Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorBarreto-Hernandez, Emiliano
dc.contributor.advisorReguero Reza, María Teresa Jesús
dc.contributor.authorTenorio Arévalo, María Caridad
dc.date.accessioned2022-07-29T16:53:04Z
dc.date.available2022-07-29T16:53:04Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81760
dc.descriptionilustraciones, graficas, mapas
dc.description.abstractLa resistencia a los antibióticos es considerada una de las amenazas más urgentes de la salud pública mundial. Actualmente obtener resultados fenotípicos de esa resistencia por los métodos convencionales basados en cultivos toma mucho tiempo. La secuenciación de genoma completo (WGS) supera estas limitaciones ya que permite inferir el comportamiento fenotípico mediante la identificación de elementos de resistencia a antibióticos en el genoma en menor tiempo, sin embargo, aún no se ha conseguido una predicción óptima de estos perfiles. Los métodos de Machine Learning facilitan esta optimización, por lo tanto, el objetivo de este trabajo fue implementar un modelo de predicción de resistencia a antibióticos utilizando métodos de Machine Learning a partir de datos de WGS de 521 Enterobacterales que incluye 28 aislamientos colombianos de Providencia rettgeri. Para la predicción se utilizaron tres métodos: a) Regresión Logística (RL), b) Support Vector Machine (SVM) y c) Random Forest (RF) y tres métodos de selección de características: 1) Eliminación recursiva de características (RFECV), 2) regularización L1 y 3) Feature importance. Se desarrollaron modelos de predicción a 10 antibióticos, con una exactitud promedio del 88% (IC 95% ± 6) y exactitudes individuales de 89% (IC 95% ± 7), 93% (IC 95% ± 5), 90% (IC 95% ± 7), 93% (IC 95% ± 6), 81% (IC 95% ± 12), 93% (IC 95% ± 8), 81% (IC 95% ± 10), 79% (IC 95% ± 9), 86% (IC 95% ± 9) y 93% (IC 95% ± 5) para amikacina, ciprofloxacina, trimetropim/sulfometoxazol, tetraciclina, tigeciclina, colistina, ceftazidima, cefepime, imipenem y meropenem, respectivamente. Los métodos que permitieron obtener estos desempeños corresponden a RL y SVM con los métodos de selección de características RFECV y regularización L1. Estos hallazgos señalan que los modelos construidos pueden predecir con exactitud elevada la resistencia a antibióticos de diferentes especies de bacterias y apoya la idea de que pueden convertirse en una herramienta potencial para el diagnóstico clínico. (Texto tomado de la fuente)
dc.description.abstractAntibiotic resistance is considered one of the most urgent threats to global public health. Due to the public health risk, there are several methods for obtained phenotypic results. However, conventional methods take days or weeks. Whole-genome sequencing (WGS) overcomes these limitations by estimating phenotypic behavior and identifying antibiotic resistance elements in the genome in a faster way. However, information about the optimal prediction of these profiles is still scarce. The project aim was to implement an antibiotic resistance prediction model using Machine Learning methods, using WGS data of 521 Enterobacterales isolates, including 28 Providencia rettgeri isolates sequenced in Colombia. The Machine Learning methods used were a) Logistic Regression (RL), b) Support Vector Machine (SVM), and c) Random Forest (RF). Also, the following feature selection methods were applied: 1) recursive feature elimination (RFECV), 2) L1 regularization, and 3) feature importance. Finally, prediction models were developed for 10 antibiotics, with a mean accuracy of 88% (IC 95% ± 6) and individual accuracies of 89% (IC 95% ± 7), 93% (IC 95% ± 5), 90% (IC 95% ± 7), 93% (IC 95% ± 6), 81% (IC 95% ± 12), 93% (IC 95% ± 8) 81% (IC 95% ± 10), 79% (IC 95% ± 9), 86% (IC 95% ± 9) and 93% (IC 95% ± 5), for amikacin, ciprofloxacin, trimethoprim/sulfamethoxazole, tetracycline, tigecycline, colistin, ceftazidime, cefepime, imipenem and meropenem respectively. These performances correspond to RL and SVM, using RFECV and L1 as regularization feature selection methods. These findings indicate that these models could accurately predict antibiotic resistance from different Enterobacteriaceae species and could be a potential tool for clinical diagnosis.
dc.format.extent167 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.otherAntibacterianos
dc.titlePredicción del perfil de resistencia a antibióticos a partir de datos de secuenciación del genoma completo de aislamientos colombianos de Providencia rettgeri comprendidos en el período 2015 – 2016
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupBioinformática
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaBiología molecular de agentes infecciosos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Biotecnología (IBUN)
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbdallah, M., & Balshi, A. (2018). First literature review of carbapenem-resistant Providencia. In New Microbes and New Infections (Vol. 25, pp. 16–23). Elsevier Ltd. https://doi.org/10.1016/j.nmni.2018.05.009
dc.relation.referencesAdriana, L., & Buitrago, P. (2019). Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016.
dc.relation.referencesAedekerk, S., Diggle, S. P., Song, Z., Høiby, N., Cornelis, P., Williams, P., & Cámara, M. (2005). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology, 151(4), 1113–1125. https://doi.org/10.1099/mic.0.27631-0
dc.relation.referencesAghapour, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A. Z., Mahmood, S. S., Tanomand, A., Yousefi, M., Asgharzadeh, M., Yousefi, B., & Kafil, H. S. (2019). Molecular mechanisms related to colistin resistance in enterobacteriaceae. In Infection and Drug Resistance (Vol. 12, pp. 965–975). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S199844
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V, Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., ... McArthur, A. G. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz935
dc.relation.referencesAlekshun, M. N., & Levy, S. B. (2007). Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, 128(6), 1037–1050. https://doi.org/10.1016/j.cell.2007.03.004
dc.relation.referencesAngermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12(7), 878. https://doi.org/10.15252/msb.20156651
dc.relation.referencesAntunes, P., Machado, J., Sousa, J. C., & Peixe, L. (2005). Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrobial Agents and Chemotherapy, 49(2), 836– 839. https://doi.org/10.1128/AAC.49.2.836-839.2005
dc.relation.referencesBehera, R. N., Das, K., Tech, B., & Professor, A. (2017). A Survey on Machine Learning: Concept, Algorithms and Applications Machine Learning View project International Journal of Innovative Research in Computer and Communication Engineering A Survey on Machine Learning: Concept, Algorithms and Applications. Article in International Journal of Innovative Research in Computer, 1301–1309. https://doi.org/10.15680/IJIRCCE.2017
dc.relation.referencesBengoechea, J. A., Zhang, L., Toivanen, P., & Skurnik, M. (2002). Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Molecular Microbiology, 44(4), 1045–1062. https://doi.org/10.1046/j.1365-2958.2002.02940.x
dc.relation.referencesBesier, S., Ludwig, A., Brade, V., & Wichelhaus, T. A. (2003). Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Molecular Microbiology, 47(2), 463–469. https://doi.org/10.1046/j.1365-2958.2003.03307.x
dc.relation.referencesBielaszewska, M., Daniel, O., Karch, H., & Mellmann, A. (2020). Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. The Journal of Antimicrobial Chemotherapy, 75(9), 2442–2451. https://doi.org/10.1093/jac/dkaa214
dc.relation.referencesBlair, J. M. A., Richmond, G. E., & Piddock, L. J. V. (2014). Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. In Future Microbiology (Vol. 9, Issue 10, pp. 1165–1177). Future Medicine Ltd. https://doi.org/10.2217/FMB.14.66
dc.relation.referencesBlair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
dc.relation.referencesBorstel, F. (1983). from a Proteus mirabilis Re-mutant. 22, 15–22.
dc.relation.referencesBouziane, F., Allem, R., Sebaihia, M., Kumanski, S., Mougari, F., Sougakoff, W., Raskine, L., Yala, D., & Cambau, E. (2019). First genetic characterisation of multidrug- resistant Mycobacterium tuberculosis isolates from Algeria. Journal of Global Antimicrobial Resistance, 19, 301–307. https://doi.org/10.1016/j.jgar.2019.05.010
dc.relation.referencesBrolund, A., Sundqvist, M., Kahlmeter, G., & Grape, M. (2010). Molecular Characterisation of Trimethoprim Resistance in Escherichia coli and Klebsiella pneumoniae during a Two Year Intervention on Trimethoprim Use. PLoS ONE, 5(2), e9233. https://doi.org/10.1371/journal.pone.0009233
dc.relation.referencesCarvalho-Assef, A. P. D., Pereira, P. S., Albano, R. M., Beriao, G. C., Chagas, T. P. G., Timm, L. N., Da Silva, R. C. F., Falci, D. R., & Asensi, M. D. (2013). Isolation of NDM-producing Providencia rettgeri in Brazil. Journal of Antimicrobial Chemotherapy, 68(12), 2956–2957. https://doi.org/10.1093/jac/dkt298
dc.relation.referencesCastanheira, M., Mills, J. C., Farrell, D. J., & Jones, R. N. (2014). Mutation-Driven β- Lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrobial Agents and Chemotherapy, 58(11), 6844–6850. https://doi.org/10.1128/AAC.03681-14
dc.relation.referencesCLSI. (n.d.). M100: Antimicrobial Susceptibility Testing Standards. 2019. Retrieved November 7, 2019, from https://clsi.org/standards/products/microbiology/documents/m100/
dc.relation.referencesCLSI. (2018). Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. www.clsi.org.
dc.relation.referencesCLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing (29th ed).
dc.relation.referencesCody, A. J., Bray, J. E., Jolley, K. A., McCarthy, N. D., & Maiden, M. C. J. (2017). Core Genome Multilocus Sequence Analyses of Campylobacter jejuni and C. coli Human Disease Isolates. Journal of Clinical Microbiology, 55(7), 2086–2097.
dc.relation.referencesCoelho, J. R., Carriço, J. A., Knight, D., Martínez, J.-L., Morrissey, I., Oggioni, M. R., & Freitas, A. T. (2013). The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus. PLoS ONE, 8(2), e55582. https://doi.org/10.1371/journal.pone.0055582
dc.relation.referencesCoyne, S., Rosenfeld, N., Lambert, T., Courvalin, P., & Périchon, B. (2010). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(10), 4389–4393. https://doi.org/10.1128/AAC.00155-10
dc.relation.referencesCui, X., Zhang, H., & Du, H. (2019). Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Frontiers in Microbiology, 10, 1823. https://doi.org/10.3389/fmicb.2019.01823
dc.relation.referencesD’Andrea, M. M., Arena, F., Pallecchi, L., & Rossolini, G. M. (2013). CTX-M-type β- lactamases: A successful story of antibiotic resistance. International Journal of Medical Microbiology, 303(6–7), 305–317. https://doi.org/10.1016/j.ijmm.2013.02.008
dc.relation.referencesDastvan, R., Fischer, A. W., Mishra, S., Meiler, J., & McHaourab, H. S. (2016). Protonation-dependent conformational dynamics of the multidrug transporter EmrE. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1220–1225. https://doi.org/10.1073/pnas.1520431113
dc.relation.referencesDey, A. (2016). Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technologies, 7(3), 1174–1179. www.ijcsit.com
dc.relation.referencesDidelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. In Nature Reviews Genetics (Vol. 13, Issue 9, pp. 601–612). Nat Rev Genet. https://doi.org/10.1038/nrg3226
dc.relation.referencesDoménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J., & Albertí, S. (1999). Identification and characterization of a new porin gene of Klebsiella pneumoniae: Its role in β-lactam antibiotic resistance. Journal of Bacteriology, 181(9), 2726–2732. https://doi.org/10.1128/jb.181.9.2726-2732.1999
dc.relation.referencesDomínguez, M., Miranda, C. D., Fuentes, O., de la Fuente, M., Godoy, F. A., Bello- Toledo, H., & González-Rocha, G. (2019). Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Frontiers in Microbiology, 10(APR), 748. https://doi.org/10.3389/fmicb.2019.00748
dc.relation.referencesEDGAR, R. (n.d.). UCLUST algorithm. 2010. Retrieved March 27, 2021, from https://drive5.com/usearch/manual/uclust_algo.html
dc.relation.referencesElena, B., Ayala, A., María, A., & Amórtegui, L. (n.d.). CARBAPENEMASA NUEVA DELHI TIPO 1 (NDM): DESCRIPCIÓN FENOTÍPICA, EPIDEMIOLÓGICA Y TRATAMIENTO. In Laboratorio Actual •. Retrieved October 2, 2018, from http://abj.org.co/images/revistas/vol_44/Pag. 24-31 Carbapenemasa Nueva Delhi tipo 1 (NDM) descripción fenotípica, epidemiológica y tratamiento.pdf
dc.relation.referencesEUCAST: Clinical breakpoints and dosing of antibiotics. (n.d.). Retrieved November 7, 2019, from http://www.eucast.org/clinical_breakpoints/
dc.relation.referencesEyre, D. W., Silva, D. De, Cole, K., Peters, J., Cole, M. J., Grad, Y. H., Demczuk, W., Martin, I., Mulvey, M. R., Crook, D. W., Walker, A. S., Peto, T. E. A., & Paul, J. (2017). WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 72(7), 1937–1947. https://doi.org/10.1093/jac/dkx067
dc.relation.referencesFàbrega, A., Martin, R. G., Rosner, J. L., Tavio, M. M., & Vila, J. (2010). Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Antimicrobial Agents and Chemotherapy, 54(3), 1218–1225. https://doi.org/10.1128/AAC.00944-09
dc.relation.referencesFDA. (n.d.). TYGACIL ® (TIGECYCLINE) FOR INJECTION Rx only. Retrieved April 8, 2021, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021821s016lbl.pdf
dc.relation.referencesFounou, R. C., Founou, L. L., Allam, M., Ismail, A., & Essack, Y. (n.d.). Whole Genome sequencing of extended spectrum β-lactamase (esBL)-producing Klebsiella pneumoniae Isolated from Hospitalized patients in KwaZulu-Natal, south Africa. Scientific Reports. https://doi.org/10.1038/s41598-019-42672-2
dc.relation.referencesFreeman, Z. N., Dorus, S., & Waterfield, N. R. (2013). The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence. PLoS Pathogens, 9(3). https://doi.org/10.1371/journal.ppat.1003201
dc.relation.referencesFu, Z., Ma, Y., Chen, C., Guo, Y., Hu, F., Liu, Y., Xu, X., & Wang, M. (2016). Prevalence of fosfomycin resistance and mutations in murA, glpT, and uhpT in methicillin- resistant Staphylococcus aureus strains isolated from blood and cerebrospinal fluid samples. Frontiers in Microbiology, 6(JAN). https://doi.org/10.3389/fmicb.2015.01544
dc.relation.referencesGarcía, S., Ramírez, S. G., Luengo, J., & Herrera, F. (2016). Big Data : Preprocesamiento. Novática, 17–23. http://sci2s.ugr.es/sites/default/files/ficherosPublicaciones/2133_Nv237-Digital- sramirez.pdf
dc.relation.referencesGefen-Halevi, S., Hindiyeh, M. Y., Ben-David, D., Smollan, G., Gal-Mor, O., Azar, R., Castanheira, M., Belausov, N., Rahav, G., Tal, I., Mendelson, E., & Keller, N. (2013). Isolation of genetically unrelated bla(NDM-1)-positive Providencia rettgeri strains in Israel. Journal of Clinical Microbiology, 51(5), 1642–1643. https://doi.org/10.1128/JCM.00381-13
dc.relation.referencesGhaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). The Applications of Genetic Algorithms in Medicine. Oman Medical Journal, 30(6), 406–416.
dc.relation.referencesGhotaslou, R., Yeganeh Sefidan, F., Akhi, M. T., Asgharzadeh, M., & Mohammadzadeh Asl, Y. (2017). Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA among Enterobacteriaceae Isolates in Northwest Iran. Microbial Drug Resistance, 23(7), 826–832. https://doi.org/10.1089/mdr.2016.0224
dc.relation.referencesGovindaswamy, A., Bajpai, V., Khurana, S., Aravinda, A., Batra, P., Malhotra, R., & Mathur, P. (2019). Prevalence and characterization of beta-lactamase-producing Escherichia coli isolates from a tertiary care hospital in India. Journal of Laboratory Physicians, 11(02), 123–127. https://doi.org/10.4103/jlp.jlp_122_18
dc.relation.referencesGuidance Document on Tigecycline Dosing in association with Revision of Breakpoints for Enterobacterales and other species with an “Intermediate” category. (2018).
dc.relation.referencesHaidar, G., Alkroud, A., Cheng, S., Churilla, T. M., Churilla, B. M., Shields, R. K., Doi, Y., Clancy, C. J., & Nguyen, H. (2016). Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase-and Extended-Spectrum-Lactamase-Producing Enterobacter Species. https://doi.org/10.1128/AAC.00869-16
dc.relation.referencesHands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts ... - Aurélien Géron - Google Libros. (n.d.). Retrieved November 15, 2020, from https://books.google.com.ec/books?id=HHetDwAAQBAJ&printsec=frontcover&dq=h ands+on+machine+learning+with+scikit- learn+and+tensorflow&hl=es&sa=X&ved=2ahUKEwjU66ijiIbtAhXyxlkKHRYQBNEQ6 AEwAHoECAAQAg#v=onepage&q=hands on Machine Learning with scikit-learn and tensorflow&f=false
dc.relation.referencesHirakawa, H., Nishino, K., Hirata, T., & Yamaguchi, A. (2003). Comprehensive studies of drug resistance mediated by overexpression of response regulators of two- component signal transduction systems in Escherichia coli. Journal of Bacteriology, 185(6), 1851–1856. https://doi.org/10.1128/JB.185.6.1851-1856.2003
dc.relation.referencesHome - BioSample - NCBI. (n.d.). Retrieved March 27, 2021, from https://www.ncbi.nlm.nih.gov/biosample
dc.relation.referencesHome - Genome - NCBI. (n.d.). Retrieved March 27, 2021, from https://www.ncbi.nlm.nih.gov/genome/
dc.relation.referencesHuang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics & Proteomics, 15(1), 41–51. https://doi.org/10.21873/cgp.20063
dc.relation.referencesHyun, J. C., Kavvas, E. S., Monk, J. M., & Palsson, B. O. (2020). Machine Learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Computational Biology, 16(3), e1007608. https://doi.org/10.1371/journal.pcbi.1007608
dc.relation.referencesIredell, J., Brown, J., & Tagg, K. (2016). Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ (Online), 352(February 2016). https://doi.org/10.1136/bmj.h6420
dc.relation.referencesJabbar, H. K., & Khan, R. Z. (2015). Methods to Avoid Over-Fitting and Under-Fitting in Supervised Machine Learning (Comparative Study). December 2014, 163–172. https://doi.org/10.3850/978-981-09-5247-1_017
dc.relation.referencesJayol, A., Nordmann, P., André, C., Poirel, L., & Dubois, V. (2018). Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. Journal of Antimicrobial Chemotherapy, 73(5), 1272–1278. https://doi.org/10.1093/jac/dky012
dc.relation.referencesJihye Jeon. (2015). The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(5), 1634–1642. https://pdfs.semanticscholar.org/50a9/a4a1cf87575bbb83b43419102d09fc89f942.pd f
dc.relation.referencesJIM O’NEILL. (2015). TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND RECOMMENDATIONS. 136(1), 29–31.
dc.relation.referencesJorgensen, J. H., Ferraro, M. J., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases, 49(11), 1749–1755. https://doi.org/10.1086/647952
dc.relation.referencesKaraiskos, I., Lagou, S., Pontikis, K., Rapti, V., & Poulakou, G. (2019). The “Old” and the “New” antibiotics for MDR Gram-negative pathogens: For whom, when, and how. In Frontiers in Public Health (Vol. 7, Issue JUN, p. 151). Frontiers Media S.A. https://doi.org/10.3389/fpubh.2019.00151
dc.relation.referencesKim, S.-Y., Park, Y.-J., Yu, J. K., & Kim, Y. S. (2011). Aminoglycoside Susceptibility Profiles of Enterobacter cloacae Isolates Harboring the aac(6’)-Ib Gene. The Korean Journal of Laboratory Medicine, 31(4), 279. https://doi.org/10.3343/KJLM.2011.31.4.279
dc.relation.referencesKobayashi, N., Nishino, K., Hirata, T., & Yamaguchi, A. (2003). Membrane topology of ABC-type macrolide antibiotic exporter MacB in Escherichia coli. FEBS Letters, 546(2–3), 241–246. https://doi.org/10.1016/S0014-5793(03)00579-9
dc.relation.referencesKolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić, B., Knežević-Vukčević, J., & Vuković-Gačić, B. (2016). Optimisation оf the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. https://doi.org/10.5281/zenodo.48751
dc.relation.referencesKöser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., Holden, M. T. G., Dougan, G., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 8(8). https://doi.org/10.1371/journal.ppat.1002824
dc.relation.referencesKotb, D. N., Mahdy, W. K., Mahmoud, M. S., & Khairy, R. M. M. (2019). Impact of co- existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infectious Diseases, 19(1), 1–8. https://doi.org/10.1186/s12879-019-4606-y
dc.relation.referencesKouchaki, S., Yang, Y. Y., Walker, T. M., Walker, A. S., Wilson, D. J., Peto, T. E. A., Crook, D. W., Clifton, D. A., Hoosdally, S. J., Gibertoni Cruz, A. L., Carter, J., Grazian, C., Kouchaki, S., Walker, T. M., Fowler, P. W., Clifton, D. A., Iqbal, Z., Hunt, M., Smith, E. G., ... Van Soolingen, D. (2019). Application of Machine Learning techniques to tuberculosis drug resistance analysis. Bioinformatics, 35(13), 2276– 2282. https://doi.org/10.1093/bioinformatics/bty949
dc.relation.referencesKumar Trivedi, M. (2015). Antibiogram, Biochemical Reactions and Biotyping of Biofield Treated <i>Providencia rettgeri</i> American Journal of Health Research, 3(6), 344. https://doi.org/10.11648/j.ajhr.20150306.15
dc.relation.referencesL, D., P, N., & L, P. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(4), 1693–1697. https://doi.org/10.1128/AAC.05583-11
dc.relation.referencesLi, X. Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria: An update. In Drugs (Vol. 69, Issue 12, pp. 1555–1623). https://doi.org/10.2165/11317030- 000000000-00000
dc.relation.referencesLM, C., H, H., S, X., & FM, A. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrobial Agents and Chemotherapy, 53(2), 603–608. https://doi.org/10.1128/AAC.00997-08
dc.relation.referencesM, G., S, E., S, A., V, D., MA, K., E, S., & S, S. (2016). GyrA ser83 and ParC trp106 Mutations in Salmonella enterica Serovar Typhi Isolated from Typhoid Fever Patients in Tertiary Care Hospital. Journal of Clinical and Diagnostic Research : JCDR, 10(7), DC14–DC18. https://doi.org/10.7860/JCDR/2016/17677.8153
dc.relation.referencesM, M. A., S, K., C, W., S, L., G, M., T, M., S, J., & TR, R. (2015). Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile. Journal of Global Antimicrobial Resistance, 3(4), 295–299. https://doi.org/10.1016/J.JGAR.2015.09.007
dc.relation.referencesM, N., K, S., O, K., S, K., S, N., & R, S. (2015). Characterisation of novel mutations involved in quinolone resistance in Escherichia coli isolated from imported shrimp. International Journal of Antimicrobial Agents, 45(5), 471–476.
dc.relation.referencesMajlesi, A., Kakhki, R. K., Mozaffari Nejad, A. S., Mashouf, R. Y., Roointan, A., Abazari, M., & Alikhani, M. Y. (2018). Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi Journal of Biological Sciences, 25(3), 426–430. https://doi.org/10.1016/j.sjbs.2016.11.019
dc.relation.referencesMarquez-Ortiz, R. A., Haggerty, L., Sim, E. M., Duarte, C., Castro-Cardozo, B. E., Beltran, M., Saavedra, S., Vanegas, N., Escobar-Perez, J., & Petty, N. K. (2017). First Complete Providencia rettgeri Genome Sequence, the NDM-1-Producing Clinical Strain RB151. Genome Announcements, 5(3), e01472-16. https://doi.org/10.1128/genomeA.01472-16
dc.relation.referencesMazzariol, A., Kocsis, B., Koncan, R., Kocsis, E., Lanzafame, P., & Cornaglia, G. (2012). Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clinical Microbiology and Infection, 18(3), E46–E48. https://doi.org/10.1111/j.1469-0691.2011.03728.x
dc.relation.referencesMbelle, N., Sekyere, J. O., Amoako, D. G., & Maningi, N. E. (2019). Genomic analysis of a multidrug-resistant clinical Providencia rettgeri (PR002) strain with the novel integron ln1483 and an A/C plasmid replicon Genetic diversity of Mycobacterium tuberculosis strains among mycobacterial isolates from symptomatic holy water attendees in Amhara region, Ethiopia View project Fluoquinolone and Ketolide Resistance in Haemophilus Parainfluenzae from Private Sector of KwaZulu-Natal, South Africa View project. https://doi.org/10.1111/nyas.14237
dc.relation.referencesMisawa, K., Tarumoto, N., Tamura, S., Osa, M., Hamamoto, T., Yuki, A., Kouzaki, Y., Imai, K., Ronald, R. L., Yamaguchi, T., Murakami, T., Maesaki, S., Suzuki, Y., Kawana, A., & Maeda, T. (2018). Single nucleotide polymorphisms in genes encoding penicillin-binding proteins in β-lactamase-negative ampicillin-resistant Haemophilus influenzae in Japan. BMC Research Notes, 11(1). https://doi.org/10.1186/s13104-018-3169-0
dc.relation.referencesMitra, S., Mukherjee, S., Naha, S., Chattopadhyay, P., Dutta, S., & Basu, S. (2019). Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and bla NDM gene in Enterobacteriaceae causing neonatal septicaemia. Antimicrobial Resistance and Infection Control, 7(1), 1–15.
dc.relation.referencesMohanty, S., & Mahapatra, A. (2021). In vitro activity of tigecycline against multidrug- resistant Enterobacteriaceae isolates from skin and soft tissue infections. Annals of Medicine and Surgery, 62, 228–230. https://doi.org/10.1016/J.AMSU.2021.01.010
dc.relation.referencesMohr O’hara, C., Brenner, F. W., & Miller, J. M. (2000). Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella (Vol. 13, Issue 4). http://cmr.asm.org/
dc.relation.referencesMoradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan- genome data. PLOS Computational Biology, 14(12), e1006258.
dc.relation.referencesNaas, T., & Nordmann, P. (1994). Analysis of a carbapenem-hydrolyzing class A β- lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 91(16), 7693–7697. https://doi.org/10.1073/pnas.91.16.7693
dc.relation.referencesNagakubo, S., Nishino, K., Hirata, T., & Yamaguchi, A. (2002). The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. Journal of Bacteriology, 184(15), 4161–4167. https://doi.org/10.1128/JB.184.15.4161-4167.2002
dc.relation.referencesNazir, S., Dekyong, A., Fomda, B., Benazir, S., Bhat, A., & Bashir, L. (2017). Providencia Rettgeri: an Unexpected Cause of Sepsis. International Journal of Advanced Research, 5(12), 1442–1444. https://doi.org/10.21474/IJAR01/6104
dc.relation.referencesNguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., Shukla, M., Stevens, R. L., Xia, F., Yoo, H., & Davis, J. J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 421. https://doi.org/10.1038/s41598-017-18972-w
dc.relation.referencesNguyen, M., Wesley Long, S., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., Tyson, G. H., Zhao, S., & Davisa, J. J. (2019). Using Machine Learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(2). https://doi.org/10.1128/JCM.01260-18
dc.relation.referencesNiehaus, K. E., Walker, T. M., Crook, D. W., Peto, T. E. A., & Clifton, D. A. (2014). Machine Learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 618–621. https://doi.org/10.1109/BHI.2014.6864440
dc.relation.referencesNishino, K., Senda, Y., & Yamaguchi, A. (2008). CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. Journal of Antibiotics, 61(3), 120–127. https://doi.org/10.1038/ja.2008.120
dc.relation.referencesNordmann, P., Naas, T., & Poirel, L. (2011). Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791–1798. https://doi.org/10.3201/eid1710.110655
dc.relation.referencesOlaitan, Abiola O., Morand, S., & Rolain, J.-M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in Microbiology, 5, 643. https://doi.org/10.3389/fmicb.2014.00643
dc.relation.referencesOlaitan, Abiola Olumuyiwa, Diene, S. M., Assous, M. V., & Rolain, J.-M. (2016). Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. Genome Biology and Evolution, 8(3), 723–728. https://doi.org/10.1093/gbe/evv195
dc.relation.referencesOlaitan, Abiola Olumuyiwa, Diene, S. M., Gupta, S. K., Adler, A., Assous, M. V., & Rolain, J. M. (2014). Genome analysis of NDM-1 producing Morganella morganii clinical isolate. Expert Review of Anti-Infective Therapy, 12(10), 1297–1305.
dc.relation.referencesOlivares, J., Bernardini, A., Garcia-Leon, G., Corona, F., Sanchez, M. B., & Martinez, J. L. (2013). The intrinsic resistome of bacterial pathogens. In Frontiers in Microbiology (Vol. 4, Issue APR, p. 103). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2013.00103
dc.relation.referencesOlumuyiwa Olaitan, A., Diene, S. M., Victor Assous, M., & Rolain, J. M. (2016). Genomic plasticity of multidrug-resistant NDM-1 positive clinical isolate of providencia rettgeri. Genome Biology and Evolution, 8(3), 723–728. https://doi.org/10.1093/gbe/evv195
dc.relation.referencesOpenSUSE. (n.d.). openSUSE - Linux OS. La mejor elección para administradores de sistemas, desarrolladores y usuarios de ordenadores de sobremesa. 2021. Retrieved March 27, 2021, from https://www.opensuse.org/
dc.relation.referencesOrdóñez-díaz, K. M., Estupiñán, J. L., & Alzate, J. A. (2018). Metalobetalactamasa de tipo Nueva Delhi en Risaralda ( Colombia ): reporte de un caso. 22(1), 55–57.
dc.relation.referencesOrtiz, K. P. P., Segura, J. C., Bettin, L., Coriat, J., & Díez, H. (2011). recuencia de betalactamasas de espectro extendido (BLEE) en Klebsiella pneumoniae, Klebsiella oxytoca y Escherichia coli aisladas de pacientes hospitalizados en una clínica de tercer nivel en Bogotá. Ciencia Actual, 4(0), 1–9. https://doi.org/10.21500/2248468X.2285
dc.relation.referencesOsei Sekyere, J., & Amoako, D. G. (2017). Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLOS ONE, 12(6), e0178888. https://doi.org/10.1371/journal.pone.0178888
dc.relation.referencesOvalle, M. V., Saavedra, S. Y., González, M. N., Hidalgo, A. M., Duarte, C., & Beltrán, M. (2017). Resultados de la vigilancia nacional de resistencia antimicrobiana en infecciones asociadas a la atención en salud en enterobacterias y Gram negativos no fermentadores, Colombia 2012-2014. Biomédica, 37(4), 39. https://doi.org/http://dx.doi.org/10.7705/biomedica.v37i4.3432
dc.relation.referencesOzkaya-Parlakay, A., Gulhan, B., Kanik-Yuksek, S., Guney, D., Gonulal, D., Demirtas, G., Tezer, H., Unal, S., & Senel, E. (2020). Tigecycline therapy in pediatric patients with multidrug resistant bacteremia. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 38(10), 471–473. https://doi.org/10.1016/j.eimce.2019.12.014
dc.relation.referencesPartridge, S. R. (2015). Resistance mechanisms in Enterobacteriaceae. Pathology, 47(3), 276–284. https://doi.org/10.1097/PAT.0000000000000237
dc.relation.referencesPataki, B. Á., Matamoros, S., van der Putten, B. C. L., Remondini, D., Giampieri, E., Aytan-Aktug, D., Hendriksen, R. S., Lund, O., Csabai, I., Schultsz, C., Matamoros, S., Janes, V., Hendriksen, R. S., Lund, O., Clausen, P., Aarestrup, F. M., Koopmans, M., Pataki, B., Visontai, D., ... McDermott, P. (2020). Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with Machine Learning. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-71693-5
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Cournapeau, D., Passos, A., Brucher, M., Perrot Andédouardand ́andédouard Duchesnay, M., & Perrot, M. (2011). Scikit-learn: Machine Learning in Python. In Machine Learning in Python. Journal of Machine Learning Research (Vol. 12). Microtome Pub-lishing. https://hal.inria.fr/hal-00650905v2
dc.relation.referencesPedregosa FABIANPEDREGOSA, F., Michel, V., Grisel OLIVIERGRISEL, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot andÉdouardand, M., Duchesnay, andÉdouard, & Duchesnay EDOUARDDUCHESNAY, Fré. (2011). Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. In Journal of Machine Learning Research (Vol. 12, Issue 85). http://scikit-learn.sourceforge.net.
dc.relation.referencesPérez-Vázquez, M., Sola Campoy, P. J., Ortega, A., Bautista, V., Monzón, S., Ruiz- Carrascoso, G., Mingorance, J., González-Barberá, E. M., Gimeno, C., Aracil, B., Sáez, D., Lara, N., Fernández, S., González-López, J. J., Campos, J., Kingsley, R. A., Dougan, G., Oteo-Iglesias, J., Rodrigo, C. H., ... Suarez, C. B. (2019). Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: phylogeny, resistome, virulence and plasmids encoding blaNDM-like genes as determined by WGS. Journal of Antimicrobial Chemotherapy, 74(12), 3489–3496. https://doi.org/10.1093/jac/dkz366
dc.relation.referencesPérez, A., Poza, M., Fernández, A., Del Carmen Fernández, M., Mallo, S., Merino, M., Rumbo-Feal, S., Cabral, M. P., & Bou, G. (2012). Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 56(4), 2084–2090. https://doi.org/10.1128/AAC.05509-11
dc.relation.referencesPesesky, M. W., Hussain, T., Wallace, M., Patel, S., Andleeb, S., Burnham, C.-A. D., & Dantas, G. (2016). Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data. Frontiers in Microbiology, 7, 1887. https://doi.org/10.3389/fmicb.2016.01887
dc.relation.referencesPeterson, L. R. (2008). A review of tigecycline - the first glycylcycline. International Journal of Antimicrobial Agents, 32(SUPPL. 4), S215–S222. https://doi.org/10.1016/S0924-8579(09)70005-6
dc.relation.referencesPournaras, S., Koumaki, V., Spanakis, N., Gennimata, V., & Tsakris, A. (2016). Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. International Journal of Antimicrobial Agents, 48(1), 11–18. https://doi.org/10.1016/j.ijantimicag.2016.04.017
dc.relation.referencesPuértolas-Balint, F., Warsi, O., Linkevicius, M., Tang, P. C., & Andersson, D. I. (2020). Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. Journal of Antimicrobial Chemotherapy, 75(2), 300–308. https://doi.org/10.1093/jac/dkz434
dc.relation.referencesRamirez, L. S., & Marin Castaño, D. (2009). METODOLOGIAS PARA EVALUAR IN VITRO LA ACTIVIDAD ANTIBACTERIANA DE COMPUESTOS DE ORIGEN VEGETAL Methodologies for evaluating the In vitro antibacterial activity of natural compounds of plant origin. Scientia et Technica, 42, 263–268.
dc.relation.referencesRamón, J., Anaya, M., & Química, M. S. (2006). MANUAL DE TÉCNICAS BÁSICAS EN BIOLOGÍA MOLECULAR.
dc.relation.referencesRedgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8), 438–445. https://doi.org/10.1016/j.tim.2014.04.007
dc.relation.referencesRizzo, R., Fiannaca, A., La Rosa, M., & Urso, A. (2016). A Deep Learning Approach to DNA Sequence Classification (pp. 129–140). Springer, Cham. https://doi.org/10.1007/978-3-319-44332-4_10
dc.relation.referencesRoberts, L. W., Catchpoole, E., Jennison, A. V., Bergh, H., Hume, A., Heney, C., George, N., Paterson, D. L., Schembri, M. A., Beatson, S. A., & Harris, P. N. A. (2020). Genomic analysis of carbapenemase-producing enterobacteriaceae in queensland reveals widespread transmission of blaimp-4 on an incHI2 plasmid. Microbial Genomics, 6(1). https://doi.org/10.1099/mgen.0.000321
dc.relation.referencesSaad, N., Munir, T., Ansari, M., Gilani, M., Latif, M., & Haroon, A. (2016). Introduction Evaluation of phenotypic tests for detection of Amp C beta-lactamases in clinical isolates from a tertiary care hospital of Rawalpindi, Pakistan (Vol. 66, Issue 6).
dc.relation.referencesSaavedra-Rojas, S.-Y., Duarte-Valderrama, C., González-de-Arias, M.-N., & Ovalle- Guerro, M. V. (2013). Emergence of Providencia rettgeri NDM-1 in two departments of Colombia, 2012-2013. Enfermedades Infecciosas y Microbiologia Clinica, 35(6), doi:10.1016/j.eimc.2015.05.011. https://doi.org/10.1016/j.eimc.2015.05.011
dc.relation.referencesSagar, S., Narasimhaswamy, N., & D’Souza, J. (2017). Providencia Rettgeri: An Emerging Nosocomial Uropathogen in an Indwelling Urinary Catheterised Patient. Journal of Clinical and Diagnostic Research : JCDR, 11(6), DD01–DD02. https://doi.org/10.7860/JCDR/2017/25740.10026
dc.relation.referencesSagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1249
dc.relation.referencesSagiroglu, S., & Sinanc, D. (2013). Big data: A review. Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 42–47. https://doi.org/10.1109/CTS.2013.6567202
dc.relation.referencesSchneiders, T., Amyes, S. G. B., & Levy, S. B. (2003). Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore. Antimicrobial Agents and Chemotherapy, 47(9).
dc.relation.referencesSchrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics, 34(4), 301–312. https://doi.org/10.1016/J.TIG.2017.12.005
dc.relation.referencesSchürch, A. C., & van Schaik, W. (2017). Challenges and opportunities for whole-genome sequencing–based surveillance of antibiotic resistance. Annals of the New York Academy of Sciences, 1388(1), 108–120. https://doi.org/10.1111/nyas.13310
dc.relation.referencesSharff, A., Fanutti, C., Shi, J., Calladine, C., & Luisi, B. (2001). The role of the TolC family in protein transport and multidrug efflux from stereochemical certainty to mechanistic hypothesis. In European Journal of Biochemistry (Vol. 268, Issue 19, pp. 5011– 5026). Eur J Biochem. https://doi.org/10.1046/j.0014-2956.2001.02442.x
dc.relation.referencesSharma, D., Sharma, P., & Soni, P. (2017). First case report of Providencia Rettgeri neonatal sepsis. BMC Research Notes, 10(1), 17–20. https://doi.org/10.1186/s13104-017-2866-4
dc.relation.referencesShin, S., Jeong, S. H., Lee, H., Hong, J. S., Park, M. J., & Song, W. (2018). Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea. Annals of Clinical Microbiology and Antimicrobials, 17(1), 1–6. https://doi.org/10.1186/s12941-018-0272-y
dc.relation.referencesSidjabat, H. E., Townell, N., Nimmo, G. R., George, N. M., Robson, J., Vohra, R., Davis, L., Heney, C., & Patersona, D. L. (2015). Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrobial Agents and Chemotherapy, 59(7), 4059–4066. https://doi.org/10.1128/AAC.04378-14
dc.relation.referencesSingh, A., Thakur, N., & Sharma, A. (2016). A review of supervised Machine Learning algorithms. Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, 1310–1315.
dc.relation.referencesSingh, H., Velamakanni, S., Deery, M. J., Howard, J., Wei, S. L., & Van Veen, H. W. (2016). ATP-dependent substrate transport by the ABC transporter MsbA is proton- coupled. Nature Communications, 7. https://doi.org/10.1038/ncomms12387
dc.relation.referencesSommer, C., & Gerlich, D. W. (2013). Machine Learning in cell biology – teaching computers to recognize phenotypes. Journal of Cell Science, 126(24), 5529–5539. https://doi.org/10.1242/JCS.123604
dc.relation.referencesSpellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H. W., Scheld, W. M., Bartlett, J. G., & Edwards, J. (2008). The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of America. In Clinical Infectious Diseases (Vol. 46, Issue 2, pp. 155–164). https://doi.org/10.1086/524891
dc.relation.referencesSrinivasan, V. B., & Rajamohan, G. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 57(9), 4449–4462. https://doi.org/10.1128/AAC.02284-12
dc.relation.referencesSrinivasan, V. B., Singh, B. B., Priyadarshi, N., Chauhan, N. K., & Rajamohan, G. (2014). Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096288
dc.relation.referencesTafur, D., & Villegas, V. (2008). Mecanismos de resistencia a los antibióticos en bacterias Gram negativas. Infectio, 12(3), 217–226. https://doi.org/http://www.sld.cu/galerias/pdf/sitios/apua- cuba/mecanismos_de_resistencia_a_los_antibioticos_en_bacterias_gram_negativas .pdf
dc.relation.referencesTamara, N. Q., Esthela, T. M., Pamela, C. S., Jenniffer, H. L., & Pablo, S. R. (2020). Journal of Medical Case Reports and Reviews 3:8 [2020] CARBAPENEMASE- PRODUCING ENTEROBACTERIACEAE IN PATIENTS OF A THIRD LEVEL HOSPITAL IN THE CITY OF GUAYAQUIL-ECUADOR. Journal of Medical Case Reports and Reviews, 3(08). www.jmcrr.info
dc.relation.referencesTatarinova, T. V, Editors, Y. N., Raschka, S., Verdier, C. F. J. E. S. O., Hearty, J., Huffman, J., & Pajankar, A. (2000). Python 机器学习. In Astronomical Data Analysis Software and Systems IX (Vol. 216).
dc.relation.referencesThe Comprehensive Antibiotic Resistance Database. (n.d.). Retrieved March 27, 2021, from https://card.mcmaster.ca/
dc.relation.referencesTorres, E., López-Cerero, L., Rodríguez-Martínez, J. M., & Pascual, Á. (2016). Reduced Susceptibility to Cefepime in Clinical Isolates of Enterobacteriaceae Producing OXA- 1 Beta-Lactamase. Microbial Drug Resistance, 22(2), 141–146. https://doi.org/10.1089/mdr.2015.0122
dc.relation.referencesTshisevhe, V. S., Lekalakala, M. R., Tshuma, N., Janse van Rensburg, S., & Mbelle, N. (2016). Outbreak of carbapenem-resistant Providencia rettgeri in a tertiary hospital. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 107(1), 31–33. https://doi.org/10.7196/SAMJ.2016.v107.i1.12002
dc.relation.referencesVan Camp, P.-J., Haslam, D. B., & Porollo, A. (2020). Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. Frontiers in Microbiology, 11, 1013. https://doi.org/10.3389/fmicb.2020.01013
dc.relation.referencesvan Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. In Virulence (Vol. 8, Issue 4, pp. 460–469). Taylor and Francis Inc. https://doi.org/10.1080/21505594.2016.1222343
dc.relation.referencesVB, S., & G, R. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad- spectrum antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 57(9), 4449–4462. https://doi.org/10.1128/AAC.02284-12
dc.relation.referencesVillalobos, A. P., Barrero, L. I., Rivera, S. M., Ovalle, M. V., & Valera, D. (2013). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(0), 67. https://doi.org/10.7705/biomedica.v34i0.1698
dc.relation.referencesViviana, L., & Su, R. (2019). Caracterización de perfiles de elementos genéticos plasmídicos de aislamientos colombianos de Providencia rettgeri, causantes de IAAS. Obtenidos del Instituto Nacional de Salud, durante el periodo 2015-2016.
dc.relation.referencesWeinstein, M. P., Patel, J. B., Bobenchik, A. M., Campeau, S., Cullen, S. K., Galas, M. F., Gold, H., Humphries, R. M., Kirn, T. J., Lewis Ii, J. S., Limbago, B., Mathers, A. J., Mazzulli, T., Richter, S. S., Satlin, M., Schuetz, A. N., Swenson, J. M., Tamma, P. D., & Simner, P. J. (2020). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing.
dc.relation.referencesWeiss, S. J., Mansell, T. J., Mortazavi, P., Knight, R., & Gill, R. T. (2016). Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli. PLOS ONE, 11(1), e0146916. https://doi.org/10.1371/journal.pone.0146916
dc.relation.referencesWelcome to Python.org. (n.d.). Retrieved March 27, 2021, from https://www.python.org/
dc.relation.referencesWeston, N., Sharma, P., Ricci, V., & Piddock, L. J. V. (2017). Regulation of the AcrAB- TolC efflux pump in Enterobacteriaceae. Research in Microbiology, 1–7. https://doi.org/10.1016/j.resmic.2017.10.005
dc.relation.referencesWeston, N., Sharma, P., Ricci, V., & Piddock, L. J. V. (2018). Regulation of the AcrAB- TolC efflux pump in Enterobacteriaceae. Research in Microbiology, 169(7–8), 425– 431. https://doi.org/10.1016/j.resmic.2017.10.005
dc.relation.referencesWHO | Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. (2017). WHO.
dc.relation.referencesWu, L. T., Tsou, M. F., Wu, H. J., Chen, H. E., Chuang, Y. C., & Yu, W. L. (2004). Survey of CTX-M-3 extended-spectrum β-lactamase (ESBL) among cefotaxime-resistant Serratia marcescens at a medical center in middle Taiwan. Diagnostic Microbiology and Infectious Disease, 49(2), 125–129. https://doi.org/10.1016/j.diagmicrobio.2004.02.004
dc.relation.referencesYang, Y., Niehaus, K. E., Walker, T. M., Iqbal, Z., Walker, A. S., Wilson, D. J., Peto, T. E. A., Crook, D. W., Smith, E. G., Zhu, T., & Clifton, D. A. (2018). Machine Learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics, 34(10), 1666–1671. https://doi.org/10.1093/bioinformatics/btx801
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
dc.subject.lembAnti-Bacterial Agents
dc.subject.proposalResistencia antimicrobiana
dc.subject.proposalMachine Learning
dc.subject.proposalWGS
dc.subject.proposalProvidencia rettgeri
dc.subject.proposalRegresión logística
dc.subject.proposalSupport Vector Machine
dc.subject.proposalAntimicrobial resistance
dc.subject.proposalLogistic Regression
dc.subject.proposalRandom Forest
dc.title.translatedPrediction of the resistance profile to antibiotics based on whole genome sequencing data of Colombian isolates of Providencia rettgeri during the period 2015 – 2016
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito