton, Robert W. Noyes, and George W. Simon. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. Astrophys. J., 135:474, March 1962. doi: 10.1086/ 147285.
dc.relation.referencesJames R. Lemen, Alan M. Title, David J. Akin, Paul F. Boerner, Catherine Chou, Jerry F. Drake, Dexter W. Duncan, Christopher G. Edwards, Frank M. Friedlaender, Gary F. Heyman, Neal E. Hurlburt, Noah L. Katz, Gary D. Kushner, Michael Levay, Russell W. Lindgren, Dnyanesh P. Mathur, Edward L. McFeaters, Sarah Mitchell, Roger A. Rehse, Carolus J. Schrijver, Larry A. Springer, Robert A. Stern, Theodore D. Tarbell, Jean- Pierre Wuelser, C. Jacob Wolfson, Carl Yanari, Jay A. Bookbinder, Peter N. Cheimets, David Caldwell, Edward E. Deluca, Richard Gates, Leon Golub, Sang Park, William A. Podgorski, Rock I. Bush, Philip H. Scherrer, Mark A. Gummin, Peter Smith, Gary Auker, Paul Jerram, Peter Pool, Regina Soufli, David L. Windt, Sarah Beardsley, Matthew Clapp, James Lang, and Nicholas Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):17–40, January 2012. doi: 10.1007/s11207-011-9776-8.
dc.relation.referencesC. Lindsey and D. C. Braun. Helioseismic Holography. Astrophys. J., 485(2):895–903, August 1997. doi: 10.1086/304445.
dc.relation.referencesC. Lindsey and D. C. Braun. Acoustic Signatures of Subphotospheric Structure Underlying Sunspots. Astrophys. J. Lett., 509(2):L129–L132, December 1998. doi: 10.1086/311766.
dc.relation.referencesC. Lindsey and D. C. Braun. Basic Principles of Solar Acoustic Holography - (Invited Review). Solar Phys., 192:261–284, March 2000. doi: 10.1023/A:1005227200911.
dc.relation.referencesC. Lindsey, D. C. Braun, S. M. Jefferies, M. F. Woodard, Y. Fan, Y. Gu, and S. Redfield. Doppler Acoustic Diagnostics of Subsurface Solar Magnetic Structure. Astrophys. J., 470: 636, October 1996. doi: 10.1086/177895.
dc.relation.referencesCharles Lindsey. Helioseismology Presentation, Curso de Astrofísica 2017-I, Observatorio Astronómico Nacional, Universidad Nacional de Colombia. January 2017.
dc.relation.referencesCharles Lindsey and Douglas C. Braun. Helioseismic Imaging of Sunspots at Their Antipodes. Solar Phys., 126(1):101–115, March 1990. doi: 10.1007/BF00158301.
dc.relation.referencesCharles Lindsey, J. C. Buitrago-Casas, Juan Carlos Martínez Oliveros, Douglas Braun, Angel D. Martínez, Valeria Quintero Ortega, Benjamín Calvo-Mozo, and Alina-Catalina Donea. Submerged Sources of Transient Acoustic Emission from Solar Flares. Astrophys. J. Lett., 901(1):L9, September 2020. doi: 10.3847/2041-8213/abad2a.
dc.relation.referencesD. Lynden-Bell and J. P. Ostriker. On the stability of differentially rotating bodies. Mon. Not. Roy. Astron. Soc., 136:293, January 1967. doi: 10.1093/mnras/136.3.293.
dc.relation.referencesMarcos E. Machado, A. Gordon Emslie, and Eugene H. Avrett. Radiative Backwarming in White-Light Flares. Solar Phys., 124(2):303–317, September 1989. doi: 10.1007/ BF00156272.
dc.relation.referencesAngel D. Martínez, Valeria Quintero Ortega, J. C. Buitrago-Casas, Juan Carlos Martínez Oliveros, Benjamín Calvo-Mozo, and Charles Lindsey. Ultra-impulsive Solar Flare Seismology. Astrophys. J. Lett., 895(1):L19, May 2020. doi: 10.3847/2041-8213/ab9173.
dc.relation.referencesJ. C. Martínez-Oliveros and A. C. Donea. Magnetic field variations and seismicity of solar active regions. Mon. Not. Roy. Astron. Soc., 395(1):L39–L42, May 2009. doi: 10.1111/j. 1745-3933.2009.00637.x.
dc.relation.referencesJ. C. Martínez-Oliveros, H. Moradi, and A. C. Donea. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare. Solar Phys., 251(1-2):613–626, September 2008. doi: 10. 1007/s11207-008-9122-y.
dc.relation.referencesJ. C. Martínez Oliveros, C. Lindsey, H. S. Hudson, and J. C. Buitrago Casas. Transient Artifacts in a Flare Observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Solar Phys., 289(3):809–819, March 2014. doi: 10.1007/s11207-013-0358-9.
dc.relation.referencesA. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari. PLUTO: A Numerical Code for Computational Astrophysics. Astrophys. J. Suppl., 170 (1):228–242, May 2007. doi: 10.1086/513316.
dc.relation.referencesA. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, and G. Bodo. The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics. Astrophys. J. Suppl., 198(1):7, January 2012. doi: 10.1088/0067-0049/198/1/7.
dc.relation.referencesH. Moradi, C. Baldner, A. C. Birch, D. C. Braun, R. H. Cameron, T. L. Duvall, L. Gizon, D. Haber, S. M. Hanasoge, B. W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H. C. Spruit, K. G. Strassmeier, M. J. Thompson, and S. Zharkov. Modeling the Subsurface Structure of Sunspots. Solar Phys., 267(1):1–62, November 2010. doi: 10.1007/s11207-010-9630-4.
dc.relation.referencesDermott Mullan. Physics of the Sun. 2009. doi: 10.1201/b15843.
dc.relation.referencesValery M. Nakariakov. Coronal waves and oscillations. In Volker Bothmer and Ahmed Abdel Hady, editors, Solar Activity and its Magnetic Origin, volume 233, pages 464–471, January 2006. doi: 10.1017/S174392130600250X.
dc.relation.referencesW. D. Pence, L. Chiappetti, C. G. Page, R. A. Shaw, and E. Stobie. Definition of the Flexible Image Transport System (FITS), version 3.0. Astron. Astrophys., 524:A42, December 2010. doi: 10.1051/0004-6361/201015362.
dc.relation.referencesW. Dean Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):3–15, January 2012. doi: 10.1007/s11207-011-9841-3.
dc.relation.referencesDavid I. Pontin and Gunnar Hornig. The Parker problem: existence of smooth force-free fields and coronal heating. Living Reviews in Solar Physics, 17(1):5, August 2020. doi: 10.1007/s41116-020-00026-5.
dc.relation.referencesF. Roddier. Principle of production of an acoustic hologram of the solar surface. Academie des Sciences Paris Comptes Rendus Serie B Sciences Physiques, 281(4):93–95, July 1975.
dc.relation.referencesA. J. B. Russell, M. K. Mooney, J. E. Leake, and H. S. Hudson. Sunquake Generation by Coronal Magnetic Restructuring. Astrophys. J., 831(1):42, November 2016. doi: 10.3847/0004-637X/831/1/42.
dc.relation.referencesJ. Schou, H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen- Dalsgaard, M. P. Di Mauro, W. A. Dziembowski, A. Eff-Darwich, D. O. Gough, D. A. Haber, J. T. Hoeksema, R. Howe, S. G. Korzennik, A. G. Kosovichev, R. M. Larsen, F. P. Pijpers, P. H. Scherrer, T. Sekii, T. D. Tarbell, A. M. Title, M. J. Thompson, and J. Toomre. Helioseismic Studies of Differential Rotation in the Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler Imager. Astrophys. J., 505 (1):390–417, September 1998. doi: 10.1086/306146.
dc.relation.referencesJ. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, D. J. Akin, B. A. Allard, J. W. Miles, R. Rairden, R. A. Shine, T. D. Tarbell, A. M. Title, C. J. Wolfson, D. F. Elmore, A. A. Norton, and S. Tomczyk. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys., 275 (1-2):229–259, January 2012. doi: 10.1007/s11207-011-9842-2.
dc.relation.referencesCarolus J. Schrijver and George L. Siscoe. Heliophysics: Space Storms and Radiation: Causes and Effects. 2010.
dc.relation.referencesH. Schunker, D. C. Braun, C. Lindsey, and P. S. Cally. Physical Properties of Wave Motion in Inclined Magnetic Fields within Sunspot Penumbrae. Solar Phys., 251(1-2):341–359, September 2008. doi: 10.1007/s11207-008-9142-7.
dc.relation.referencesHarlow Shapley. On the Nature and Cause of Cepheid Variation. Astrophys. J., 40:448, December 1914. doi: 10.1086/142137.
dc.relation.referencesI. N. Sharykin and A. G. Kosovichev. Dynamics of Electric Currents, Magnetic Field Topology, and Helioseismic Response of a Solar Flare. Astrophys. J., 808(1):72, July 2015. doi: 10.1088/0004-637X/808/1/72.
dc.relation.referencesI. N. Sharykin, A. G. Kosovichev, and I. V. Zimovets. Energy Release and Initiation of a Sunquake in a C-class Flare. Astrophys. J., 807(1):102, July 2015. doi: 10.1088/ 0004-637X/807/1/102.
dc.relation.referencesK. Shibata. Reconnection Models of Flares. In T. S. Bastian, N. Gopalswamy, and K. Shibasaki, editors, Proceedings of the Nobeyama Symposium, pages 381–389, December 1999.
dc.relation.referencesKazunari Shibata and Tetsuya Magara. Solar Flares: Magnetohydrodynamic Processes. Living Reviews in Solar Physics, 8(1):6, December 2011. doi: 10.12942/lrsp-2011-6.
dc.relation.referencesE. A. Spiegel and J. P. Zahn. The solar tachocline. Astron. Astrophys., 265:106–114, November 1992.
dc.relation.referencesH. C. Spruit and T. J. Bogdan. The Conversion of p-Modes to Slow Modes and the Absorption of Acoustic Waves by Sunspots. Astrophys. J. Lett., 391:L109, June 1992. doi: 10.1086/186409.
dc.relation.referencesMichael Stix. The Sun: An Introduction. Astronomy and Astrophysics Library. Springer- Verlag Berlin Heidelberg, 3 edition, 2004.
dc.relation.referencesP. A. Sturrock. Model of the High-Energy Phase of Solar Flares. Nature, 211(5050):695–697, August 1966. doi: 10.1038/211695a0.
dc.relation.referencesJ. J. Sudol and J. W. Harvey. Longitudinal Magnetic Field Changes Accompanying Solar Flares. Astrophys. J., 635(1):647–658, December 2005. doi: 10.1086/497361.
dc.relation.referencesM. Tassoul. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J.s, 43: 469–490, August 1980. doi: 10.1086/190678.
dc.relation.referencesW. T. Thompson. Coordinate systems for solar image data. Astron. Astrophys., 449(2): 791–803, April 2006. doi: 10.1051/0004-6361:20054262.
dc.relation.referencesCharles L. Wolff. Free Oscillations of the Sun and Their Possible Stimulation by Solar Flares. Astrophys. J., 176:833, September 1972. doi: 10.1086/151680.
dc.relation.referencesM. F. Woodard. Solar Subsurface Flow Inferred Directly from Frequency-Wavenumber Correlations in the Seismic Velocity Field. Astrophys. J., 565(1):634–639, January 2002. doi: 10.1086/324546.
dc.relation.referencesS. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova. 2011 February 15: Sunquakes Produced by Flux Rope Eruption. Astrophys. J. Lett., 741(2):L35, November 2011. doi: 10.1088/2041-8205/741/2/L35.
dc.relation.referencesS. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova. Properties of the 15 February 2011 Flare Seismic Sources. Solar Phys., 284(2):315–327, June 2013. doi: 10.1007/s11207-012-0169-4.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSUPEFICIE SOLAR
dc.subject.lembSun - Surface
dc.subject.lembSOL - OBSERVACIONES
dc.subject.lembTERREMOTOS
dc.subject.lembEarthquakes
dc.subject.proposalSolar physics
dc.subject.proposalSolar flares
dc.subject.proposalHelioseismology
dc.subject.proposalSolar interior
dc.subject.proposalMagnetohydrodynamics
dc.subject.proposalFísica solar
dc.subject.proposalFulguraciones solares
dc.subject.proposalHeliosismología
dc.subject.proposalInterior Solar
dc.subject.proposalMagnetohidrodinámica
dc.title.translatedSobre la generación de fuentes acústicas subfotosféricas
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito