Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGaravito Cardenas, Giovanny
dc.contributor.advisorArias Marciales, María Helena
dc.contributor.authorPerez Lozada, Jhindy Tatiana
dc.date.accessioned2022-08-04T17:14:29Z
dc.date.available2022-08-04T17:14:29Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81783
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractLa enfermedad de Chagas causada por el parásito Trypanosoma cruzi, representa un problema de salud pública a nivel mundial. Su tratamiento está restringido a dos fármacos, Benznidazol y Nifurtimox, que poseen efectos adversos, eficacia limitada y su oportunidad de acceso es igualmente limitado. Las pruebas farmacológicas in vitro constituyen la herramienta inicial para el tamizaje de alternativas promisorias, sin embargo, en este caso particular, no existe un consenso en los protocolos utilizados, por lo que es fundamental optimizar una prueba farmacológica in vitro para evaluar sustancias con potencial actividad frente a Trypanosoma cruzi, con el fin de obtener resultados reproducibles y comparables que aporten al avance del desarrollo de nuevo fármacos. En el presente trabajo se optimizó las condiciones más relevantes usadas en las pruebas farmacológicas in vitro a partir de epimastigotes de la cepa Y de Trypanosoma cruzi. Se determinó que el parásito tiene un crecimiento sostenido hasta el día 8 con una estabilización o disminución a partir del día 9 de incubación. El recambio de medio de cultivo debe ser cada 3 días para garantizar un porcentaje de epimastigotes mayor al 90%. Para el cultivo óptimo del parásito se puede usar tanto el medio LIT como el BHI suplementado con 10 % de SFB. En cuanto a la prueba farmacológica se determinó que se puede usar indistintamente placas con fondo en U o fondo plano sin afectar el crecimiento del parásito, los mejores resultados los obtuvimos empleando una concentración de 1x10 6 parásitos/mL como inóculo inicial y una incubación de 72 horas. Se determinó una CI50 de 16,6 µM (4,32 µg/mL) de benznidazole frente a epimastigotes de T. cruzi de la Cepa Y, coincidente con reportes previos bajo las mismas condiciones. (Texto tomado de la fuente)
dc.description.abstractChagas disease caused by the parasite Trypanosoma cruzi represents a worldwide public health problem. Its treatment is restricted to two drugs, Benznidazole and Nifurtimox, which have adverse effects, limited efficacy, and their opportunity for access is equally limited. In vitro pharmacological tests are the initial tool for screening promising alternatives, however, in this particular case, there is no consensus on the protocols used, so it is essential to optimize an in vitro pharmacological test to evaluate substances with potential activity against Trypanosoma cruzi, in order to obtain reproducible and comparable results that contribute to the advancement of the development of new drugs. In the present work, the most relevant conditions used in vitro pharmacological tests were optimized from epimastigotes of the Y strain of Trypanosoma cruzi. It was determined that the parasite has a sustained growth until day 8 with a stabilization or decrease from day 9 of incubation. The change of culture medium should be every 3 days to guarantee a percentage of epimastigotes greater than 90%. For optimal culture of the parasite, both LIT medium and BHI supplemented with 10% FBS can be used. Regarding the pharmacological test, it was determined that plates with a U-bottom or flat bottom can be used interchangeably without affecting the growth of the parasite; The best results were obtained using a concentration of 1x10 6 parasites / mL as initial inoculum and an incubation of 72 hours. An IC50 of 16.6 µM (4.32 µg/mL) of benznidazole was determined against epimastigotes of T. cruzi of Strain Y, which coincides with previous reports under the same conditions.
dc.format.extent123 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.otherEnfermedad de Chagas
dc.subject.otherChagas Disease
dc.subject.otherTrypanosoma cruzi
dc.subject.otherTécnicas In Vitro
dc.subject.otherIn Vitro Techniques
dc.titleOptimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupFametra
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Biotecnología (IBUN)
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAA, G., & MG, L. (2017). Triatomine physiology in the context of trypanosome infection. Journal of Insect Physiology, 97, 66–76. https://doi.org/10.1016/J.JINSPHYS.2016.07.005
dc.relation.referencesAL, V., P, R., M, W., P, M., E, M., & MG, de L. (2010). Fetal bovine serum concentration affects delta9 desaturase activity of Trypanosoma cruzi. Lipids, 45(3), 275–283. https://doi.org/10.1007/S11745-010-3387-2
dc.relation.referencesÁlvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez, A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital General de México, 81(3), 154–164. https://doi.org/10.1016/j.hgmx.2016.09.010
dc.relation.referencesAM, C., JM, B., AM, P., CM, P. B., LJ, S., D, X., CL, B., & RL, T. (2010). In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Neglected Tropical Diseases, 4(7). https://doi.org/10.1371/JOURNAL.PNTD.0000740
dc.relation.referencesAmato Neto, V. (n.d.). Origin of the “Y strain” of Trypanosoma cruzi. Revista Do Instituto de Medicina Tropical de Sao Paulo, 52(3), 171. https://doi.org/10.1590/s0036- 46652010000300012
dc.relation.referencesBhattacharya, A., Corbeil, A., Monte-Neto, R. L. do, & Fernandez-Prada, C. (2020). Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes, 11(7), 1–24. https://doi.org/10.3390/GENES11070722
dc.relation.referencesCarneiro, P. F., Do Nascimento, S. B., Pinto, A. V., Pinto, M. D. C. F. R., Lechuga, G. C., Santos, D. O., Dos Santos Júnior, H. M., Resende, J. A. L. C., Bourguignon, S. C., & Ferreira, V. F. (2012). New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorganic & Medicinal Chemistry, 20(16), 4995–5000. https://doi.org/10.1016/J.BMC.2012.06.027
dc.relation.referencesCDC. (2019). American Trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html
dc.relation.referencesCeole, L. F., Gandhi, H., Villamizar, L. H., Soares, M. J., & O’Sullivan, T. P. (2018). Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi. Future Medicinal Chemistry, 10(4), 391–408. https://doi.org/10.4155/FMC-2017- 0184
dc.relation.referencesCMBD, S., A, L., RL, K., RCP, R., AH, I., MA, K., DP, P., & CM, P. (2018). Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Memorias Do Instituto Oswaldo Cruz, 113(5). https://doi.org/10.1590/0074-02760170404
dc.relation.referencesCortez, C., Martins, R. M., Alves, R. M., Silva, R. C., Bilches, L. C., Macedo, S., Atayde, V. D., Kawashita, S. Y., Briones, M. R. S., & Yoshida, N. (2012). Differential Infectivity by the Oral Route of Trypanosoma cruzi Lineages Derived from Y Strain. PLoS Neglected Tropical Diseases, 6(10). https://doi.org/10.1371/JOURNAL.PNTD.0001804
dc.relation.referencesCos, P., Vlietinck, A. J., Berghe, D. Vanden, & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept.’ Journal of Ethnopharmacology, 106(3), 290–302. https://doi.org/10.1016/J.JEP.2006.04.003
dc.relation.referencesDe Lima, A. R., Noris-Suárez, K., Bretaña, A., Contreras, V. T., Navarro, M. C., PérezYbarra, L., & Bubis, J. (2017). Growth arrest and morphological changes triggered by emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie, 142, 31–40. https://doi.org/10.1016/J.BIOCHI.2017.08.005
dc.relation.referencesDias, J. C. P., Ramos, A. N., Gontijo, E. D., Luquetti, A., Shikanai-Yasuda, M. A., Coura, J. R., Torres, R. M., Melo, J. R. da C., Almeida, E. A. de, Oliveira, W. de, Silveira, A. C., Rezende, J. M. de, Pinto, F. S., Ferreira, A. W., Rassi, A., Fragata, A. A., Sousa, A. S. de, Correia, D., Jansen, A. M., … Alves, R. V. (2016). II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiologia e Servicos de Saude : Revista Do Sistema Unico de Saude Do Brasil, 25(spe), 7–86. https://doi.org/10.5123/S1679- 49742016000500002
dc.relation.referencesENFERMEDAD DE CHAGAS Ministerio de Salud y Protección Social-Federación Médica Colombiana. (2012).
dc.relation.referencesENGEL, J. C., & DVORAK, J. A. (1988). Trypanosoma cruzi: Cell Biological Behavior of Epimastigote and Amastigote Forms in Axenic Culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.X
dc.relation.referencesFallas, J. J., & Chavarría, J. (2011). Implementación del Análisis en Componentes Principales con el software estadístico R. Revista Digital Matemática, Educación e Internet, 11(2), 1659–0643. https://repositoriotec.tec.ac.cr/handle/2238/12882
dc.relation.referencesGómez Marin, J. E. (2016). Need for a national pharmacy: An issue of national security. Infectio, 20(1), 1–2. https://doi.org/10.1016/j.infect.2015.08.001
dc.relation.referencesHeger, J. I., Froehlich, K., Pastuschek, J., Schmidt, A., Baer, C., Mrowka, R., Backsch, C., Schleußner, E., Markert, U. R., & Schmidt, A. (2018). Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum. Experimental Cell Research, 365(1), 57–65. https://doi.org/10.1016/J.YEXCR.2018.02.017
dc.relation.referencesHernández, R., Cevallos, A. M., Nepomuceno-Mejía, T., & López-Villaseñor, I. (2012). Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. In Parasitology Research (Vol. 111, Issue 2, pp. 509–514). https://doi.org/10.1007/s00436-012-2974-y
dc.relation.referencesIsabel, L., Jaramillo, J., Mejía, R., María, L., Sánchez, M., & Henao, S. V. (2017). Enfermedad de Chagas: una mirada alternativa al tratamiento Chagas disease: an alternative look to treatment. In Revista Cubana de Medicina Tropical (Vol. 69, Issue 2). http://scielo.sld.cu
dc.relation.referencesJaimes-Dueñez, J., Triana-Chávez, O., Cantillo-Barraza, O., Hernández, C., Ramírez, J. D., & Góngora-Orjuela, A. (2017). Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia. Preventive Veterinary Medicine, 141, 1–6. https://doi.org/10.1016/j.prevetmed.2017.03.009
dc.relation.referencesJC, E., & JA, D. (1988). Trypanosoma cruzi: cell biological behavior of epimastigote and amastigote forms in axenic culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.X
dc.relation.referencesKessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular Microbiology, 104(5), 712–736. https://doi.org/10.1111/mmi.13653
dc.relation.referencesKitamura, Y., Suzuki, M., Tsukioka, T., Isobe, K., Tsujino, T., Watanabe, T., Watanabe, T., Okudera, H., Nakata, K., Tanaka, T., & Kawase, T. (2018). Spectrophotometric determination of platelet counts in platelet-rich plasma. International Journal of Implant Dentistry, 4(1). https://doi.org/10.1186/S40729-018-0140-8
dc.relation.referencesKratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198, 105107. https://doi.org/10.1016/j.actatropica.2019.105107
dc.relation.referencesLidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., MessiasReason, I. J., & Sandri, T. L. (2019). Chagas Disease: From Discovery to a Worldwide Health Problem. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00166
dc.relation.referencesLima, D. B., Mello, C. P., Bandeira, I. C. J., De Menezes, R. R. P. P. B., Sampaio, T. L., Falcão, C. B., Morlighem, J. É. R. L., Rádis-Baptista, G., & Martins, A. M. C. (2018). The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biological Chemistry, 399(2), 187–196. https://doi.org/10.1515/HSZ-2017-0198
dc.relation.referencesLourenço, A. M., Faccini, C. C., Costa, C. A. de J., Mendes, G. B., & Fragata Filho, A. A. (2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Revista Da Sociedade Brasileira de Medicina Tropical, 51(1), 52–56. https://doi.org/10.1590/0037-8682-0285-2017
dc.relation.referencesMartínez-Díaz, R. A., Escario, J. A., Nogal-Ruiz, J. J., & Gómez-Barrio, A. (2001). Biological Characterization of Trypanosoma cruzi Strains. Memorias Do Instituto Oswaldo Cruz, 96(1), 53–59. https://doi.org/10.1590/S0074-02762001000100006
dc.relation.referencesMartinez, F., Perna, E., Perrone, S. V, & Liprandi, A. S. (2019). Chagas DiseZingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., … Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect. European Cardiology Review, 14(2), 82–88. https://doi.org/10.15420/ecr.2018.30.2
dc.relation.referencesMC, E., JP, da C., FP, de F., RA, M., E, F., & S, S. (2007). Morphological events during the Trypanosoma cruzi cell cycle. Protist, 158(2), 147–157. https://doi.org/10.1016/J.PROTIS.2006.10.002
dc.relation.referencesOlivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. In PLoS ONE (Vol. 14Issue 1). Public Library of Science. https://doi.org/10.1371/journal.pone.0210156
dc.relation.referencesOMS | Notas descriptivas: enfermedades tropicales desatendidas. (2017). WHO; World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/chagasdisease-(american-trypanosomiasis) Özbilgin, A., Çavuş, İ., Nuraydın, A., & Ö
dc.relation.referencesÖzbilgin, A., Çavuş, İ., Nuraydın, A., & Özel, Y. (2020). The Production of Trypanosoma Brucei Rhodesiense, Cause of African Sleeping Sickness, and Trypanosoma Cruzi, Cause of American Chagas Disease, on Different Medias and Testing a New Media. Turkiye Parazitolojii Dergisi, 44(1), 7–11. https://doi.org/10.4274/TPD.GALENOS.2019.6656
dc.relation.referencesÖzbilgin, A., Kaya, T., Çavuş, İ., Yıldırım, A., & Özpınar, N. (2018). Comparison of Reproduction Densities in Different Liquid Media of Trypanosoma cruzi and Cryopreservation. Turkiye Parazitolojii Dergisi, 42(4), 249–253. https://doi.org/10.5152/TPD.2018.5750
dc.relation.referencesPadilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomedica : Revista Del Instituto Nacional de Salud, 37, 27– 40. https://doi.org/10.7705/biomedica.v37i0.3769
dc.relation.referencesQuerales, M., Torres, J., Graterol, D., Arteaga, R., Navarro, M., Contreras, V., Pineda, W., & De Lima, A. R. (2013). Cambios metabólicos durante la epimastigogénesis in vitro de Trypanosoma cruzi. Salus, 17(3). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-71382013000300003
dc.relation.referencesQuinn, G. (2016). What plates to use for measuring bacterial growth in Plate reader?..swer. Https://Www.Researchgate.Net/Post/What_plates_to_use_for_measuring_bacterial_ growth_in_Plate_reader/57d07e54b0366dfb10602cd4/Citation/Download. . https://www.researchgate.net/post/What_plates_to_use_for_measuring_bacterial_gr owth_in_Plate_reader/57d07e54b0366dfb10602cd4/citation/download
dc.relation.referencesRibeiro, A. R., Lima, L., Almeida, L. A. de, Monteiro, J., Moreno, C. J. G., Nascimento, J. D., Araújo, R. F. de, Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M. G., Silva, M. S., Steindel, M., & Rosa, J. A. da. (2018). Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The American Journal of Tropical Medicine and Hygiene, 98(2), 453.
dc.relation.referencesRodríguez-Monguí, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E., & Cucunubá, Z. M. (2019). Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. In Parasites and Vectors (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-019- 3541-5
dc.relation.referencesRodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288–294. https://doi.org/10.1016/J.JEP.2018.04.008
dc.relation.referencesRomanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022
dc.relation.referencesRR, K., AH, A. S., E, A.-E. R., AO, S., & HN, O. (2019). Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance. Molecular Biology Reports, 46(4), 4437–4441. https://doi.org/10.1007/S11033-019- 04898-1
dc.relation.referencesRueda, K., Trujillo, J. E., Carranza, J. C., & Vallejo, G. A. (2014). Transmisión oral de Trypanosoma cruzi: Una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomedica, 34(4), 631–641. https://doi.org/10.7705/biomedica.v34i4.2204
dc.relation.referencesSantos, S. S., de Araújo, R. V., Giarolla, J., Seoud, O. El, & Ferreira, E. I. (2020). Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. International Journal of Antimicrobial Agents, 55(4), 105906. https://doi.org/10.1016/J.IJANTIMICAG.2020.105906
dc.relation.referencesShafaie, S., Hutter, V., Brown, M. B., Cook, M. T., & Chau, D. Y. S. (2017). Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates. PLOS ONE, 12(10), e0186799.
dc.relation.referencesTapia, R. A., Salas, C. O., Vázquez, K., Espinosa-Bustos, C., Soto-Delgado, J., Varela, J., Birriel, E., Cerecetto, H., González, M., & Paulino, M. (2014). Synthesis and biological characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents. Bioorganic & Medicinal Chemistry Letters, 24(16), 3919–3922. https://doi.org/10.1016/J.BMCL.2014.06.044
dc.relation.referencesVeiga-Santos, P., Pelizzaro-Rocha, K. J., Santos, A. O., Ueda-Nakamura, T., Filho, B. P. D., Silva, S. O., Sudatti, D. B., Bianco, E. M., Pereira, R. C., & Nakamura, C. V. (2010). In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology, 137(11), 1661–1670. https://doi.org/10.1017/S003118201000034X
dc.relation.referencesVela, A., Coral-Almeida, M., Sereno, D., Costales, J. A., Barnabé, C., & Brenière, S. F. (2021). In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLOS Neglected Tropical Diseases, 15(3), e0009269. https://doi.org/10.1371/JOURNAL.PNTD.0009269
dc.relation.referencesZingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTrypanosoma cruzi
dc.subject.proposalEpimastigote
dc.subject.proposalIn vitro
dc.title.translatedOptimization of an in vitro pharmacological test for the evaluation of substances with possible activity against Trypanosoma cruzi epimastigotes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito