Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorÁvila Murillo, Mónica Constanza
dc.contributor.advisorSandoval Hernández, Adrián Gabriel
dc.contributor.authorBustamante Romero, Andrés Felipe
dc.date.accessioned2022-07-19T22:41:59Z
dc.date.available2022-07-19T22:41:59Z
dc.date.issued2022-06-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81720
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractLa Enfermedad de Alzheimer (EA) es la demencia más común, un desorden neurodegenerativo de carácter multifactorial caracterizado por la presencia de placas amiloides, ovillos neurofibrilares, reducción de la actividad colinesterasa, estrés oxidativo, entre otros mecanismos. A pesar de la inversión en investigación durante las últimas décadas, se considera que la investigación debe tomar nuevos enfoques, buscar nuevas dianas biológicas y desarrollar nuevos fármacos, es por ello que en este trabajo se realiza la búsqueda y caracterización de compuestos con actividad multi-diana a partir de productos naturales, teniendo en cuenta que estudios previos de los grupos de investigación demostraron la actividad biológica y el potencial neuroprotector de especies de la familia Rutaceae y particularmente las pertenecientes al género Zanthoxylum de la flora colombiana, las cuales poseen efectos antioxidantes, agonista de LXR e inhibidores de colinesterasas. El objetivo de este trabajo fue realizar una búsqueda de agentes neuroprotectores a partir de la especie Z. caribaeum. Inicialmente se obtuvo un extracto mediante maceración etanólica en frio de la raíz, posteriormente se determinaron el tipo de metabolitos presentes usando técnicas de coloración, se fraccionó el extracto usando cromatografía liquida al vacío (CLV), los compuestos se purificaron usando técnicas cromatográficas, se identificó la estructura química de los compuestos mediante técnicas espectroscópicas y espectrométricas, se evaluó la capacidad antioxidante mediante el método DPPH, y protección del foto-blanqueo del β-caroteno, se evaluó la actividad inhibitoria de acetil y butiril colinestearasas mediante el método Ellman, se realizaron ensayos de viabilidad celular y neuro-protección por MTT, se evaluó la actividad agonista de LXR mediante el ensayo del gen reportero y se determinó la capacidad antiagregante de Aβ de los compuestos mediante un modelo in vitro de cinética de agregación del péptido amiloide. Dentro de los resultados, se logró determinar en el extracto la presencia de metabolitos de tipo alcaloidal, fenólicos, aminas, entre otros. Tanto el extracto como algunas fracciones obtenidas, presentaron actividad agonista de LXR, actividad captadora de radicales libres, protección frente a la peroxidación lipídica y actividad inhibitoria de la butiril colinesterasa; de estas fracciones y mediante el aislamiento químico dirigido, se obtuvo el compuesto 10H-furano [3,2-a] carbazol, el compuesto 5,7 -dimetoxi-4H-cromen-4-ona, y una mezcla de esteroles que contiene estigmasterol y β-sitosterol. El compuesto 10H-furano [3,2-a] carbazol presentó actividad agonista de LXR, se observó efecto neuroprotector y actividad antiagregante de Aβ; el compuesto 5,7 -dimetoxi-4H-cromen-4-ona se reporta por primera vez en esta especie, presenta efecto neuroprotector y actividad antiagregante de Aβ; por su parte, la mezcla de esteroles estigmasterol y β-sitosterol presentó actividad agonista de LXR, efecto neuroprotector y actividad antiagregante de Aβ. Nuestros resultados nos permiten concluir que tanto las fracciones y compuestos aislados de Z. caribaeum presentan un potencial multifuncional para la terapéutica de la EA. (Texto tomado de la fuente).
dc.description.abstractAlzheimer's Disease (AD) is the most common dementia, a multifactorial neurodegenerative disorder characterized by the accumulation of amyloid plaques, neurofibrillary tangles, reduced cholinesterase activity, oxidative stress, among other mechanisms. Despite the investment in research during the last decades, it is considered that research must take new approaches, search for new biological targets and develop new drugs. Here we carry out the search and characterization of compounds with multi-functional activity from Ethanolic extract of Z.caribaeum roots. Previous studies of our research groups demonstrated the biological activity and neuroprotective potential of species of the Rutaceae family and particularly those belonging to the Zanthoxylum genus, which have antioxidant effects, LXR agonist activity and cholinesterase inhibitors. The aim of this work was the search for neuroprotective agents from Zanthoxylum caribaeum. Ethanolic extract of Z.caribaeum roots, was obtained by maceration. The kind of metabolites presents in the extract were determined using coloration assays, the fractionation was carried out using vacuum liquid chromatography (VLC). The compounds were purified by chromatographic techniques, the chemical structures were identified by spectroscopic and spectrometric techniques. The multifunctional potential of ethanolic extract roots, and fractions was determined by antioxidant capacity (DPPH method, and protection from photo-bleaching of β-carotene), inhibitory activity of cholinesterases (acetyl and butyryl cholinesterases), and LXR agonist effect (the gene-reporter assay). In the extract was detected the presence of alkaloidal, phenolic, amines metabolites. The extract and some fractions have LXR agonist activity, free radical scavenging activity, protection against lipid peroxidation, and butyryl cholinesterase inhibitory activity. The compound 10H-furan[3,2-a]carbazole, 5,7-dimethoxy-4H-chromen-4-one, and a mixture of sterols containing stigmasterol and β-sitosterol were isolated and this multifuntional potential was determined by the LXR agonistic activity, Neuroprotective and the Aβ antiaggregating capacity in model in vitro of amyloid peptide aggregation kinetics The compound 10H-furan [3,2-a] carbazole showed LXR agonist activity, neuroprotective effect and antiaggregant activity of Aβ; the compound 5,7-dimethoxy-4H-chromen-4-one is reported for the first time in this species and has a neuroprotective effect and antiaggregant activity of Aβ. Stigmasterol and β-sitosterol presented LXR agonist activity, neuroprotective effect and Aβ antiaggregant activity. Our results allow us to conclude that both the fractions and compounds isolated from Z. caribaeum have multifunctional potential for therapeutics in AD.
dc.format.extentxxiii, 138 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleBúsqueda de principios activos con potencial neuroprotector para el tratamiento de la enfermedad de alzheimer a partir de una especie del género Zanthoxylum caribaeum (Rutaceae)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Neurociencias
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Neurociencias
dc.description.researchareaNeurofarmacología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesAddae‐Mensah, I., Munenge, R., & Guantai, A. N. (1989). Comparative examination of two Zanthoxylum benzophenanthridine alkaloids for effects in rabbits. Phytotherapy Research, 3(5), 165–169. https://doi.org/10.1002/ptr.2650030502
dc.relation.referencesAhmed, & Gilani, A. (2009). Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacology Biochemistry and Behavior, 91(4), 554–559. https://doi.org/10.1016/j.pbb.2008.09.010
dc.relation.referencesAhmed, M., Davis, J., Aucoin, D., Sato, T., & Ahuja, S. (2010). Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils. Nat Struct Mol Biol, 17(5), 561–567. https://doi.org/10.1038/nsmb.1799.Structural
dc.relation.referencesAldini, R., Tremblay, E., Vannasing, P., Roy, M. S., Lefebvre, F., Kombate, D., Lassonde, M., Lepore, F., McKerral, M., & Gallagher, A. (2014). Delayed early primary visual pathway development in premature infants: High density electrophysiological evidence. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0108112
dc.relation.referencesAllinson, T. M. J., Parkin, E. T., Turner, A. J., & Hooper, N. M. (2003). ADAMs Family Members As Amyloid Precursor Protein ␣ -Secretases. 352(May), 342–352.
dc.relation.referencesAlmeida, Z. L., & Brito, R. M. M. (2020). Structure and aggregation mechanisms in amyloids. Molecules, 25(5). https://doi.org/10.3390/molecules25051195
dc.relation.referencesAlvarez Caballero, J. M. (2017). Estudio Químico Comparativo de Metabolitos Fijos y Aceite Esencial De Persea caerulea (Ruiz & Pav) Mez y Evaluación de su Actividad Biológica. http://www.bdigital.unal.edu.co/57118/
dc.relation.referencesAlzheimers Disease International. (2018). World Alzheimer’s report 2018. Alzheimer’s Disease Internations: World Alzheimer Report 2018, 1–48. https://doi.org/10.1111/j.0033-0124.1950.24_14.x
dc.relation.referencesAmaro-Luis, J. M., Fronczek, F. R., Massanet, G. M., Pando, E., Rodríguez-Luis, F., Watkins, S. F., & Zubía, E. (1988). Meridinol, a lignan from Zanthoxylum fagara. Phytochemistry, 27(12), 3933–3935. https://doi.org/10.1016/0031-9422(88)83048-6
dc.relation.referencesAnsari, N., & Khodagholi, F. (2013). Natural Products as Promising Drug Candidates for the Treatment of Alzheimer ’ s Disease : Molecular Mechanism Aspect. 414–429.
dc.relation.referencesArdura-Fabregat, A., Boddeke, E. W. G. M., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzériat, K., Dansokho, C., Dierkes, T., Gelders, G., Heneka, M. T., Hoeijmakers, L., Hoffmann, A., Iaccarino, L., Jahnert, S., Kuhbandner, K., Landreth, G., Lonnemann, N., Löschmann, P. A., McManus, R. M., … Yang, Y. (2017). Targeting Neuroinflammation to Treat Alzheimer’s Disease. CNS Drugs, 31(12), 1057–1082. https://doi.org/10.1007/s40263-017-0483-3
dc.relation.referencesAsiimwe, N., Yeo, S. G., Kim, M. S., Jung, J., & Jeong, N. Y. (2016). Nitric oxide: Exploring the contextual link with Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/7205747
dc.relation.referencesBachiller, M. I. F., ConcepciónPérez, Monjas, L., Rademann, J., & Franco, M. I. R. (2012). New Tacrine − 4-Oxo-4 H -chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer ’ s Disease, with Cholinergic, Antioxidant, and β -Amyloid-Reducing Properties †.
dc.relation.referencesBafi-Yeboa, N. F. A., Arnason, J. T., Baker, J., & Smith, M. L. (2005). Antifungal constituents of Northern prickly ash, Zanthoxylum americanum Mill. Phytomedicine, 12(5), 370–377. https://doi.org/10.1016/j.phymed.2003.12.005
dc.relation.referencesBatista, J. M., Lopes, A. A., Ambrósio, D. L., Regasini, L. O., Kato, M. J., Bolzani, V. D. S., Cicarelli, R. M. B., & Furlan, M. (2008). Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biological and Pharmaceutical Bulletin, 31(3), 538–540. https://doi.org/10.1248/bpb.31.538
dc.relation.referencesBeyer, K. (2002). CARACTERIZACIÓN GENÉTICA DE LA ENFERMEDAD DE ALZHEIMER : ESTUDIO POBLACIONAL.
dc.relation.referencesBingi, C., Narender Reddy, E., Chennapuram, M., Poornachandra, Y., Kumar, C. G., Jagadeesh Babu, N., & Atmakur, K. (2015). One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorganic and Medicinal Chemistry Letters, 25(9), 1915–1919. https://doi.org/10.1016/j.bmcl.2015.03.034
dc.relation.referencesBlanco-Ayala, T., Andérica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48(6), 623–640. https://doi.org/10.3109/10715762.2014.899694
dc.relation.referencesBoehme, A. K., Noletto, J. A., Haber, W. A., & Setzer, W. N. (2008). Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Natural Product Research, 22(1), 31–36. https://doi.org/10.1080/14786410601130224
dc.relation.referencesBourin, M., & Dailly, E. (2003). Nicotinic receptors and Alzheimer ’ s disease. 19(3), 169–177. https://doi.org/10.1185/030079903125001631
dc.relation.referencesBraidy, N., Jayasena, T., Poljak, A., & Sachdev, P. S. (2012). Sirtuins in cognitive ageing and Alzheimer’s disease. Current Opinion in Psychiatry, 25(3), 226–230. https://doi.org/10.1097/YCO.0b013e32835112c1
dc.relation.referencesBustos, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer.
dc.relation.referencesButterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664.
dc.relation.referencesCai, Z., Wang, C., & Yang, W. (2016). Role of berberine in Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 12, 2509–2520. https://doi.org/10.2147/NDT.S114846
dc.relation.referencesCalsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer ’ s disease : Current evidence and future directions. Alzheimer’s & Dementia, 12(6), 719–732. https://doi.org/10.1016/j.jalz.2016.02.010
dc.relation.referencesCardoso, R., Ong, T. P., Jacob-filho, W., Jaluul, O., & A, M. I. (2010). Nutritional status of selenium in Alzheimer’s disease patients. 103, 803–806. https://doi.org/10.1017/S0007114509992832
dc.relation.referencesCarvajal, F. J., & Inestrosa, N. C. (2011). Interactions of AChE with A β aggregates in Alzheimer ’ s brain : therapeutic relevance of IDN 5706. 4(September), 1–10. https://doi.org/10.3389/fnmol.2011.00019
dc.relation.referencesCastellani, R. J., Perry, G., & Tabaton, M. (2019). Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. Journal of Alzheimer’s Disease, 67(2), 447–467. https://doi.org/10.3233/JAD-180721
dc.relation.referencesCastellanos-Castillo, F. A. (2014). Estudio de la inhibición de la acetilcolinesterasa y la relación estructura - actividad de terpenoides aislados de organismos marinos del caribe colombiano. http://www.bdigital.unal.edu.co/39404/
dc.relation.referencesCastello, P. R., Drechsel, D. A., & Patel, M. (2007). Mitochondria Are a Major Source of Paraquat-induced Reactive Oxygen Species Production in the Brain. Bone, 23(1), 1–7. https://doi.org/10.1074/jbc.M700827200.Mitochondria
dc.relation.referencesChávez, L. I. H. (2011). Estudio de la corteza de Cupania denfafa D.C. para la obtención de metabolitos bioactivos contra Giardia lamblia.
dc.relation.referencesCheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014
dc.relation.referencesChen, & Glabe, C. (2006). Distinct early folding and aggregation properties of Alzheimer amyloid-β peptides Aβ40 and Aβ42: Stable trimer or tetramer formation by Aβ42. Journal of Biological Chemistry, 281(34), 24414–24422. https://doi.org/10.1074/jbc.M602363200
dc.relation.referencesChen, L., Yoo, S. E., Na, R., Liu, Y., & Ran, Q. (2012). Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiology of Aging, 33(2), 432.e15-432.e26. https://doi.org/10.1016/j.neurobiolaging.2011.01.008
dc.relation.referencesChen, W., & Wang, Y. (2015). β -Amyloid : the key peptide in the pathogenesis of Alzheimer ’ s disease. 6(September), 1–9. https://doi.org/10.3389/fphar.2015.00221
dc.relation.referencesChian Ng, R., Kassim, N. K., Yeap, Y. S. Y., Lian Ee, G. C., Yazan, S. L., & Musa, K. H. (2018). Isolation of carbazole alkaloids and coumarins from Aegle marmelos and Murraya koenigii and their antioxidant properties. Sains Malaysiana, 47(8), 1749–1756. https://doi.org/10.17576/jsm-2018-4708-14
dc.relation.referencesChristen, Y. (2018). Oxidative stress and Alzheimer disease. Am J Clin Nutr, 71(February).
dc.relation.referencesCohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., & Knowles, T. P. J. (2013). Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9758–9763. https://doi.org/10.1073/pnas.1218402110
dc.relation.referencesConti, C., Proietti Monaco, L., & Desideri, N. (2017). 3-Phenylalkyl-2H-chromenes and -chromans as novel rhinovirus infection inhibitors. Bioorganic and Medicinal Chemistry, 25(7), 2074–2083. https://doi.org/10.1016/j.bmc.2017.02.012
dc.relation.referencesCrews, P. (1999). Organic structure analysis. In Choice Reviews Online (Vol. 36, Issue 11). https://doi.org/10.5860/choice.36-6288
dc.relation.referencesCrunkhorn, S. (2012). RXR agonist reverses Alzheimer ’ s disease. 11(April). https://doi.org/10.1126/science.1217697
dc.relation.referencesCuca S, L., & Taborda M, M. (2007). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Rev. Colomb. Quím. (Bogotá), 36(1), 5–11.
dc.relation.referencesCummings, J. L. (2002). Alzheimer Disease. 287(18), 2335–2338.
dc.relation.referencesDas, S., & Basu, S. (2018). Strategies for Multi-Target Directed Ligands : Application in Alzheimer ’ s Disease ( AD ) Therapeutics. https://doi.org/10.1007/7653
dc.relation.referencesDasuri, K., Zhang, L., & Keller, J. N. (2013). Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radical Biology and Medicine, 62, 170–185. https://doi.org/10.1016/j.freeradbiomed.2012.09.016
dc.relation.referencesDe-Almada, B. V. P., De-Almeida, L. D., Camporez, D., De-Moraes, M. V. D., Morelato, R. L., Perrone, A. M. S., Belcavello, L., Louro, I. D., & De-Paula, F. (2012). Protective effect of the APOE - e3 allele in Alzheimer ’ s disease. Brazilian Journal of Medical and Biological Research, 45, 8–12. https://doi.org/10.1590/S0100-879X2011007500151
dc.relation.referencesDe Bruijn, R. F. A. G., & Ikram, M. A. (2014). Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12(1), 1–9. https://doi.org/10.1186/s12916-014-0130-5
dc.relation.referencesDonald, J. M. M., O’Malley, T. T., Liu, W., Mably, A. J., Brinkmalm, G., Portelius, E., Wittbold, W. M., Frosch, M. P., & Walsh, D. M. (2016). The aqueous phase of Alzheimer’s disease brain contains assemblies built from ~4 and ~7 kDa Aβ species Jessica. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1016/j.jalz.2015.01.005.The
dc.relation.referencesDonmez, G. (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends in Pharmacological Sciences, 33(9), 494–501. https://doi.org/10.1016/j.tips.2012.05.007
dc.relation.referencesDrechsel, D. A., & Patel, M. (2008). Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radical Biology and Medicine, 44(11), 1873–1886. https://doi.org/10.1016/j.freeradbiomed.2008.02.008
dc.relation.referencesDu, X., Wang, X., & Geng, M. (2018). Alzheimer ’ s disease hypothesis and related therapies. 1–7. https://doi.org/10.1186/s40035-018-0107-y
dc.relation.referencesDumont, M., & Beal, M. F. (2011). Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology and Medicine, 51(5), 1014–1026. https://doi.org/10.1016/j.freeradbiomed.2010.11.026
dc.relation.referencesEdwards, A. M. (2014). Chromones. Chemical Immunology and Allergy, 100, 317–322. https://doi.org/10.1159/000359986
dc.relation.referencesEkert, J. O., Gould, R. L., Reynolds, G., & Howard, R. J. (2018). TNF alpha inhibitors in Alzheimer ’ s disease : A systematic review. September 2017, 688–694. https://doi.org/10.1002/gps.4871
dc.relation.referencesEspino, E. M. (2018). Evaluación fitoquímica y perfil cromatográfico de las hojas de la Shapilloja (Zanthoxylum fagara). https://doi.org/10.1103/PhysRevA.76.032109
dc.relation.referencesFatima, M., Graq, D. A. S., Fernandes, A. S., Silva, D. A., & Gottlieb, O. R. (1988). Chemosystematics of the Rutaceae : suggestions for a more natural taxonomy and evolutionary interpretation of the family. 161(1978), 97–134.
dc.relation.referencesFDA. (2002). Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Final rule. Federal Register, 73(159), 47828–47829.
dc.relation.referencesFernández-viadero, C., Rodríguez, E., & Combarros, O. (2013). Genética y enfermedad de Alzheimer : población en riesgo. Revista Española de Geriatría y Gerontología, 48(1), 39–44.
dc.relation.referencesGarro, A., Wilson, C., Benjamin, R., M, R. S., & Fernando, A. (2015). Actividad antioxidante y citotóxica de extractos de Pilea dauciodora Wedd ( Urticaceae ) Antioxidant and cytotoxic activity of extracts of Pilea. Revista Cubana de Plantas Medicinales, 20(1), 88–97.
dc.relation.referencesGarzon-Rodriguez, W., Vega, A., Sepulveda-Becerra, M., Milton, S., Johnson, D. A., Yatsimirsky, A. K., & Glabe, C. G. (2000). A conformation change in the carboxyl terminus of Alzheimer’s Aβ(1-40) accompanies the transition from dimer to fibril as revealed by fluorescence quenching analysis. Journal of Biological Chemistry, 275(30), 22645–22649. https://doi.org/10.1074/jbc.M000756200
dc.relation.referencesGeldenhuys, W. J., & Schyf, C. J. Van Der. (2013). Designing drugs with multi-target activity : the next step in the treatment of neurodegenerative disorders. 115–129.
dc.relation.referencesGiacobini, E., & Gold, G. (2013). Alzheimer disease therapy - Moving from amyloid-β to tau. Nature Reviews Neurology, 9(12), 677–686. https://doi.org/10.1038/nrneurol.2013.223
dc.relation.referencesGoodman & Gilman. (2006). Las bases farmacológicas de la terapéutica (M. G. Hill (ed.)).
dc.relation.referencesGoozee, K. G., Shah, T. M., Sohrabi, H. R., Brown, B., Verdile, G., & Martins, R. N. (2016). Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer ’ s disease. 1, 449–465. https://doi.org/10.1017/S0007114515004687
dc.relation.referencesGoure, W. F., Krafft, G. A., Jerecic, J., & Hefti, F. (2014). Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s Research and Therapy, 6(4), 1–15. https://doi.org/10.1186/alzrt272
dc.relation.referencesGray, I., & Waterman, P. G. (1978). Review coumarins in the rutaceae*. 17(1976), 845–864.
dc.relation.referencesGreig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102
dc.relation.referencesGuleria, S., Tiku, A. K., Koul, A., Gupta, S., Singh, G., & Razdan, V. K. (2013). Antioxidant and antimicrobial properties of the essential oil and extracts of zanthoxylum alatum grown in North-Western Himalaya. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/790580
dc.relation.referencesGuo, R., Li, J., Gu, Y., Li, Y., Li, S., Gao, X., Zhu, Z., & Tu, P. (2019). GYF-21, an epoxide 2‐(2‐phenethyl)‐chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. International Immunopharmacology, 67(11), 473–482. https://doi.org/10.1016/j.intimp.2018.12.048
dc.relation.referencesHamouda, A. K., Kimm, T., & Cohen, J. B. (2013). Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. Journal of Neuroscience, 33(2), 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013
dc.relation.referencesHampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P. A., Verdooner, S. R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P. L., Lucía, A., Watling, M., Imbimbo, B. P., … Lista, S. (2020). A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer’s Disease. Frontiers in Immunology, 11(March). https://doi.org/10.3389/fimmu.2020.00456
dc.relation.referencesHaque, M. M., Murale, D. P., Kim, Y. K., & Lee, J. S. (2019). Crosstalk between oxidative stress and tauopathy. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081959
dc.relation.referencesHardy, J., & Selkoe, D. J. (2002). The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics. 297(July).
dc.relation.referencesHassanein, R. A., Hashem, H. A., & Khalil, R. R. (2012). Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant OMICS, 5(5), 476–485.
dc.relation.referencesHee, D., Gim, J., Hyeon, S., & Kim, H. (2017). Integrated late onset Alzheimer ’ s disease ( LOAD ) susceptibility genes : Cholesterol metabolism and traf fi cking perspectives. Gene, 597, 10–16. https://doi.org/10.1016/j.gene.2016.10.022
dc.relation.referencesHeneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
dc.relation.referencesHepler, R. W., Grimm, K. M., Nahas, D. D., Breese, R., Dodson, E. C., Acton, P., Keller, P. M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., & Joyce, J. G. (2006). Solution state characterization of amyloid β-derived diffusible ligands. Biochemistry, 45(51), 15157–15167. https://doi.org/10.1021/bi061850f
dc.relation.referencesHieda, Y., Anraku, M., Choshi, T., Tomida, H., Fujioka, H., Hatae, N., Hori, O., Hirose, J., & Hibino, S. (2014). Antioxidant effects of the highly-substituted carbazole alkaloids and their related carbazoles. Bioorganic and Medicinal Chemistry Letters, 24(15), 3530–3533. https://doi.org/10.1016/j.bmcl.2014.05.050
dc.relation.referencesHozoji, M., Munehira, Y., Ikeda, Y., Makishima, M., Matsuo, M., Kioka, N., & Ueda, K. (2008). Direct Interaction of Nuclear Liver X Receptor-B with ABCA1 Modulates Cholesterol Efflux. 283(44), 30057–30063. https://doi.org/10.1074/jbc.M804599200
dc.relation.referencesHughes, R. E., Nikolic, K., Ramsay, R. R., & Ramsay, R. R. (2016). One for All ? Hitting Multiple Alzheimer ’ s Disease Targets with One Drug. 10(April), 1–10. https://doi.org/10.3389/fnins.2016.00177
dc.relation.referencesIkeda, K., Yamaguchi, T., Fukunaga, S., Hoshino, M., & Matsuzaki, K. (2011). Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry, 50(29), 6433–6440. https://doi.org/10.1021/bi200771m
dc.relation.referencesIlyina, I. V., Patrusheva, O. S., Zarubaev, V. V., Misiurina, M. A., Slita, A. V., Esaulkova, I. L., Korchagina, D. V., Gatilov, Y. V., Borisevich, S. S., Volcho, K. P., & Salakhutdinov, N. F. (2021). Influenza antiviral activity of F- and OH-containing isopulegol-derived octahydro-2H-chromenes. Bioorganic and Medicinal Chemistry Letters, 31(November), 127677. https://doi.org/10.1016/j.bmcl.2020.127677
dc.relation.referencesImbimbo, B. P., Lombard, J., & Pomara, N. (2005). Pathophysiology of Alzheimer ’ s Disease Pathophysiology of Alzheimer ’ s Disease. December. https://doi.org/10.1016/j.nic.2005.09.009
dc.relation.referencesInvitrogen. (2006). Transfecting Plasmid DNA into PC12 Cells Using. Invitrogen Corporation, November, 9–10.
dc.relation.referencesIqbal, K., Del C. Alonso, A., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1739(2), 198–210. https://doi.org/10.1016/j.bbadis.2004.09.008
dc.relation.referencesJalili-Baleh, L., Nadri, H., Forootanfar, H., Küçükkılınç, T. T., Ayazgök, B., Sharifzadeh, M., Rahimifard, M., Baeeri, M., Abdollahi, M., Foroumadi, A., & Khoobi, M. (2021). Chromone–lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. DARU, Journal of Pharmaceutical Sciences, 29(1), 23–38. https://doi.org/10.1007/s40199-020-00378-1
dc.relation.referencesJi, H. F., & Shen, L. (2011). Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules, 16(8), 6732–6740. https://doi.org/10.3390/molecules16086732
dc.relation.referencesJohnson, G. V. W., & Stoothoff, W. H. (2004). Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science, 117, 5271–5279. https://doi.org/10.1242/jcs.01558
dc.relation.referencesKametani, F., & Hasegawa, M. (2018). Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer ’ s Disease. 12(January). https://doi.org/10.3389/fnins.2018.00025
dc.relation.referencesKang, & Rivest. (2012). Lipid Metabolism and Neuroinflammation in Alzheimer ’ s Disease : A Role for Liver X Receptors. 33(October), 715–746. https://doi.org/10.1210/er.2011-1049
dc.relation.referencesKang, S., Ha, S., Park, H., Nam, E., Suh, W. H., Suh, Y. H., & Chang, K. A. (2018). Effects of a dehydroevodiamine-derivative on synaptic destabilization and memory impairment in the 5xFAD, Alzheimer’s disease mouse model. Frontiers in Behavioral Neuroscience, 12(November 2018), 2–12. https://doi.org/10.3389/fnbeh.2018.00273
dc.relation.referencesKarch, C. M., & Goate, A. M. (2015). Review Alzheimer ’ s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry, 77(1), 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006
dc.relation.referencesKatan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., & Paoletti, R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clinic Proceedings, 78(8), 965–978. https://doi.org/10.4065/78.8.965
dc.relation.referencesKayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., & Glabel, C. G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300(5618), 486–489. https://doi.org/10.1126/science.1079469
dc.relation.referencesKeil, U., Bonert, A., Marques, C. A., Scherping, I., Weyermann, J., Strosznajder, J. B., Müller-Spahn, F., Haass, C., Czech, C., Pradier, L., Müller, W. E., & Eckert, A. (2004). Amyloid β-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. Journal of Biological Chemistry, 279(48), 50310–50320. https://doi.org/10.1074/jbc.M405600200
dc.relation.referencesKepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer ’ s Disease
dc.relation.referencesKhatana, K., & Gupta, A. (2020). An Update on Natural Occurrence and Biological Activity of Benzofurans. Acta Scientific Medical Sciences, 4(10), 114–123. https://doi.org/10.31080/asms.2020.04.0748
dc.relation.referencesKim, H. J., Fan, X., Gabbi, C., Yakimchuk, K., Parini, P., Warner, M., & Gustafsson, J. Å. (2008). Liver X receptor β (LXRβ): A link between β-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2094–2099. https://doi.org/10.1073/pnas.0711599105
dc.relation.referencesKim, Kim, Rhie, & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology, 27(3), 325–340. https://doi.org/10.5607/en.2015.24.4.325
dc.relation.referencesKim, Li, H., Ruberu, K., Chan, S., Elliott, D. A., Low, J. K., Cheng, D., Karl, T., & Garner, B. (2013). Deletion of Abca7 Increases Cerebral Amyloid- ␣ Accumulation in the J20 Mouse Model of Alzheimer ’ s Disease. 33(10), 4387–4394. https://doi.org/10.1523/JNEUROSCI.4165-12.2013
dc.relation.referencesKocahan, S., & Do, Z. (2017). Mechanisms of Alzheimer ’ s Disease Pathogenesis and Prevention : The Brain , Neural Pathology , N-methyl-D-aspartate Receptors , Tau Protein and Other Risk Factors. 15(1), 1–8.
dc.relation.referencesKomati, R., Spadoni, D., Zheng, S., Sridhar, J., Riley, K. E., & Wang, G. (2017). Ligands of therapeutic utility for the liver X Receptors. Molecules, 22(1), 1–24. https://doi.org/10.3390/molecules22010088
dc.relation.referencesKonrath, E. L., Passos, C. D. S., Klein-Júnior, L. C., & Henriques, A. T. (2013). Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. Journal of Pharmacy and Pharmacology, 65(12), 1701–1725. https://doi.org/10.1111/jphp.12090
dc.relation.referencesKovalevich, J., & Abstract, D. L. (2013). Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Neuronal Cell Culture: Methods and Protocols, 1078, 35–44. https://doi.org/10.1007/978-1-62703-640-5
dc.relation.referencesKrane, B. D., Fagbule, M. O., & Shamm, M. (1985). Benzophenanthridine Alkaloids. Alkaloids: Chemistry and Pharmacology, 26(C), 185–240. https://doi.org/10.1016/S0099-9598(08)60195-9
dc.relation.referencesKumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2015). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4- one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34(6), 1252–1263. https://doi.org/10.1080/07391102.2015.1074943
dc.relation.referencesKumar, Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(1), 1–9. https://doi.org/10.1186/1756-0500-7-560
dc.relation.referencesLambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024
dc.relation.referencesLambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., FREED, R., LIOSATOS, M., MORGAN, T. E., ROZOVSKY, I., TROMMER, B., K.L.VIOLA, WALS, P., ZHANG, C., FINCH, C. E., G.A.KRAFFT, & KLEIN, W. L. (1998). Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.pdf. Frontiers in Aging Neuroscience, 7(1), 6448–6453. http://dx.doi.org/10.1038/s41467-020-18024-
dc.relation.referencesLara, D. S. J. G. de, Silva, P. F. G. da, Gorlin, T. A., Angeli, A. L. F., & Alves, D. S. (2020). Biological activities and phytochemical screening of leaf extracts from zanthoxylum caribaeum l. (rutaceae). Bioscience Journal, 36(1), 223–234. https://doi.org/10.14393/BJ-v36n1a2020-48051
dc.relation.referencesLaske, C., Stransky, E., Hoffmann, N., Maetzler, W., Straten, G., Eschweiler, G. W., & Leyhe, T. (2010). Macrophage Colony-Stimulating Factor (M-CSF) in Plasma and CSF of Patients with Mild Cognitive Impairment and Alzheimers Disease. Current Alzheimer Research, 7(5), 409–414. https://doi.org/10.2174/156720510791383813
dc.relation.referencesLee, J., Weon, J. B., & Ma, C. J. (2014). Neuroprotective activity of phytosterols isolated from Artemisia apiacea. Korean Journal of Pharmacognosy, 45(3), 214–219.
dc.relation.referencesLee, Pan, C. C., Peng, C. C., Kou, Y. R., Chen, C. Y., Ching, L. C., Tsai, T. H., Chen, S. F., Lyu, P. C., & Shyue, S. K. (2010). Anti-atherogenic effect of berberine on LXRα-ABCA1-dependent cholesterol efflux in macrophages. Journal of Cellular Biochemistry, 111(1), 104–110. https://doi.org/10.1002/jcb.22667
dc.relation.referencesLees, A. M., Mok, H. Y. I., Lees, R. S., McCluskey, M. A., & Grundy, S. M. (1977). Plant sterols as cholesterol-lowering agents: Clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis, 28(3), 325–338. https://doi.org/10.1016/0021-9150(77)90180-0
dc.relation.referencesLeon, C., & Reyes, P. (2017). Estandarización De La Técnica Blanqueamiento Del Betacaroteno Para La Evaluación De La Actividad Antioxidante De Extractos Lipofílicos: Plantas Medicinales, Frutos Y Microalgas.
dc.relation.referencesLesné, S., Ming, T. K., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., & Ashe, K. H. (2006). A specific amyloid-β protein assembly in the brain impairs memory. Nature, 440(7082), 352–357. https://doi.org/10.1038/nature04533
dc.relation.referencesLi, C., & Wang, M.-H. (2014). Potential Biological Activities of Magnoflorine: A Compound from Aristolochia debilis Sieb. et Zucc. Korean Journal of Plant Resources, 27(3), 223–228. https://doi.org/10.7732/kjpr.2014.27.3.223
dc.relation.referencesLi, J. W., Ning, N., Ma, Y. Z., Zhang, R., Tan, F., & Chen, N. H. (2013). Claulansine F suppresses apoptosis induced by sodium nitroprusside in PC12 cells. Free Radical Research, 47(6–7), 488–497. https://doi.org/10.3109/10715762.2013.770150
dc.relation.referencesLiao, J. F., Chiou, W. F., Shen, Y. C., Wang, G. J., & Chen, C. F. (2011). Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chinese Medicine, 6(1), 6. https://doi.org/10.1186/1749-8546-6-6
dc.relation.referencesLichtenthaler, S. F., & Haass, C. (2004). Amyloid at the cutting edge : activation of α -secretase prevents amyloidogenesis in an Alzheimer disease mouse model. 10, 11–14. https://doi.org/10.1172/JCI200420208.3.
dc.relation.referencesLin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292
dc.relation.referencesLinse, S. (2019). Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 91(2), 211–229. https://doi.org/10.1515/pac-2018-1017
dc.relation.referencesLiu, C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease : risk , mechanisms and therapy. Nature Reviews Neurology, 1–13. https://doi.org/10.1038/nrneurol.2012.263
dc.relation.referencesLiu, P., Reed, M. N., Kotilinek, L. A., Grant, M. K. O., Colleen, L., Qiang, W., Shapiro, S. L., Reichl, J. H., Chiang, A. C. A., Jankowsky, J. L., Wilmot, C. M., Cleary, J. P., Zahs, K. R., & Ashe, K. H. (2016). Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration Peng. 11(11), 1760–1771. https://doi.org/10.1016/j.celrep.2015.05.021.Quaternary
dc.relation.referencesLiu, & Peterson, D. (1997). Mechanism of cellular 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) reduction. Journal of …, 69(2), 581–593. http://www.ncbi.nlm.nih.gov/pubmed/9231715%5Cnhttp://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1997.69020581.x/full
dc.relation.referencesLiu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., & Wei, J. (2015). The Ambiguous Relationship of Oxidative Stress , Tau Hyperphosphorylation , and Autophagy Dysfunction in Alzheimer ’ s Disease. 2015.
dc.relation.referencesLladó, A., Rey, M. J., Mercadal, P., Almenar, C., Fortea, J., & Molinuevo, J. L. (2010). Nueva mutación en el gen PSEN1 (E120G) asociada a enfermedad de Alzheimer de inicio precoz. Neurología, 25(1), 13–16. https://doi.org/10.1016/S0213-4853(10)70017-7
dc.relation.referencesLue, L. F., Rydel, R., Brigham, E. F., Yang, L. B., Hampel, H., Murphy, G. M., Brachova, L., Yan, S. Du, Walker, D. G., Shen, Y., & Rogers, J. (2001). Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia, 35(1), 72–79. https://doi.org/10.1002/glia.1072
dc.relation.referencesMa, Y. Z., Ning, N., He, W. Bin, Ll, J. W., Hu, J. F., Chu, S. F., & Chen, N. H. (2013). Claulansine F promotes neuritogenesis in PC12 cells via the ERK signaling pathway. Acta Pharmacologica Sinica, 34(12), 1499–1507. https://doi.org/10.1038/aps.2013.95
dc.relation.referencesMacías, N. P. (2016). Ligandos multidiana, una estrategia alternativa para el tratamiento de la enfermedad de alzheimer.
dc.relation.referencesMacias Villamizar, V., Cuca Suárez, L., & Jiménez, K. (2007). Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Duazary, 4(2), 140–159. https://doi.org/10.21676/2389783X.655
dc.relation.referencesMandelkow, E., & Mandelkow, E. (2012). Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration. 1–26.
dc.relation.referencesManoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxidative Medicine and Cellular Longevity, 2016, 1–15. https://doi.org/10.1155/2016/8590578
dc.relation.referencesMarston, A., Kissling, J., & Hostettmann, K. (2002). A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. PHYTOCHEMICAL ANALYSIS, 54(July 2001), 51–54.
dc.relation.referencesMartin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M., Yardin, C., & Terro, F. (2013). Tau protein kinases : Involvement in Alzheimer ’ s disease. Ageing Research Reviews, 12(1), 289–309. https://doi.org/10.1016/j.arr.2012.06.003
dc.relation.referencesMata, R., Macías, M. L., Rojas, I. S., Lotina-Hennsen, B., Toscano, R. A., & Anaya, A. L. (1998). Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry, 49(2), 441–449. https://doi.org/10.1016/S0031-9422(98)00110-1
dc.relation.referencesMenendez-Gonzalez, M., Capetillo-Zarate, E., Alvarez, G., Costa, A., Padilla-Zambrano, H. S., & Tomas-Zapico, C. (2018). Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10(April), 1–8. https://doi.org/10.3389/fnagi.2018.00100
dc.relation.referencesMinSalud, M. de S. (2017). Boletín de salud mental Demencia.
dc.relation.referencesMisrani, A., Tabassum, S., & Yang, L. (2021). Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 13(February), 1–20. https://doi.org/10.3389/fnagi.2021.617588
dc.relation.referencesMojica, J. (2021). Estudio fitoquímico del extracto etanólico de raíz de Zanthoxylum caribaeum (Rutaceae) y obtención de metabolitos secundarios con posible actividad neuroprotectora aplicable en el tratamiento de la enfermedad de Alzheimer.
dc.relation.referencesMoreira, P. I., Carvalho, C., Zhu, X., Smith, M. A., & Perry, G. (2010). Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1802(1), 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006
dc.relation.referencesMoriyasu, M., Ichimaru, M., Nishiyama, Y., Kato, A., Wang, J., Zhang, H., & Lu, G. B. (1997). (R)-(+)-isotembetarine, a quaternary alkaloid from Zanthoxylum nitidium. Journal of Natural Products, 60(3), 299–301. https://doi.org/10.1021/np960420v
dc.relation.referencesMouzat, K., Lobaccaro, J.-M., Baron, S., Dufour, J., Morel, L., & Viennois, E. (2011). Selective liver X receptor modulators (SLiMs): What use in human health? Molecular and Cellular Endocrinology, 351(2), 129–141. https://doi.org/10.1016/j.mce.2011.08.036
dc.relation.referencesNegi, J. S., Bisht, V. K., Bhandari, A. K., Singh, P., & Sundriyal, R. C. (2011). Chemical constituents and biological activities of the genus Zanthoxylum: A review. African Journal of Pure and Applied Chemistry, 5(12), 412–416. http://www.academicjournals.org/AJPAC
dc.relation.referencesO’Brien, R. J., & Wong, P. C. (2011). Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci., 1987, 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.Amyloid
dc.relation.referencesO’Nuallain, B., Freir, D. B., Nicoll, A. J., Risse, E., Ferguson, N., Herron, C. E., Collinge, J., & Walsh, D. M. (2010). Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils. Journal of Neuroscience, 30(43), 14411–14419. https://doi.org/10.1523/JNEUROSCI.3537-10.2010
dc.relation.referencesOrtega Domínguez, B., Herrera-ramírez, M., Tecalco-cruz, A. C., Prgxodu, S., Suhvlyq, O. D. H., Vxv, G. H., Eodqfr, J., Od, H., Ghvgh, V., Fohr, H. O. Q., & Gh, D. F. (2015). RECEPTORES NUCLEARES : DEL NÚCLEO AL CITOPLASMA Bibiana Ortega-Domínguez, Marlene Herrera-Ramírez y Angeles C. Tecalco-Cruz*. 18(2), 131–143. https://doi.org/10.1016/j.recqb.2015.09.005
dc.relation.referencesPagano, K., Tomaselli, S., Molinari, H., & Ragona, L. (2020). Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 14(December), 1–18. https://doi.org/10.3389/fnins.2020.619667
dc.relation.referencesPatel, N. S., Paris, D., Mathura, V., Quadros, A. N., Crawford, F. C., & Mullan, M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. Journal of Neuroinflammation, 2, 1–10. https://doi.org/10.1186/1742-2094-2-9
dc.relation.referencesPatil, S. A., Patil, R., Pfeffer, L. M., & Miller, D. D. (2013). Chromenes: Potential new chemotherapeutic agents for cancer. Future Medicinal Chemistry, 5(14), 1647–1660. https://doi.org/10.4155/fmc.13.126
dc.relation.referencesPatiño Ladino, O. J., & Cuca Suárez, L. E. (2010). Isoquinoline alkaloids of Zanthoxylum quinduense (Rutaceae). Biochemical Systematics and Ecology, 38(4), 853–856. https://doi.org/10.1016/j.bse.2010.07.016
dc.relation.referencesPatiño, O. J. (2010). AISLAMIENTO Y CARACTERIZACIÓN DE ALCALOIDES PRESENTES EN DOS ESPECIES DEL GÉNERO ZANTHOXYLUM (RUTACEAE), SÍNTESIS DE ANÁLOGOS BENZOFENANTRIDÍNICOS Y EVALUACIÓN DE ACTIVIDAD ANTIFUNGICA Y ANTIBACTERIAL.
dc.relation.referencesPatiño, O. J., & Cuca, L. E. (2004). ALCALOIDES BENZOFENANTRIDINICOS DE Zanthoxylum quinduensis BENZOPHENANTHRIDINE ALKALOIDS FROM Zanthoxylum quinduensis. 1, 13–20.
dc.relation.referencesPatiño, O. J., Rodríguez, J. A. P., Moreno, J. M. L., Sarmiento, L. L., & Suárez, L. E. C. (2011). Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género zanthoxylum (Rutaceae). Revista Cubana de Farmacia, 45(3), 431–438.
dc.relation.referencesPatten, D. A., Germain, M., Kelly, M. A., & Slack, R. S. (2010). Reactive oxygen species: Stuck in the middle of neurodegeneration. Journal of Alzheimer’s Disease, 20(SUPPL.2). https://doi.org/10.3233/JAD-2010-100498
dc.relation.referencesPaulini, H., Eilert, U., & Schimmer, O. (1987). Mutagenic compounds in an extract from Rutae Herba (Ruta graveolens L.). I. Mutagenicity is partially caused by furoquinoline alkaloids. Mutagenesis, 2(4), 271–273. https://doi.org/10.1093/mutage/2.4.271
dc.relation.referencesPerez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507. https://doi.org/10.1111/bph.14585
dc.relation.referencesPiazzi, L., Cavalli, A., Colizzi, F., Belluti, F., Bartolini, M., Mancini, F., Recanatini, M., Andrisano, V., & Rampa, A. (2008). Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorganic and Medicinal Chemistry Letters, 18(1), 423–426. https://doi.org/10.1016/j.bmcl.2007.09.100
dc.relation.referencesPicone, P., Nuzzo, D., Caruana, L., Scafidi, V., & Di Carlo, M. D. (2014). Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxidative Medicine and Cellular Longevity, 2014. https://doi.org/10.1155/2014/780179
dc.relation.referencesPlazas, E., Ávila, M., Delgado, W., Patiño, O., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18
dc.relation.referencesPlazas, E., Casoti R, R., Murillo, M. A., Da Costa, F. B., & Cuca, L. E. (2019). Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. Phytochemistry, 168(April). https://doi.org/10.1016/j.phytochem.2019.112128
dc.relation.referencesPlazas, E., Hagenow, S., Murillo, M. A., Stark, H., & Suarez, L. C. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorganic Chemistry, 98(January), 103722. https://doi.org/10.1016/j.bioorg.2020.103722
dc.relation.referencesPontes, O., Costa, M., Santos, F., Sampaio-Marques, B., Dias, T., Ludovico, P., Baltazar, F., & Proença, F. (2018). Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. European Journal of Medicinal Chemistry, 157, 101–114. https://doi.org/10.1016/j.ejmech.2018.07.058
dc.relation.referencesPorat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chemical Biology and Drug Design, 67(1), 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x
dc.relation.referencesPrashant, T., Dwivedi, S., Singh, M. P., Mishra, R., & Chandy, A. (2013). Basic and modern concepts on cholinergic receptor : A review. 3(5), 413–420. https://doi.org/10.1016/S2222-1808(13)60094-8
dc.relation.referencesPratiwi, R., Nantasenamat, C., Ruankham, W., Suwanjang, W., Prachayasittikul, V., Prachayasittikul, S., & Phopin, K. (2021). Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Frontiers in Nutrition, 8(May), 1–12. https://doi.org/10.3389/fnut.2021.648995
dc.relation.referencesQueiroz, E. F., Hay, A. E., Chaaib, F., Van Diemen, D., Diallo, D., & Hostettmann, K. (2006). New and bioactive aromatic compounds from Zanthoxylum zanthoxyloides. Planta Medica, 72(8), 746–750. https://doi.org/10.1055/s-2006-941504
dc.relation.referencesRaj, V., & Lee, J. (2020). 2H/4H-Chromenes—A Versatile Biologically Attractive Scaffold. Frontiers in Chemistry, 8(August), 1–23. https://doi.org/10.3389/fchem.2020.00623
dc.relation.referencesRappold, P. M., Cui, M., Chesser, A. S., Tibbett, J., Grima, J. C., Duan, L., Sen, N., Javitch, J. A., & Tieua, K. (2011). Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20766–20771. https://doi.org/10.1073/pnas.1115141108
dc.relation.referencesReitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Publishing Group, 7(3), 137–152. https://doi.org/10.1038/nrneurol.2011.2
dc.relation.referencesRienzo, A., Proft, M., Pascual, A., & Giner, A. (2009). Estudio de la regulación dinámica de la expresión génica en respuesta a estrés osmótico en levadura. TESIS DOCTORAL.
dc.relation.referencesRobinson-rechavi, M. (2003). The nuclear receptor superfamily. 585–586. https://doi.org/10.1242/jcs.00247
dc.relation.referencesRodríguez, J. A. P. (2012). Estudio fitoquímico de Compsoneura capitellata (Myristicaceae), Zanthoxylum (Lauraceae) y evaluación de su posible rigidum (Rutaceae) y Ocotea longifolia aplicación como biocontroladores de Sitophilus sp.
dc.relation.referencesRomero, S. J., Vargas González, J. C., Pardo Turriago, R., Eslava- Schmalbach, J. H., & Moreno Angarita, M. (2021). El Sistema de Salud Colombiano y el reconocimiento de la enfermedad de Alzheimer. Revista de Salud Pública, 23(2), 1–9. https://doi.org/10.15446/rsap.v23n2.88369
dc.relation.referencesRoss, S. A., Krishnaven, K., Radwan, M. M., Takamatsu, S., & Burandt, C. L. (2008). Constituents of Zanthoxylum flavum and their antioxidant and antimalarial activities. Natural Product Communications, 3(5), 791–794. https://doi.org/10.1177/1934578x0800300521
dc.relation.referencesRuan, H., Zhan, Y. Y., Hou, J., Xu, B., Chen, B., Tian, Y., Wu, D., Zhao, Y., Zhang, Y., Chen, X., Mi, P., Zhang, L., Zhang, S., Wang, X., Cao, H., Zhang, W., Wang, H., Li, H., Su, Y., … Hu, T. (2017). Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene, 36(50), 6906–6918. https://doi.org/10.1038/onc.2017.296
dc.relation.referencesRuiz, J. C. G. (2021). Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer.
dc.relation.referencesSabbagh, J. J., & Dickey, C. A. (2016). The Metamorphic Nature of the Tau Protein : Dynamic Flexibility Comes at a Cost. 10(January), 1–5. https://doi.org/10.3389/fnins.2016.00003
dc.relation.referencesSakono, M., & Zako, T. (2010). Amyloid oligomers : formation and toxicity of A b oligomers. 277, 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x
dc.relation.referencesSanabria-Castro, A., & Monge-Bonilla, I. A.-E. C. (2017). Molecular Pathogenesis of Alzheimer ’ s Disease : An Update. 10103, 46–54. https://doi.org/10.1159/000464422
dc.relation.referencesSánchez-Gloria, J. L., Osorio-Alonso, H., Arellano-Buendía, A. S., Carbó, R., Hernández-Díazcouder, A., Guzmán-Martín, C. A., Rubio-Gayosso, I., & Sánchez-Muñoz, F. (2020). Nutraceuticals in the treatment of pulmonary arterial hypertension. International Journal of Molecular Sciences, 21(14), 1–35. https://doi.org/10.3390/ijms21144827
dc.relation.referencesSandoval, A. G., Buitrago, L., & Moreno, H. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 1–24. https://doi.org/10.1371/journal.pone.0145467
dc.relation.referencesSandoval Hernández, A. G., Hernández, H. G., Restrepo, A., Arboleda, H., & Arboled, G. H. (2015). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer ’ s Disease. Jones 2012. https://doi.org/10.1007/s12031-015-0665-8
dc.relation.referencesSayre, L. M., Smith, M. A., & Perry, G. (2001). Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. 721–738.
dc.relation.referencesSchliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555–563. https://doi.org/10.1016/j.bbr.2010.11.058
dc.relation.referencesSelkoe, D. J., Hardy, J., Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer ’ s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.
dc.relation.referencesSemwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. (2020). Health benefits of chromones: common ingredients of our daily diet. Phytochemistry Reviews, 19(4), 761–785. https://doi.org/10.1007/s11101-020-09681-w
dc.relation.referencesSengupta, U., Nilson, A. N., & Kayed, R. (2016). The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035
dc.relation.referencesSerrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer: Aproximaciones terapéuticas.
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors ER ER OFF ON. 1–4.
dc.relation.referencesSharma, N., Tan, M. A., & An, S. S. A. (2021). Phytosterols: Potential metabolic modulators in neurodegenerative diseases. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212255
dc.relation.referencesShaw, Kenneth R., Zhang, M. (2015). Benzo[c]fenantridinas pseudobásicas con eficacia, estabilidad y seguridad mejoradas.
dc.relation.referencesSheen, W. S., Tsai, I. L., Teng, C. M., Ko, F. N., & Chen, I. S. (1996). Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum. Planta Medica, 62(2), 175–176. https://doi.org/10.1055/s-2006-957846
dc.relation.referencesSheng, M., Sabatini, B. L., & Su, T. C. (2015). Synapses and Alzheimer ’ s Disease.
dc.relation.referencesShestopalov, A. M., Litvinov, Y. M., Rodinovskaya, L. A., Malyshev, O. R., Semenova, M. N., & Semenov, V. V. (2012). Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Combinatorial Science, 14(8), 484–490. https://doi.org/10.1021/co300062e
dc.relation.referencesShi, C., Wu, F., Zhu, X., & Xu, J. (2013). Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochimica et Biophysica Acta - General Subjects, 1830(3), 2538–2544. https://doi.org/10.1016/j.bbagen.2012.12.012
dc.relation.referencesShipley, M. M., Mangold, C. A., & Szpara, M. L. (2016). Differentiation of the SH-SY5Y human neuroblastoma cell line. Journal of Visualized Experiments, 2016(108), 1–11. https://doi.org/10.3791/53193
dc.relation.referencesSmale, S. T. (2010). Luciferase assay. Cold Spring Harbor Protocols, 5(5), 2010–2013. https://doi.org/10.1101/pdb.prot5421
dc.relation.referencesSodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 1–7. https://doi.org/10.1016/j.phrs.2013.03.008
dc.relation.referencesSolomon, A., Kivipelto, M., Wolozin, B., Zhou, J., & Whitmer, R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dementia and Geriatric Cognitive Disorders, 28(1), 75–80. https://doi.org/10.1159/000231980
dc.relation.referencesSonboli, A., Mojarrad, M., Ebrahimi, S. N., & Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from male inflorescence of Salix aegyptiaca grown in Iran. Iranian Journal of Pharmaceutical Research, 9(3), 293–296. https://doi.org/10.22037/ijpr.2010.869
dc.relation.referencesSongsiang, U., Thongthoom, T., Zeekpudsa, P., Kukongviriyapan, V., Boonyarat, C., Wangboonskul, J., & Yenjai, C. (2012). Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. ScienceAsia, 38(1), 75–81. https://doi.org/10.2306/scienceasia1513-1874.2012.38.075
dc.relation.referencesSonkusare, S. K., Kaul, C. L., & Ramarao, P. (2005). Dementia of Alzheimer ’ s disease and other neurodegenerative disorders — memantine , a new hope. 51, 1–17. https://doi.org/10.1016/j.phrs.2004.05.005
dc.relation.referencesSteffensen, K. R., Jakobsson, T., & Treuter, E. (2012). Liver X receptor biology and pharmacology : new pathways , challenges and opportunities. 33(7). https://doi.org/10.1016/j.tips.2012.03.013
dc.relation.referencesStockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114(8), 785–796. https://doi.org/10.1016/j.acthis.2012.01.006
dc.relation.referencesStoothoff, W. H., & Johnson, G. V. W. (2005). Tau phosphorylation : physiological and pathological consequences. Biochimica et Biophysica Acta, 1739, 280–297. https://doi.org/10.1016/j.bbadis.2004.06.017
dc.relation.referencesSuárez, L. E. C., Barrera, C. A. C., Barrera, E. D. C., & Moreno, J. M. L. (2011). Actividad antibacteriana de terpenoides y alcaloides aislados de tres plantas colombianas. Revista Cubana de Farmacia, 45(2), 275–282.
dc.relation.referencesSubbareddy, C. V., Subashini, R., & Sumathi, S. (2017). Synthesis of substituted 2H-chromenes by a three-component reaction as potential antioxidants. Molecular Diversity, 21(4), 841–848. https://doi.org/10.1007/s11030-017-9758-3
dc.relation.referencesSugino, H., Watanabe, A., Yamamoto, M., Kostic, D., Ohgi, Y., Amada, N., & Sanchez, R. (2015). Global Trends in Alzheimer Disease Clinical Development: Increasing the Probability of Success. Clinical Therapeutics, 37(8), 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006
dc.relation.referencesSupino, R. (1995). MTT assays. Methods in Molecular Biology (Clifton, N.J.), 43, 137–149. https://doi.org/10.1385/0-89603-282-5:137
dc.relation.referencesSwerdlow, R. H. (2007). Pathogenesis of Alzheimer ’ s disease. 2(3), 347–359.
dc.relation.referencesTachibana, Y., Kikuzaki, H., Lajis, N. H., & Nakatani, N. (2003). Comparison of Antioxidative Properties of Carbazole Alkaloids from Murraya koenigii Leaves. Journal of Agricultural and Food Chemistry, 51(22), 6461–6467. https://doi.org/10.1021/jf034700+
dc.relation.referencesTamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M. A., Danni, O., Smith, M. A., Perry, G., & Tabaton, M. (2002). Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiology of Disease, 10(3), 279–288. https://doi.org/10.1006/nbdi.2002.0515
dc.relation.referencesTao, L. xue, Ji, S. sha, Szalóki, D., Kovács, T., Mándi, A., Antus, S., Ding, X., Kurtán, T., & Zhang, H. yan. (2021). An optically active isochroman-2H-chromene conjugate potently suppresses neuronal oxidative injuries associated with the PI3K/Akt and MAPK signaling pathways. Acta Pharmacologica Sinica, 42(1), 36–44. https://doi.org/10.1038/s41401-020-0391-9
dc.relation.referencesTarkowski, E., Andreasen, N., Tarkowski, A., & Blennow, K. (2003). Intrathecal inflammation precedes development of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74(9), 1200–1205. https://doi.org/10.1136/jnnp.74.9.1200
dc.relation.referencesTchinda, A. T., Fuendjiep, V., Sajjad, A., Matchawe, C., Wafo, P., Khan, S., Tane, P., & Choudhary, M. I. (2009). Bioactive compounds from the fruits of Zanthoxylum Leprieurii. Pharmacologyonline, 1(January), 406–415.
dc.relation.referencesThomas, P., & Smart, T. G. (2005). HEK293 cell line: A vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 51(3 SPEC. ISS.), 187–200. https://doi.org/10.1016/j.vascn.2004.08.014
dc.relation.referencesTian, K. ming, Li, J. jie, & Xu, S. wen. (2019). Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacological Research, 141(November 2018), 541–550. https://doi.org/10.1016/j.phrs.2018.12.019
dc.relation.referencesTsukamoto, K. (2015). Development of Novel Pharmaceutical Agents for Alzheimer’s Disease: The Impact of Regulatory Initiatives in Japan and the United States. Clinical Therapeutics, 37(8), 1652–1660. https://doi.org/10.1016/j.clinthera.2015.02.024
dc.relation.referencesValencia Rincón, E. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales , obtenidos de plantas de las familias de Lauráceas y Miristicáceas , sobre los receptores X del hígado ( LXRs ) Generación de un modelo in vitro para evaluar la ac.
dc.relation.referencesVeal, E., & Day, A. (2011). Hydrogen peroxide as a signaling molecule. Antioxidants and Redox Signaling, 15(1), 147–151. https://doi.org/10.1089/ars.2011.3968
dc.relation.referencesVega, G. P. G. (2021). EVALUACIÓN DEL POTENCIAL FITOTERAPÉUTICO DE DOS EXTRATOS DE Zanthoxylum EN EL MODELO MURINO TRIPLE TRANSGÉNICO DE LA ENFERMEDAD DE ALZHEIMER (3xTg-AD).
dc.relation.referencesViola, K. L., & Klein, W. L. (2015). Amyloid β oligomers in Alzheimer ’ s disease pathogenesis , treatment , and diagnosis. https://doi.org/10.1007/s00401-015-1386-3
dc.relation.referencesWalsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers - A decade of discovery. Journal of Neurochemistry, 101(5), 1172–1184. https://doi.org/10.1111/j.1471-4159.2006.04426.x
dc.relation.referencesWang, & Michaelis, E. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(MAR), 1–13. https://doi.org/10.3389/fnagi.2010.00012
dc.relation.referencesWang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Molecular Neurodegeneration, 15(1), 1–22. https://doi.org/10.1186/s13024-020-00376-6
dc.relation.referencesWarren, M. (2008). Memory Loss, Dementia, and Stroke: Implications for Rehabilitation of Older Adults with Age-Related Macular Degeneration. Journal of Visual Impairment & Blindness, October, 611–615.
dc.relation.referencesWaterman, P. G. (1993). PHYTOCHEMICAL DIVERSITY IN THE ORDER RUTALES. In Phytochemical Potential of Tropical Plants (Issue Table 1).
dc.relation.referencesWhitehouse, P. J., & Au, K. I. N. S. (1986). CHOLINERGIC RECEPTORS IN AGING AND ALZHEIMER ’ S DISEASE and Kin Sin Au In AD , treatments. 10, 665–676.
dc.relation.referencesWilliams, P., & Howes, M. R. (2011). Natural products as a source of Alzheimer ’ s drug leads. 28, 48–77. https://doi.org/10.1039/c0np00027b
dc.relation.referencesWolfender, J. L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091
dc.relation.referencesWoo, H. G., Lee, C. H., Noh, M., Lee, J. J., Jung, Y., & Baik, E. J. (2001). Rutaecarpine, a Quinazolinocarboline Alkaloid, Inhibits prostaglandin production in RAW264.7. Planta Med, 67, 505–509.
dc.relation.referencesWright, C. W., ANDERSON, M. M., ALLEN, D., PHILLIPSON, J. D., KIRBY, G. C., WARHURST, D. C., & CHANG, H. R. (1993). Quassinoids Exhibit Greater Selectivity Against Plasmodium Falciparum Than Against Entamoeba Histolytica, Giardia Intestinalis Or Toxoplasma Gondii In Vitro. Journal of Eukaryotic Microbiology, 40(3), 244–246. https://doi.org/10.1111/j.1550-7408.1993.tb04910.x
dc.relation.referencesXiao, G. Q., Liang, B. X., Chen, S. H., Ou, T. M., Bu, X. Z., & Yan, M. (2012). 3-nitro-2H-chromenes as a new class of inhibitors against thioredoxin reductase and proliferation of cancer cells. Archiv Der Pharmazie, 345(10), 767–770. https://doi.org/10.1002/ardp.201200121
dc.relation.referencesXing, S. H., Zhu, C. X., Zhang, R., & An, L. (2014). Huperzine A in the treatment of alzheimer’s disease and vascular dementia: A meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/363985
dc.relation.referencesXu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2). https://doi.org/10.1111/j.1750-3841.2006.00260.x
dc.relation.referencesYang, W., Wong, Y., Ng, O. T. W., Bai, L. P., Kwong, D. W. J., Ke, Y., Jiang, Z. H., Li, H. W., Yung, K. K. L., & Wong, M. S. (2012). Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angewandte Chemie - International Edition, 51(8), 1804–1810. https://doi.org/10.1002/anie.201104150
dc.relation.referencesYao, E. C., & Xue, L. (2014). Therapeutic Effects of Curcumin on Alzheimer ’ s Disease. December, 145–159.
dc.relation.referencesYe, J. Y., Li, L., Hao, Q. M., Qin, Y., & Ma, C. S. (2020). β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice. Korean Journal of Physiology and Pharmacology, 24(1), 39–46. https://doi.org/10.4196/kjpp.2020.24.1.39
dc.relation.referencesYoudim, K. A., Shukitt-Hale, B., & Joseph, J. A. (2004). Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine, 37(11), 1683–1693. https://doi.org/10.1016/j.freeradbiomed.2004.08.002
dc.relation.referencesZelcer, N. (2012). LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor Noam. 100(2009), 100–104. https://doi.org/10.1126/science.1168974
dc.relation.referencesZhang, Chen, H., & Wang, Z. (2011). Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. 2010. https://doi.org/10.1007/s13197-011-0447-4
dc.relation.referencesZhang, H. Y. (2012). New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 33(9), 1170–1175. https://doi.org/10.1038/aps.2012.128
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocZanthoxylum
dc.subject.agrovocZanthoxylum
dc.subject.decsEnfermedad de Alzheimer/tratamiento farmacológico
dc.subject.decsAlzheimer Disease/drug therapy
dc.subject.decsFármacos Neuroprotectores
dc.subject.decsNeuroprotective Agents
dc.subject.proposalEnfermedad de Alzheimer
dc.subject.proposalZanthoxylum caribaeum
dc.subject.proposalAislamiento químico biodirigido
dc.subject.proposalLXR
dc.subject.proposalAlzheimer's disease
dc.subject.proposalBio-guided chemical isolation
dc.subject.proposalMultifuncional
dc.subject.proposalMultifunctional
dc.title.translatedSearch for active principles with neuroprotective potential for the treatment of alzheimer's disease from a species of the gender Zanthoxylum caribaeum (Rutaceae)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito