Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRojas González, Andrés Felipe
dc.contributor.advisorHidalgo Salazar, Miguel Angel
dc.contributor.authorLópez Rodríguez, Diego Fernando
dc.date.accessioned2022-08-10T16:22:37Z
dc.date.available2022-08-10T16:22:37Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81837
dc.descriptionfotografías, gráficos, tablas.
dc.description.abstractActualmente, la ecología industrial y la ecoeficiencia son dos conceptos que guían el desarrollo de la industria colombiana mediante el aprovechamiento de materiales residuales como la biomasa y los plásticos pos consumo o pos industriales. En Colombia se produce una gran cantidad de residuos lignocelulósicos, al mismo tiempo que la generación de residuos plásticos aumenta como consecuencia de la alta demanda de polímeros. Con base en esto, la fabricación de materiales compuestos o biocompuestos se propone como solución sostenible a la producción de residuos. Este trabajo se realiza con el objetivo de obtener materiales compuestos a partir de la mezcla de residuos lignocelulósicos, tales como la estopa de coco (SC) y el cisco de café (CCa), con plásticos pos industriales, constituidos principalmente por polipropileno (PPR) y polietileno de alta densidad (PEADR). Los biocompuestos obtenidos fueron caracterizados por medio de ensayos mecánicos (tracción, flexión e impacto), por termogravimetría y calorimetría diferencial de barrido (DSC), así como por pruebas físicas y químicas como densidad, absorción de agua, envejecimiento acelerado, análisis próximo, análisis último y poder calorífico. Entre los principales resultados se encuentran: i) el aumento en la resistencia a la tracción y la flexión del PPR reforzado con 30% de CCa (BC4), ii) el aumento en la densidad del PPR y el PEADR mezclados con CCa al 30%, iii) el alto porcentaje de absorción de agua del PPR y el PEADR reforzados con CCa al 30%, iv) la estabilidad en las propiedades de flexión proporcionada por el contenido de lignina presente en la SC, v) el aumento en la temperatura de degradación del PPR y del PEADR reforzados con SC al 10% y CCa al 30%, respectivamente, vi) el incremento en la temperatura y el porcentaje de cristalización del PPR mezclado con SC al 10%, vii) el margen de utilidad por venta de materiales compuestos (11%), viii) la estimación del punto de equilibrio del proceso (409 Ton/año), ix) el cálculo del periodo de recuperación de la inversión inicial (2.3 años), y x) la determinación del potencial por calentamiento global como el parámetro de mayor impacto ambiental generado por el proceso de extrusión de PPR. Finalmente, se puede concluir principalmente que los biocompuestos reforzados con CCa presentaron un mejor comportamiento mecánico si se comparan con las matrices poliméricas reforzadas con SC. Por otro lado, los resultados asociados a las pruebas térmicas se encuentran directamente relacionados con la incorporación de fibra vegetal y su composición estructural (contenido de hemicelulosa, celulosa y lignina). Adicionalmente se menciona que la obtención de materiales compuestos se ve influenciada en gran medida por los costos de la materia prima así como de la disponibilidad de la misma en áreas aledañas y cercanas al sitio de su procesamiento. (Texto tomado de la fuente)
dc.description.abstractCurrently, industrial ecology and eco-efficiency are two concepts that guide the development of Colombian industry through the use of materials such as biomass and plastics. A large amount of lignocellulosic waste is produced in Colombia, at the same time as the plastic waste generation increases as a consequence of the high demand for polymers. Based on this, the manufacture of composite materials or biocomposites is proposed as a sustainable solution to the production of waste. This work is carried out with the objective of obtaining composite materials from the mixture of lignocellulosic waste, such as coconut tow (SC) and coffee cisco (CCa), with post industrial plastics, consisting mainly of polypropylene (PPR) and high density polyethylene (PEADR). The biocomposites were characterized by mechanical tests (tensile, bending and impact), thermogravimetry and differential scanning calorimetry (DSC), as well as the physical tests as density, water absorption, accelerated aging, proximal analysis, ultimate analysis and calorific power. Among the main results are: i) the increase in tensile and flexural strength of reinforced PPR with 30% CCa (BC4), ii) the increase in density of mixed PPR and PEADR with CCa at 30% , iii) the high percentage of water absorption of PPR and PEADR reinforced with 30% CCa, iv) stability in the properties of flexion and the content of lignin present in the SC, v) the increase of degradation temperature in reinforced PPR and PEADR with 10% SC and 30% CCa, respectively, and vi) the increase in temperature and the crystallization percentage of PPR mixed with 10% SC. Finally, it can be concluded that the reinforced biocompounds with CCa have a better mechanical behavior and are compared with the polymer reinforced matrices with SC. On the other hand, the results associated with the thermal tests are directly related to the incorporation of vegetable fiber and its structural composition (content of hemicellulose, cellulose and lignin). Additionally, it is mentioned that the obtaining of composite materials is extremely influenced by the costs of the raw material as well as the availability of the same in nearby areas and close to the site of its processing.
dc.format.extent127 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicos
dc.titleObtención de materiales compuestos madero plásticos a partir de la mezcla de residuos lignocelulósicos y plásticos pos consumo
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Química
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAcoplásticos. (2017). Plásticos en Colombia. Disponible en: http://www.acoplasticos.org/.
dc.relation.referencesAgustin – Salazar S., Cerruti P., Medina – Juaréz L. A., Scarinzi G., Malinconico M., Soto – Valdez H. and Gamez – Meza N. (2018). Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly lactic acid) biocomposites. International Journal of Biological Macomolecules. 115, 727 – 735. Doi: https://doi.org/10.1016/j.ijbiomac.2018.04.120.
dc.relation.referencesAhmad I., Khan M. I., Khan H., Ishaq M., Khan R., Gul K. and Ahmad W. (2017). Pyrolysis of HDPE into fuel like products: Evaluating catalyticperformance of plain and metal oxides impregnated waste brick kilndust. Journal of Analytical and Applied Pyrolysis. 124, 195 – 203. Doi: https://doi.org/10.1016/j.jaap.2017.02.005.
dc.relation.referencesAli M. (2010). Coconut Fibre – A Versatile Material and its Applications in Engineering. Second International Conference on Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italy. Doi: https://doi.org/10.5897/JCECT.9000009.
dc.relation.referencesAlmeida H., Amaral M. H. and Lobao P. (2011). Drugs obtained by biotechnology processing. Brazilian Journal of Pharmaceutical Sciences. 47 (2), 199-207. Doi: http://dx.doi.org/10.1590/S1984-82502011000200002.
dc.relation.referencesAlvarado K., Blanco A. and Taquechel A. (2008). Fibra de coco: Una alternativa ecológica como sustrato agrícola, Cuba, Centro de Desarrollo de la Montaña, Cuba. 2 pages.
dc.relation.referencesAmin F., Khalid H., Zhang H., Rahman S., Zhang R., Liu G. and Chen C. (2017). Pretreatment methods of lignicellulosic biomass for anaerobic digestion. AMB Express. 7 (72), 1 – 12. Doi: https://doi.org/10.1186/s13568-017-0375-4.
dc.relation.referencesAnshar M., Tahir D., Makhrani, Ani F. N. and Kader A. S. (2018). New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics. Environmental Engineering Research. 23 (3), 250-257. Doi: https://doi.org/10.4491/eer.2017.096.
dc.relation.referencesArslan Y. E., Arslan T. S., Derkus B., Emregul E. and Emregul K. C. (2017). Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloids and Surfaces B: Biointerfaces, 154, 160 – 170. Doi: https://doi.org/10.1016/j.colsurfb.2017.03.034.
dc.relation.referencesAwad A. H., Wahab A. A., Gamsy R. and Latif M. H. (2019). A study of some thermal and mechanical properties of HDPE blend with marble and granite dust. Ain Shans Engineering Journal. 10, 353 – 358. Doi: https://doi.org/10.1016/j.asej.2018.08.005.
dc.relation.referencesAzizi K., Moraveji M. K. and Najafabadi H. A. (2018). Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition. Bioresource Technology. 247, 66 – 72. Doi: https://doi.org/10.1016/j.biortech.2017.09.059.
dc.relation.referencesBaêta B. E. L., Miranda Cordeiro P. H., Passos F., Alves L. V., Aquino S. F. and Fdz-Polanco F. (2017). Steam explosion pretreatment improved the biomethanization of coffee Husks. Bioresources Technology. 245, 66 - 72. Doi: https://doi.org/10.1016/j.biortech.2017.08.110.
dc.relation.referencesBajwa D., Wang X., Sitz E., Loll T. and Bhattacharjee, S. (2016). Application of bioethanol derived lignin for improvingphysico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules. 89, 265 – 272. Doi: https://doi.org/10.1016/j.ijbiomac.2016.04.077.
dc.relation.referencesBarbarias I., Lopez G., Artetxe M., Arregi A., Bilbao J. and Olazar M. (2018). Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management. 156, 575 – 584. Doi: https://doi.org/10.1016/j.enconman.2017.11.048.
dc.relation.referencesBeltran M. and Marcilla, A. (2012a). Tecnología de polímeros: Procesado y Propiedades. Recuperado de http://iq.ua.es/TPO/Tema4.pdf.
dc.relation.referencesBeltran M. and Marcilla, A. (2012b). Tecnología de polímeros: Procesado y Propiedades. Recuperado de http://iq.ua.es/TPO/Tema5.pdf.
dc.relation.referencesBeltran M. and Marcilla, A. (2012c). Tecnología de polímeros: Procesado y Propiedades. Recuperado de http://iq.ua.es/TPO/Tema6.pdf.
dc.relation.referencesBerto D., Rampazzo F., Gion C., Noventa S., Ronchi F., Traldi U., Giorgi G., Cicero A. M. and Giovanardi O. (2017). Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere. 176, 47-56. Doi: https://doi.org/10.1016/j.chemosphere.2017.02.090.
dc.relation.referencesBujang I. Z., Awang M. K. and Ismail A. E. (2007). Study on the dynamic characteristic of coconut fibre reinforced composites. Regional Conference on Engineering Mathematics, Mechanics, Manufacturing and Architecture. Recuperado de: https://core.ac.uk/download/pdf/12005683.pdf.
dc.relation.referencesCaicedo C., Vázquez A., Ossa O. H., De La Cruz H. and Maciel A. (2018). Physicomechanical behavior of composites of polypropylene, and mineral fillers with different process cycles. Revista DYNA. 85 (207), 260 – 268. Doi: http://doi.org/10.15446/dyna.v85n207.71894.
dc.relation.referencesCampbell F. C. (2010). Structural Composite Materials. pp 1- 29. Ohio, Estados Unidos: ASM International. ISBN: 1615031405, 9781615031405.
dc.relation.referencesCarvalho F., Srinivas K., Helms G. L., Isern N. G., Cort J. R., Gonçalves A. R. and Ahring B. K. (2018). Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology. 257, 172 – 180. Doi: https://doi.org/10.1016/j.biortech.2018.01.041.
dc.relation.referencesCastellani R., Di Giuseppe E., Beaugrand J., Dobosz S., Berzin F., Vergnes B. and Budtova T. (2016). Lignocellulosic fiber breakage in a molten polymer. Part 1. Qualitative analysis using rheo-optical observations. Composites: Part A. 91, 229 – 237. Doi: https://doi.org/10.1016/j.compositesa.2016.10.015.
dc.relation.referencesChaitanya S., Singh I. and Song J. I. (2019). Recyclability analysis of PLA/Sisal fiber biocomposites. Composites Part B. 173, Artículo 106895. Doi : https://doi.org/10.1016/j.compositesb.2019.05.106.
dc.relation.referencesChattopadhyay J., Pathak T. S., Srivastava R. and Singh A. C. (2016). Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high desnsity polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy. 103, 513 – 521. Doi: https://doi.org/10.1016/j.energy.2016.03.015.
dc.relation.referencesChavez – Sifontes M. and Domine M. E. (2013). Lignina, estructura y aplicaciones: Métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances en Ciencia y Tecnología, 4 (4), 994 – 998. Disponible en https://www.redalyc.org/articulo.oa?id=323629266003.
dc.relation.referencesCollazo-Bigliardi S., Ortega – Toro R. and Boix A. C. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers. 191, 205 – 215. Doi: https://doi.org/10.1016/j.carbpol.2018.03.022.
dc.relation.referencesCosta P. F. A., de Abreu R., Fontana A. B., Fiedler H. D., Kirby A. J., Quina F. H., Nome F. and Gerola A. P. (2021). The role of hydrophobicity in supramolecular polymer/surfactant catalysts: An understandable model for enzymatic catalysis. Journal of Colloid and Interface Science. 588, 456 – 468. Doi: https://doi.org/10.1016/j.jcis.2020.12.081.
dc.relation.referencesCrespo L. M. and Caicedo C. (2019). Application of ashes as filling in reprocessed polypropylene: thermomechanical properties of composites. Polímeros. 29 (1), e2019003. Doi: https://doi.org/10.1590/0104-1428.02018.
dc.relation.referencesCuoto N., Silva V., Monteiro E., Brito P. S. D. and Ruboa A. (2013). Experimental and Numerical Analysis of Coffee Husks biomass Gasification in a Fluidized bed Reactor. Energy Procedia. 36, 591 – 595. Doi: https://doi.org/10.1016/j.egypro.2013.07.067.
dc.relation.referencesDahy H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials. 147, 212 – 220. Doi: https://doi.org/10.1016/j.conbuildmat.2017.04.079.
dc.relation.referencesDas P. and Tiwari P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation & Recycling. 128, 69 – 77. Doi: https://doi.org/10.1016/j.resconrec.2017.09.025.
dc.relation.referencesDas S., Lee S. H., Kumar P., Kim K., Lee S. S. and Bhattacharya S. S. (2019). Solid waste management: Scope and the challenge of sustainability. Journal of Cleaner Production. 228, 658 – 678. Doi: https://doi.org/10.1016/j.jclepro.2019.04.323.
dc.relation.referencesDemirbas A. (2010). Fuels from biomass. Biorefineries for biomass upgrading facilities. pp. 33 – 74. Londres: Springer. ISBN: 978-1-84882-721-9.
dc.relation.referencesDhyani V. and Bhaskar T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy. 129, 695 – 716. Doi: https://doi.org/10.1016/j.renene.2017.04.035.
dc.relation.referencesDikobe D. G. and Luyt A. S. (2017). Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/ HDPE/wood powder polymer blend composites. Thermochimica Acta. 654, 40 -50. Doi: https://doi.org/10.1016/j.tca.2017.05.002.
dc.relation.referencesElsayed I. G., Kanwugu O. N. and Ivantsova M. N. (2019). Red Biotechnology: A Healthy World. AIP Conference Proceedings. 2174 (1), 020211. Doi: 10.1063 / 1.5134362.
dc.relation.referencesFreitas L. C., Barbosa J. R., da Costa A. L., Bezerra F. W. F., Pinto R. H. H. and Carvalho R. N. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation & Recycling. 169, 105466. Doi: https://doi.org/10.1016/j.resconrec.2021.105466.
dc.relation.referencesGalhano R., Bordado J. C. and Mateus M. M. (2018). Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean's distance method. Fuel. 221, 72 – 77. Doi: https://doi.org/10.1016/j.fuel.2018.02.092.
dc.relation.referencesGarcía R., Pizarro C., Lavín A. G. and Bueno J. L. (2013). Biomass proximate analysis using thermogravimetry. Bioresource Technology. 139, 1-4. Doi: https://doi.org/10.1016/j.biortech.2013.03.197.
dc.relation.referencesGuedes R. E., Luna A. S. and Rodriguez A. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis. 129, 134 – 149. Doi: https://doi.org/10.1016/j.jaap.2017.11.019.
dc.relation.referencesHan J. S. and Rowell J. S. (1997). Chemical composition of fibers. En R. M. Rowell, R. A. Young, J. K. Rowell. Paper and composites from agro-based resourses. pp. 83 – 134. Boca Ratón: CRC press. ISBN: 9781566702355.
dc.relation.referencesHan J., Yao X., Zhan Y., Oh S.; Kim L. and Kim H. (2017). A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute. 90, 331 – 335. Doi: https://doi.org/10.1016/j.joei.2016.01.001.
dc.relation.referencesHarsono S. S., Dila R. and Mel M. (2019). Coffee husk biopellet characteristics as solid fuel for combustion stove. HSOA Journal of environmental science: Current research. 2 (1). ISSN: HESCR, Open Access Journal.
dc.relation.referencesHasan K. M. F., Horváth P. G., Kóczán Z. and Alpár T. (2021). Thermo-mechanical properties of pretreated coir fber and fbrous chips reinforced multilayered composites. Scientifc Reports. 11 (1), 3618. Doi: https://doi.org/10.1038/s41598-021-83140-0.
dc.relation.referencesHeux S., Meynial-Salles I., O´Donohue M. J. and Dumon C. (2015). White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. Biotechnology Advances. 33 (8), 1653-1670. Doi: https://doi.org/10.1016/j.biotechadv.2015.08.004.
dc.relation.referencesHietala M. and Oksman K. (2018). Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersión. Composites: Part A. 109, 538 – 545. Doi: https://doi.org/10.1016/j.compositesa.2018.04.006.
dc.relation.referencesHu X. and Gholizadeh M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation. Journal of Energy Chemistry. 39, 109 – 143. Doi: https://doi.org/10.1016/j.jechem.2019.01.024.
dc.relation.referencesHuang L., Mu B., Yi X., Li S. and Wang Q. (2018). Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal Polymer Environment. 26 (1), 48 – 58. Doi: https://doi.org/10.1007/s10924-016-0917-x.
dc.relation.referencesHuysman S., Schaepmeester J., Ragaert K., Dewulf j. and Meester S. (2017). Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resources, Conservation and Recycling. 120, 46 – 54. Doi: http://dx.doi.org/10.1016/j.resconrec.2017.01.013.
dc.relation.referencesInácio, A. L. N., Nonato, R. C. y Bonse, B. C. (2017). Recycled PP/EPDM/talc reinforced with bamboo fiber: Assessment of fiber and compatibilizer content on properties using factorial design. Polymer Testing. 61, 214 -222. Doi: https://doi.org/10.1016/j.polymertesting.2017.05.022.
dc.relation.referencesIsmail T. M., El-Salam M. A., Monteiro E. and Rouboa A. (2016). Eulerian – Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Applied Thermal Enginneering. 106, 1391 – 1402. Doi: https://doi.org/10.1016/j.applthermaleng.2016.06.102.
dc.relation.referencesJeguirim M., Bikai J., Elmay Y., Limousy L. and Njeugna. E. (2014). Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development. 23, 188-193. Doi: https://doi.org/10.1016/j.esd.2014.09.009.
dc.relation.referencesJeguirim M., Limousy L. and Fossard E. (2016). Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy, 13(6), 608-615. Doi: https://doi.org/10.1080/15435075.2014.888664.
dc.relation.referencesJin Z., Yin L., Chen D., Jia Y., Yuan J. and Hu Y. (2018). Co-pyrolysis characteristics of typical components of waste plastics in a falling film pyrolysis reactor. Chinese Journal of Chemical Engineering. Doi: https://doi.org/10.1016/j.cjche.2018.07.005.
dc.relation.referencesJung S., Cho M., Kang B. and Kim J. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology. 91, 277 – 284. Doi: https://doi.org/10.1016/j.fuproc.2009.10.009.
dc.relation.referencesKraiem D., Pimbert S., Ayadi A. and Bradai. (2013). Effect of low content reed (Phragmite australis) fibers on the mechanical properties of recycled HDPE composites. Composites: Part B. 44, 368 – 374. Doi: https://doi.org/10.1016/j.compositesb.2012.04.062.
dc.relation.referencesKunwar B., Moser B. R., Chandrasekaran S. R., Rajagopalan N. and Sharma B. K. (2016). Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic. 111, 884 – 892. Doi: https://doi.org/10.1016/j.energy.2016.06.024.
dc.relation.referencesKutz M. (2015). Mechanical Engineers Handbook. Capítulo 10, pp 1 – 35. Nueva York, Estados Unidos: Wiley & Sons. ISBN: 978-1118112823.
dc.relation.referencesKwon H., Sunthornvarabhas J., Park J., Lee J., kim H., Piyachomkwan K., Sriroth K. and Cho D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites: Part B. 56, 232 – 237. Doi: https://doi.org/10.1016/j.compositesb.2013.08.003.
dc.relation.referencesLertwattanaruk P. and Suntijitto A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Buiding Materials. 94, 664 – 669. Doi: https://doi.org/10.1016/j.conbuildmat.2015.07.154.
dc.relation.referencesLetcher T. M. (2020). Introduction to plastic waste and recycling. Letcher T. M., Plastic Waste and Recycling. 3 – 12. Doi: https://doi.org/10.1016/B978-0-12-817880-5.00001-3.
dc.relation.referencesLi Q., Long Y., Zhou H., Meng A., Tan Z. and Zhang Y. (2017). Prediction of higher heating values of combustible solid wastes by pseudocomponents and thermal mass coefficients. Thermochimica Acta. 658, 93 – 100. Doi: https://doi.org/10.1016/j.tca.2017.10.013.
dc.relation.referencesLi Y., Jia S., Du S., Wang Y., Lv L. and Zhang J. (2018). Improved properties of recycled polypropylene by introducing the long chain branched structure through reactive extrusión. Waste Management. 76, 172 – 179. Doi: https://doi.org/10.1016/j.wasman.2018.03.040.
dc.relation.referencesLin T., Limin B., Lin M. C., Lin J. Y., Lou C. W. and Lin J. H. (2019). Impact-resistant polypropylene/thermoplastic polyurethane blends: compatible effects of maleic anhydride on thermal degradation properties and crystallization behaviors. Journal of Materials Research and Technology. 8 (4), 3389 – 3398. Doi: https://doi.org/10.1016/j.jmrt.2019.03.015.
dc.relation.referencesLokko Y., Heijde M., Schebesta K., Scholtès P., Van Montagu M. and Giacca M. (2018). Biotechnology and the bioeconomy—Towards inclusive and sustainable industrial development. New Biotechnology. 40, 5 -10. Doi: https://doi.org/10.1016/j.nbt.2017.06.005.
dc.relation.referencesLopez G., Artetxe M., Amutio M., Alvarez J., Bilbao J. and Olazar M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews. 82, 576 – 596. Doi: https://doi.org/10.1016/j.rser.2017.09.032.
dc.relation.referencesLópez D. and Rojas A. (2018). Factores que influencian las propiedades mecánicas, físicas y térmicas de materiales compuestos madero plásticos. Entre Ciencia e Ingeniería. 12 (23), 93 – 102. Doi: https://doi.org/10.31908/19098367.3708.
dc.relation.referencesLu Z., Hu X. and Lu Y. (2017). Particle morphology analysis of biomass material based on improved image processing method. International Journal of Analytical Chemistry. 2017, 9 pages. Doi: https://doi.org/10.1155/2017/5840690.
dc.relation.referencesLuis V. H., Rodriguez M. C., Alatriste F., Charazo L. F. and Rangel J. R. (2018). Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted. Journal of Environmental Management. 211, 103 – 111. Doi: https://doi.org/10.1016/j.jenvman.2018.01.041.
dc.relation.referencesMahmud S., Hasan K. M. F., Jahid M. A., Mohiuddin K., Zhang R. and Zhu J. (2021). Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal Materials Science. 56, 7231–7264. Doi: https://doi.org/10.1007/s10853-021-05774-9.
dc.relation.referencesMandolfino C. (2019). Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surface and Coatings Technology. 366, 331 – 337. Doi: https://doi.org/10.1016/j.surfcoat.2019.03.047.
dc.relation.referencesMarrugo G., Valdés C. F., Gómez C. and Chejne F. (2019). Pelletizing of Colombian agro-industrial with crude glycerol. Renewable Energy. 134, 558 – 568. Doi: https://doi.org/10.1016/j.renene.2018.11.004.
dc.relation.referencesMartín – Alfonso J. E and Franco J. M. (2015). Influence of polymer reprocessing cycles on the microstructure and rheological behavior of polypropylene/mineral oil oleogels. Polymer Testing. 45, 12 – 19. Doi: https://doi.org/10.1016/j.polymertesting.2015.04.016.
dc.relation.referencesMartínez J. A. (2016). Outlook of municipal solid waste in Bogotá (Colombia). American Journal of Emgineering and Applied Sciences. 9 (3), 477 – 483. Doi: http: 10.3844/ajeassp.2016.
dc.relation.referencesMayson S. and Williams I. D. (2021). Applying a circular economy approach to valorize spent coffee grounds. Resources, Conservation & Recycling. 172, 105659. Doi: https://doi.org/10.1016/j.resconrec.2021.105659.
dc.relation.referencesMazian B., Bergeret A., Benezet J. and Malhautier L. (2020). Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Industrial Crops and Products. 143, 111912. Doi: https://doi.org/10.1016/j.indcrop.2019.111912.
dc.relation.referencesMcCaffrey Z., Torres L., Flynn S., Cao T., Chiou B. S., Klamczynski A., Glenn G. and Orts W. (2018). Recycled polypropylene-polyethylene torrefied almond shell biocomposites. Industrial Crops and Products. 125, 425 – 432. Doi: https://doi.org/10.1016/j.indcrop.2018.09.012.
dc.relation.referencesMigneault S., Koubaa A., Perré P. and Riedl B. (2015). Effects of wood fiber surface chemistry on strength of wood–plasticcomposites. Applied Surface Science. 343, 11 – 18. Doi: https://doi.org/10.1016/j.apsusc.2015.03.010.
dc.relation.referencesMythili R., Venkatachalam P., Subramanian P. and Uma, D. (2013). Characterization of bioresidues for biooil production through pyrolysis. Bioresource Technology. 138, 71 – 78. Doi: https://doi.org/10.1016/j.biortech.2013.03.161.
dc.relation.referencesMoreno W. (1993). Aplicaciones al diseño y análisis de experimentos. Ediciones Universidad Industrial de Santander.
dc.relation.referencesNg Q. H., Fui B. L., Yusup S., Minh A. C. and Ying K. Y. (2018). Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM). Applied Thermal Engineering. 138, 336 – 345. Doi: https://doi.org/10.1016/j.applthermaleng.2018.04.069.
dc.relation.referencesNunes S. G., Da Silva L. V., Amico S. C., Viana J. D. and Rico F. D. (2017). Study of Composites Produced with Recovered Polypropylene and Piassava Fiber. Materials Research. 20 (1), 144 – 150. Doi: https://doi.org/10.1590/1980-5373-mr-2016-0659.
dc.relation.referencesNhuchhen D. R. and Salam P. A. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel. 99, 55-63. Doi: https://doi.org/10.1016/j.fuel.2012.04.015.
dc.relation.referencesOliveira J. L., Da Silva J. N., Pereira E. G., Filho D. O. and Carvalho D. R. (2013). Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification. Renewable and sustainable Energy Reviews. 21, 52 – 58. Doi: https://doi.org/10.1016/j.rser.2012.12.025.
dc.relation.referencesOliveira T. A., Oliveira R. R., Barbosa R., Azevedo J. B. and Alves T. S. (2017). Effect of reprocessing cycles on the degradation of PP/PBAT-thermoplastic starch blends. Carbohydrate Polymers. 168, 52 – 60. Doi: https://doi.org/10.1016/j.carbpol.2017.03.054.
dc.relation.referencesPerilla C. J. (2017). Estudio de alternativa al proceso de reciclaje de plástico PET en la Universidad Católica de Colombia. (Tesis de Pregrado). Universidad Católica de Colombia. Bogotá.
dc.relation.referencesPešić N., Živanović S., García R. and Papastergiou P. (2016). Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Construction and Building Materials. 115, 362 – 370. Doi: https://doi.org/10.1016/j.conbuildmat.2016.04.050.
dc.relation.referencesPinzón J., Porras O., Medina J. and Acuña J. (2015). Coffee husk drying for wood plastic composites manufacture. Universidad de Los Andes, Bogotá. Colombia.
dc.relation.referencesPiri I. S., Das O., Hedenqvist M. S., Väisänen T., Ikram S. and Bhattacharyya D. (2018). Imparting resiliency in biocomposite production systems: A system dynamics approach. Journal of Cleaner Production. 179, 450 – 459. Doi: https://doi.org/10.1016/j.jclepro.2018.01.065.
dc.relation.referencesRadoor S., Karayil J., Rangappa S. M., Siengchin S. and Parameswaranpillai J. (2020). A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. eXPRESS Polymer Letters. 14 (4), 309 – 335. Doi: https://doi.org/10.3144/expresspolymlett.2020.27.
dc.relation.referencesRamesh M., Palanikumar K., and Hemachandra R. K. (2017). Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews. 79, 558 – 584. Doi: https://doi.org/10.1016/j.rser.2017.05.094.
dc.relation.referencesRuales A. V. (2015). Evaluación del Potencial Energético y Bioactivo de los Residuos Generados por la Producción y Transformación de la Uva. Tesis de Maestría, Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Manizales, Colombia.
dc.relation.referencesSaarela M., Berlin M., Nygren H., Lahtinen P., Honkapää K. and Lantto R. (2017). Characterization of feather-degrading bacterial populations from birds’ nests e Potential strains for biomass production for animal feed. International Biodeterioration & Biodegradation. 123, 262 – 268. Doi: https://doi.org/10.1016/j.ibiod.2017.07.006.
dc.relation.referencesSabic. (2019a). Ficha Técnica: SABIC PP 575 P polypropylene homopolymer for injection molding. Recuperado de: https://www.sabic.com.
dc.relation.referencesSabic. (2019a). Ficha Técnica: SABIC HDPE M200056 high density polyethylene for injection moulding. Recuperado de: https://www.sabic.com.
dc.relation.referencesSahu P. and Prabu V. (2021). Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems. Energy. 233, 121053. Doi: https://doi.org/10.1016/j.energy.2021.121053.
dc.relation.referencesSanchez M. L., Patiño W. and Cardenas J. (2020). Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. Journal of Building Engineering. 28, 101058. https://doi.org/10.1016/j.jobe.2019.101058. Doi: https://doi.org/10.1016/j.jobe.2019.101058.
dc.relation.referencesSarasini F., Tirillo J., Zuorro A., Maffei G., Lavecchia R., Puglia D., Dominici F., Luzi F., Valente T. and Torre L. (2018). Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) matrix. Industrial Crops & Products. 118, 311 – 320. Doi: https://doi.org/10.1016/j.indcrop.2018.03.070.
dc.relation.referencesSegerholm K. (2012). Characteristics of Wood Plastic Compsites based on modified wood (Tesis Doctoral). KTH Royal Institute of Technology. Estocolmo. Suecia. ISBN: 978-91-7501-554-5.
dc.relation.referencesSetter C., Silva F. T. M., Assis M. R., Ataíde C. H., Trugilho P. F. and Oliveira T. J. P. (2020). Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel. 261, 116420. Doi: https://doi.org/10.1016/j.fuel.2019.116420.
dc.relation.referencesShah D. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science. 48, 6083 – 6107. Doi: https://doi.org/10.1007/s10853-013-7458-7.
dc.relation.referencesSher F., Iqbal S. Z., Imran M. and Snape C. E. (2019). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management. Impreso, Articulo 112266. Doi: https://doi.org/10.1016/j.enconman.2019.112266.
dc.relation.referencesShirahigue L. D. and Antonini S. R. (2020). Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Food Technology Ciência Rural. 50 (4), 20190857. Doi: https://doi.org/10.1590/0103-8478cr20190857.
dc.relation.referencesSluiter A., Ruiz A., Scarlata C., Sluiter J. and Templeton D. (2005). Determination of extractives in biomass. National Renewable Energy Laboratory.
dc.relation.referencesSluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D. and Crocker D. (2012). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory.
dc.relation.referencesSoares J., Demeke M. M., Foulquié M. R., Van de Velde M., Verplaetse A., Ribeiro A. A., Thevelein J. M. and Bueno P. M. (2016). Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production. Bioresource Technology. 216, 744 – 753. Doi: https://doi.org/10.1016/j.biortech.2016.05.105.
dc.relation.referencesSousa D., Venâncio A., Belo I. and Salgado J. M. (2018). Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. Journal of Science, Food and Agriculture. 98, 5248 – 5256. Doi: 10.1002/jsfa.9063.
dc.relation.referencesSun Z. (2018). Progress in the research and applications of natural fiber-reinforced polymer matrix composites. Science and Engineering of Composite Materials. 25 (5), 835 – 846. Doi: https://doi.org/10.1515/secm-2016-0072.
dc.relation.referencesSuriapparao D. V., Boruah B., Raja D. and Vinu R. (2018). Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Processing Technology. 175, 64 – 75. Doi: https://doi.org/10.1016/j.fuproc.2018.02.019.
dc.relation.referencesTheander O. (1982). Cellulose, hemicellulose and extractives. En R. P. Overend, T. A. Milne, L. K. Mudge, Fundamentals of Thermoquemical Biomass Conversion. pp. 40 - 42. Inglaterra: Elsevier. Doi: https://doi.org/10.1007/978-94-009-4932-4_2.
dc.relation.referencesTouati N., Kaci M., Bruzaud S. and Grohens Y. (2011). The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polymer Degradation and Stability. 96, 1064 – 1073. Doi. https://doi.org/10.1016/j.polymdegradstab.2011.03.015.
dc.relation.referencesTran D., Lee H. R., Jung S., Park M. S. and Yang J. (2018). Lipid-extracted algal biomass based biocomposites fabrication with poly (vinyl alcohol). Algal Research. 31, 525 – 533. Doi: https://doi.org/10.1016/j.algal.2016.08.016.
dc.relation.referencesTrejos J. D. (2014). Propiedades mecánicas de una matriz de poliéster reforzada con fibra de coco comparadas con la misma matriz reforzada con fibra de vidrio. Trabajo de grado para optar por el título de Ingeniero Mecánico. Universidad Tecnológica de Pereira, Risaralda.
dc.relation.referencesUzun B. B. and Yaman E. (2017). Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. Journal of the Energy Institute. 90, 825 – 837. Doi: https://doi.org/10.1016/j.joei.2016.09.001.
dc.relation.referencesVäisänen T. (2016). Effects of thermally extracted Wood distillates on the characteristics of Wood-plastic composites (Tesis Doctoral). Universidad del este de Finlandia. Kuopio, Finlandis. Recuperado de: http://epublications.uef.fi/pub/urn_isbn_978-952-61-2124-6/urn_isbn_978-952-61-2124-6.pdf.
dc.relation.referencesVan de Wiel C. C. M., Smulders M. J. M., Visser R. G. F. and Schaart J. G. (2016). New developments in green biotechnology – an inventory for RIVM. Wageningen University. Wageningen. Holanda. Doi: https://doi.org/10.18174/385481.
dc.relation.referencesVassilev S. V., Baxter D., Andersen L. K. and Vassileva C. G. (2010). An overview of the chemical composition of biomass. Fuel. 89, 913 – 933. Doi: https://doi.org/10.1016/j.fuel.2009.10.022.
dc.relation.referencesYuan H., Fan H., Shan R., He M., Gu J. and Chen Y. (2018). Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy Conversion and Management. 157, 517 – 526. Doi: https://doi.org/10.1016/j.enconman.2017.12.038.
dc.relation.referencesChaitanya S., Singh I. and Song J. I. (2019). Recyclability analysis of PLA/Sisal fiber biocomposites. Composites Part B. 173, Artículo 106895. Doi : https://doi.org/10.1016/j.compositesb.2019.05.106.
dc.relation.referencesCorrea J. P., Montavo J. M. and Hidalgo M. A. (2019). Carbon footprint considerations for biocomposite materials for sustainable products: A review. Journal of Cleaner Production. 208, 785 – 794. Doi: https://doi.org/10.1016/j.jclepro.2018.10.099.
dc.relation.referencesDahy H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials. 147, 212 – 220. Doi: https://doi.org/10.1016/j.conbuildmat.2017.04.079.
dc.relation.referencesDas S., Lee S. H., Kumar P., Kim K., Lee S. S. and Bhattacharya S. S. (2019). Solid waste management: Scope and the challenge of sustainability. Journal of Cleaner Production. 228, 658 – 678. Doi: https://doi.org/10.1016/j.jclepro.2019.04.323.
dc.relation.referencesGómez, D. (2010). Análisis estructural del sector estratégico de los plásticos. Universidad del Rosario. Bogotá. Colombia.
dc.relation.referencesLe Duigou A., Barbé A., Guillou E. and Castro M. (2019). 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials and Design. 180, Artículo 107884. Doi: https://doi.org/10.1016/j.matdes.2019.107884.
dc.relation.referencesMarrugo G., Valdés C. F., Gómez C. and Chejne F. (2019). Pelletizing of Colombian agro-industrial with crude glycerol. Renewable Energy. 134, 558 – 568. Doi: https://doi.org/10.1016/j.renene.2018.11.004.
dc.relation.referencesNagalakshmaiah M., Afrin S., Malladi R. P., Elkoun S., Robert M., Ansari M. A., Svedberg A. and Karim Z. (2019). Chapter 9 – Biocomposites: Present trends and challenges for the future. G. Koronis and A. Silva. Green Composites for Automotive Applications (pp. 197 – 215). Woodhead Publishing Series in Composites Science and Engineering. Doi: 10.1016/B978-0-08-102177-4.00009-4.
dc.relation.referencesRamakrishnan K. R., Le Moigne N., De Almeida O., Regazzi A. and Corn S. (2019). Optimized manufacturing of thermoplastic biocomposites by fast inductionheated compression moulding: influence of processing parameters on microstructure development and mechanical behavior. Composites Part A: Applied Science and Manufacturing, In pres, accepted manuscript. Artículo 105493. Doi: https://doi.org/10.1016/j.compositesa.2019.105493.
dc.relation.referencesRamesh M., Palanikumar K., and Hemachandra R. K. (2017). Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews. 79, 558 – 584. Doi: https://doi.org/10.1016/j.rser.2017.05.094.
dc.relation.referencesSuperintendencia de Sociedades. (2013). Desempeño del sector textil, confección 2008-2012: Informe. Delegatura de Asuntos Económicos y Contables, Grupo de Estudios Económicos y Financieros, Bogotá. Colombia.
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios. (2018). Informe de disposición final de residuos sólidos – 2017, Bogotá. Colombia.
dc.relation.referencesTrujillo A. F. and Arias L. S. (2013). The coconut, a renewable resource for the design of Green materials. Entre Ciencias e Ingeniería. 14, 93 - 100. Disponible en https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/637.
dc.relation.referencesZuccarello B., Marannano G. and Mancino A. (2018). Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Composites Structures. 194, 575 – 583. Doi: https://doi.org/10.1016/j.compstruct.2018.04.007.
dc.relation.referencesAbdelwahaba M. A., Misraa M. and Mohantya A. K. (2019). Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance. Industrial Crops & Products. 132, 497 – 510. Doi: https://doi.org/10.1016/j.indcrop.2019.02.026.
dc.relation.referencesAdhikary K.B., Pang S. and Staiger M.P. (2008). Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composites Part B: Engineering. 39, 807–815. Doi: https://doi.org/10.1016/j.compositesb.2007.10.005.
dc.relation.referencesAgustin – Salazar S., Cerruti P., Medina – Juaréz L. A., Scarinzi G., Malinconico M., Soto – Valdez H. and Gamez – Meza N. (2018). Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macomolecules. 115, 727 – 735. Doi: https://doi.org/10.1016/j.ijbiomac.2018.04.120.
dc.relation.referencesAlias N. F., Ismail H. and Ishak K. M. (2019). The Effect of Kenaf Loading on Water Absorption and Impact Properties of Polylactic Acid/ Natural Rubber/ Kenaf Core Powder Biocomposite. Materials Today: Proceedings. 17, 584 – 589. Doi: https://doi.org/10.1016/j.matpr.2019.06.338.
dc.relation.referencesAlvarez V. and Gonzalez B. (2018). Análisis de experimentos con el Sistema SAS. Ciudad de Guatemala, Guatemala. Universidad de San Carlos. ISBN: 978-970-10-6526-6.
dc.relation.referencesArjmandi R., Isamil A., Hassan A. and Bakar A. A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials. 152, 484 – 493. Doi: https://doi.org/10.1016/j.conbuildmat.2017.07.052.
dc.relation.referencesAyrilmis N., Kaymakci A. and Güleç. (2015). Potential use of decayed wood in production of wood plastic composite. Industrial Crops and Products. 74, 279 – 284. Doi: https://doi.org/10.1016/j.indcrop.2015.04.024.
dc.relation.referencesBalasubramanian, A. (2017). Classification Of Materials. Technical Report. Doi: 10.13140/RG.2.2.12792.34567.
dc.relation.referencesBajwa S. G., Bajwa D. S., Holt G., Coffelt T. and Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Inndustrial Crops and Products. 33, 747 – 755. Doi: https://doi.org/10.1016/j.indcrop.2011.01.017.
dc.relation.referencesBajwa D., Wang X., Sitz E., Loll T. and Bhattacharjee S. (2016). Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules. 89, 265 – 272. Doi: https://doi.org/10.1016/j.ijbiomac.2016.04.077.
dc.relation.referencesBeltrán M. and Marcilla A. (2012). Tecnología de polímeros. Procesado y propiedades. Alicante, España. Universidad de Alicante.
dc.relation.referencesBledzki A. K., Franciszczak P., Osman Z. and Elbadawi M. (2015). Polypropylene biocomposites reinforced with softwood, abaca, jute and kenaf fibers. Industrial Crops and Products. 70, 91 – 99. Doi: https://doi.org/10.1016/j.indcrop.2015.03.013.
dc.relation.referencesCaicedo C., Vázquez A., Crespo L. M., De la Cruz H. and Ossa O. H. (2015). Cedar fiber / polypropylene (PP) matrix composites: influence of the PP-g-MA compatibilizer. Informador Técnico (Colombia). 79 (2), 118 – 125.
dc.relation.referencesDelgado-Aguilar M., Vilaseca F., Tarrés Q., Julián F., Mutjé P. and Espinach F. X. (2018). Extending the value chain of corn agriculture by evaluating technical feasibility and the quality of the interphase of chemo-thermomechanical fiber from corn stover reinforced polypropylene biocomposites. Composites Part B. 137, 16 – 22. Doi: https://doi.org/10.1016/j.compositesb.2017.11.006.
dc.relation.referencesDikobea D. G. and Luytc A. S. (2017). Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/ HDPE/ wood powder polymer blend composites. Thermochimica Acta. 654, 40 – 50. Doi: https://doi.org/10.1016/j.tca.2017.05.002.
dc.relation.referencesDoineau E., Coqueugniot G., Pucci M. F., Caro A., Cathala B., Bénézet B., Bras J. and Moigne N. (2021). Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals. Carbohydrate Polymers. 254, 117403. Doi: https://doi.org/10.1016/j.carbpol.2020.117403.
dc.relation.referencesEssabir H., Bensalah M. O., Rodrigue D., Bouhfid R. and Qaiss A. (2016). Biocomposites based on Argan nut shell and a polymer matrix: Effect of filler content and coupling agent. Carbohydrate Polymers. 143, 70 – 83. Doi: http://dx.doi.org/10.1016/j.carbpol.2016.02.002.
dc.relation.referencesEssabir H., Raji M., Laaziz S. A., Rodrique D., Bouhffid R. and Qaiss A. (2018). Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B. 149, 1 – 11. Doi: https://doi.org/10.1016/j.compositesb.2018.05.020.
dc.relation.referencesFitch P. R., Camacho I. L., Martínez F., Islas A. R., Carrillo K. I., Calderón A., Jacobo N., Carrillo A., Delgado C. I. and Aguilar E. (2019). Mechanical, physical and microstructural properties of acetylated starchbased biocomposites reinforced with acetylated sugarcane fiber. Carbohydrate Polymers. 219, 378 – 386. Doi: https://doi.org/10.1016/j.carbpol.2019.05.043.
dc.relation.referencesGallagher L.W. and McDonald A.G. (2013). The effect of micron sized wood fibers in wood plastic composites. Maderas, Ciencia y Tecnología. 15 (3), 357 – 374. Doi: http://dx.doi.org/10.4067/S0718-221X2013005000028.
dc.relation.referencesGonzalez I. Lopez A. and Martínez M. (2019). High-performance starch biocomposites with celullose from waste biomass: Film properties and retrogradation behaviour. Carbohydrate Polymers. 216, 180 – 188. Doi: https://doi.org/10.1016/j.carbpol.2019.04.030.
dc.relation.referencesGuna V., Ilangovan M., Ananthaprasad M.G. and Reddy N. (2017). Hybrid biocomposites. Polymer Composites. 39, 30 – 54. Doi: https://doi.org/10.1002/pc.24641.
dc.relation.referencesHidalgo M. and Salinas E. (2019). Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Composites Part B. 176, 107135. Doi: https://doi.org/10.1016/j.compositesb.2019.107135.
dc.relation.referencesHietalaa M. and Oksman K. (2018). Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersión. Composites Part A. 109, 538 – 545. Doi: https://doi.org/10.1016/j.compositesa.2018.04.006.
dc.relation.referencesHuang L., Mu B., Yi X., Li S. and Wang, Q. (2018). Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal Polymer Environment. 26 (1), 48 – 58. Doi: https://doi.org/10.1007/s10924-016-0917-x.
dc.relation.referencesKhan M. Z. R., Srivastava S. K. and Gupta M. K. (2020). A state of the art review on particulate wood polymer composites: Procesing, properties and applications. Polymer Testing. 89, 106721. Doi: https://doi.org/10.1016/j.polymertesting.2020.106721.
dc.relation.referencesKomal U. K., Lila M. K. and Singh I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B. 180, 107535. Doi: https://doi.org/10.1016/j.compositesb.2019.107535.
dc.relation.referencesKuburi L. S., Dauda M., Obada D. O., Umaru S., Dodoo-Arhin D., Iliyasu I., Balogun M. B. and Mustapha S. (2017). Effects of coir fiber loading on the physio-mechanical and morphological properties of coconut Shell poder filled low density polyrthylene composites.Procedia Manufacturing. 7, 138 – 144. Doi: https://doi.org/10.1016/j.promfg.2016.12.036.
dc.relation.referencesLiu W., Chen T., Fei M., Qiu R., Yu D., Fu T. Qiu J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B. 171, 87 – 95. Doi: https://doi.org/10.1016/j.compositesb.2019.04.048.
dc.relation.referencesLópez D. and Rojas A. (2018). Factores que influencian las propiedades mecánicas, físicas y térmicas de materiales compuestos madero plásticos. Entre Ciencia e Ingeniería. 12 (23), 93 – 102. Doi: https://doi.org/10.31908/19098367.3708.
dc.relation.referencesMcKeen L. W. (2019). Introduction to Plastics and Polymers. McKeen L. W. The effect of UV light and weather on plastics and elastomers (fourth edition). 1 – 20. Doi: https://doi.org/10.1016/B978-0-12-816457-0.00001-0.
dc.relation.referencesMigneault S., Koubaa A., Perré P. and Riedl B. (2015). Effects of wood fiber surface chemistry on strength of wood–plasticcomposites. Applied Surface Science. 343, 11 – 18. Doi: https://doi.org/10.1016/j.apsusc.2015.03.010.
dc.relation.referencesMonroy M., Díaz A. and Acevedo H. F. (2009). Instrumentación del equipo de laboratorio de resistencia de materiales para ensayos dinámicos a flexión de probetas ranuradas. Scientia et Technica. 1 (41), 352-355. Doi: https://doi.org/10.22517/23447214.2871.
dc.relation.referencesMoreno P., Rodriguez D., Giroux Y., Ballerini A. and Gacitua W. (2013). Morphological and mechanical caracterization of recycled thermoplastic foams reinforced with wood subproducts. Maderas, Ciencia y Tecnología. 15 (1), 3 – 16. ISSN: 0717-3644.
dc.relation.referencesMurugan S. S. (2020). Mechanical Properties of Materials: Definition, Testing and Application. International Journal of Modern Studies in Mechanical Engineering. 6 (2), 28 – 38. Doi: http://doi.org/10.20431/2454-9711.0602003.
dc.relation.referencesNaghmouchi I., Boufi S., Delgado M., Granda L., Vilaseca F. and Mutje P. (2013). Fabricación de madera plástica a partir de serrín de hueso de aceituna y polipropileno. 13er Congreso Internacional en Ciencia y Tecnología de Metalurgía y Materiales. Doi: 10.13140/2.1.1133.5040.
dc.relation.referencesNgo T. D. (2020). Introduction to Composite Materials. Fiber Composites. 1 – 27. Doi: 10.5772/intechopen.91285.
dc.relation.referencesNourbakhsh A. and Ashori A. (2010). Wood plastic composites from agro-waste materials: Analysis of mechanical properties. Bioresource Technology. 101, 2525 – 2528. Doi: https://doi.org/10.1016/j.biortech.2009.11.040.
dc.relation.referencesNourbakhsh A, Baghlani F. F. and Ashori A. (2011). Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products. 33, 183–187. Doi: https://doi.org/10.1016/j.indcrop.2010.10.010.
dc.relation.referencesNunes S. G., da Silva L. V., Amico S. C., Viana J.D. and Rico, F. D. (2017) Study of Composites Produced with Recovered Polypropylene and Piassava Fiber. Materials Research. 20 (1), 144 – 150. Doi: http://dx.doi.org/10.1590/1980-5373-mr-2016-0659.
dc.relation.referencesPatterson A. E., Pereira T. R., Allison J. T. and Messimer S. L. (2019). IZOD impact properties of full-density FDM polymer materials with respect to raster angle and print orientation. Journal of Mechanical Engineering Science, p. 095440621984038. Doi: https://doi.org/10.1177%2F0954406219840385.
dc.relation.referencesPerez M. "Elaboración de matrices de polímeros reciclados reforzados con fibras de la estopa de coco y determinación de sus propiedades físicas y mecánicas" (Tesis de Pregrado), dirigido por F. J. Quiñonez, Universidad de San Carlos, San Carlos, Jul. 2008.
dc.relation.referencesPetchwattana N, Covavisaruch S. and Chanakul S. (2012). Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. Journal of Polymer Research. 19, 1–9. Doi: https://doi.org/10.1007/s10965-012-9921-6.
dc.relation.referencesPetchwattana N., Covavisaruch S. and Kanawang K. (2013). Wood plastic composites prepared from poly (vinyl chloride) and Balau sawdust (Shorea obtusa): Mechanical properties and N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane compatibilization. Advanced Materials Research. 602–604, 802–806. Doi: https://doi.org/10.4028/www.scientific.net/AMR.602-604.802.
dc.relation.referencesPetchwattana N. and Covavisaruch S. (2013). Effects of Rice Hull Particle Size and Content on the Mechanical Properties and Visual Appearance of Wood Plastic Composites Prepared from Poly (vinyl chloride). Journal of Bionic Engineering. 10, 110 – 117. Doi: https://doi.org/10.1016/S1672-6529(13)60205-X.
dc.relation.referencesPrasanna V., Kumar N. and Kumar A. (2019). Optimisation & Mechanical Testing Of Hybrid BioComposites. Materials Today: Proceedings. 18, 3849 – 3855. Doi: https://doi.org/10.1016/j.matpr.2019.07.324.
dc.relation.referencesRodriguez L. J.,Peças P., Carvalho H. and Orrego C. E. (2020). A literature review on life cycle tools fostering holistic sustainability assessment: An application in biocomposite materials. Journal of Environmental Management. 262, 110308. Doi: https://doi.org/10.1016/j.jenvman.2020.110308.
dc.relation.referencesSamenia J., Jaffera S. A. and Saina M. (2018). Thermal and mechanical properties of soda lignin/HDPE blends. Composites Part A. 115, 104 – 111. Doi: https://doi.org/10.1016/j.compositesa.2018.09.016.
dc.relation.referencesSanchez G., Rabe S., Perez R., Calderas F. and Schartel B. (2019). Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites. Composites Part B. 177, 107370. Doi: https://doi.org/10.1016/j.compositesb.2019.107370.
dc.relation.referencesSarasini F., Tirillo, J., Zuorro A., Maffei G., Lavecchia R., Puglia D., Dominici F., Luzi F., Valente T. and Torre L. (2018). Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly (3-hydroxybutyrate-co-3- hydroxyvalerate) matrix. Industrial Crops & Products.118, 311 – 320. Doi: https://doi.org/10.1016/j.indcrop.2018.03.070.
dc.relation.referencesSegura J. (2000). Notas de diseños experimentales. Yucatan, Mexico. Universidad Autónoma de Yucatan, Facultad de Medicina Veterinaria y Zootecnia.
dc.relation.referencesShireesha Y. and Nandipati G. (2019). State of Art Review on Natural Fibers. Materials Today: Proceedings. 18, 15 – 24. Doi: https://doi.org/10.1016/j.matpr.2019.06.272.
dc.relation.referencesSun Z. (2018). Progress in the research and applications of natural fiber-reinforced polymer matrix composites. Science and Engineering of Composite Materials. 25 (5), 835 – 846. Doi: https://doi.org/10.1515/secm-2016-0072.
dc.relation.referencesUitterhaegen E., Parinet J., Labonner I., Mérian T., Ballas S., Véronèse T., Merah O., Talou T., Stevens C. V., Chabert F. and Evon P. (2018). Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Composites Part A. 113, 254 – 263. Doi: https://doi.org/10.1016/j.compositesa.2018.07.038.
dc.relation.referencesTran D., Lee. H. R., Jung S., Park M. S. and Yang J. (2018). Lipid-extracted algal biomass based biocomposites fabrication with poly (vinyl alcohol). Algal Research.31, 525 – 533. Doi: https://doi.org/10.1016/j.algal.2016.08.016.
dc.relation.referencesWondmagegnehu B. T., Paramasivam V. and Selvaraj S. K. (2021). Fabricated and analyzed the mechanical properties of textile waste/glass fiber hybrid composite material. Materials Today: Proceedings. Doi: https://doi.org/10.1016/j.matpr.2020.12.984.
dc.relation.referencesYang H. S., Kim H. J., Park H. J., Lee B. J. and Hwang T. S. (2007). Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures.77, 45–55. Doi: https://doi.org/10.1016/j.compstruct.2005.06.005.
dc.relation.referencesAbbass O. A., Salih A. and Hurmuzy O. M. A. (2020). Study of the mechanical and physical properties of biocomposite material based on wheat starch and wheat straw fibers. IOP Conf. Series: Materials Science and Engineering. 745, 012075. Doi:10.1088/1757-899X/745/1/012075.
dc.relation.referencesAbdelwahaba M. A., Misraa M. and Mohantya A. K. (2019). Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance. Industrial Crops & Products. 132, 497 – 510. Doi: https://doi.org/10.1016/j.indcrop.2019.02.026.
dc.relation.referencesAradoaei S., Bahrin V., Aradoaei M., Constantin M. A., Constantin L. A. and Ionescu I. (2020). Analysis of the Physical and Chemical Properties of Biocomposite Materials Obtained from Feather Flour and Polypropylene. Materiale Plastice. 57 (4), 325 – 332. Doi: https://doi.org/10.37358/Mat.Plast.1964.
dc.relation.referencesAgustin – Salazar S., Cerruti P., Medina – Juaréz L. A., Scarinzi G., Malinconico M., Soto – Valdez H. and Gamez – Meza, N. (2018). Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macomolecules. 115, 727 – 735.
dc.relation.referencesArjmandi R., Isamil A., Hassan A. and Bakar A. A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials. 152, 484 – 493. Doi: http://dx.doi.org/10.1016/j.conbuildmat.2017.07.052.
dc.relation.referencesAssarar M., Scida D., Zouari W., Saidane E.H. and Rezak A. (2012). Mechanical properties analysis of short hemp-fibre/ polypropylene composites: Influence of fibre content and hygrothermal ageing. Venecia, Italia. European Conference on Composite Materials.
dc.relation.referencesBahl S., Dolma J., Singh J. J. and Sehgal S. (2021). Biodegradation of plastics: A state of the art review. Materials Today: Proceedings.39, 31 – 34. Doi: https://doi.org/10.1016/j.matpr.2020.06.096.
dc.relation.referencesBajwa S.G., Bajwa D.S., Holt G., Coffelt T. and Nakayama F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products. 33 (3), 747-755.
dc.relation.referencesBajwa D., Bajwa S.G. and Holt, G. A. (2015). Impact of biofibers and coupling agents on the weathering characteristics of composites. Polymer Degradation and Stability. 120, 212 – 219.
dc.relation.referencesBajwa D., Wang X., Sitz E., Loll T. and Bhattacharjee S. (2016). Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules. 89, 265 – 272.
dc.relation.referencesBelec I., Nguyen T.H., Nguyen D.L. and Chailan J.F. (2015). Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale. Composites: Part A. 68, 235 – 241.
dc.relation.referencesBhasney S. M., Kumar A. and Katiyar V. (2020). Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B. 184, 107717. Doi: https://doi.org/10.1016/j.compositesb.2019.107717.
dc.relation.referencesBinhussain M.A. and El-Tonsy M.M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials. 47, 1431-1435.
dc.relation.referencesBouafif H., Koubaa A., Perré P. and Cloutier, A. (2008). Effects of fibre characteristics on the physical and mechanical properties of wood plastic composites. The 9th International Conference on Flow Processes in Composite Materials, Montreal.
dc.relation.referencesCampilho R.D.S.G. (2017). Recent innovations in biocomposite products. Elsevier. Biocomposites for High-Performance Aplications (275 – 306). Doi: https://doi.org/10.1016/B978-0-08-100793-8.00010-7.
dc.relation.referencesDikobe D.G. and Luyt, A.S. (2017). Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites. Thermochimica Acta. 654, 40 -50. Doi: http://dx.doi.org/10.1016/j.tca.2017.05.002.
dc.relation.referencesEcoplas, (2011). Manual de Valorización de los Residuos Plásticos. Buenos Aires, Argentina. Ecoplas.
dc.relation.referencesFontana M.L., Perez V.R. and Luna C.V. (2016) Pruebas de Envejecimiento Acelerado para determinar vigor de semillas de Prosopis Alba de tres procedencias geográficas. Revista FAVE - Ciencias Agrarias. 15 (1), 2.
dc.relation.referencesGautam P. and Kumar S. (2021). Characterisation of Hazardous Waste Landfill Leachate and its Reliance on Landfill Age and Seasonal Variation: A Statistical Approach. Journal of Environmental Chemical Engineering. 9, 105496.
dc.relation.referencesGilormini P. and Verdu J. (2018). On the role of hydrogen bonding on water absorption in polymers. Polymer. 142, 164 – 169. Doi: https://doi.org/10.1016/j.polymer.2018.03.033.
dc.relation.referencesGonzalez M. E., Martín del Campo A. S., Robledo J. R., Arellano M. and Perez A. A. (2020). Accelerated weathering of poly (lactic acid) and its biocomposites: A review. Polymer Degradation and Stability. 179, 109290. Doi: https://doi.org/10.1016/j.polymdegradstab.2020.109290.
dc.relation.referencesHan J., Yao X., Zhan Y., Oh S., Kim L. and Kim H. (2017). A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute. 90, 331 – 335.
dc.relation.referencesHidalgo M. A. and Salinas E. (2019). Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Composites Part B. 176, 107135. Doi: https://doi.org/10.1016/j.compositesb.2019.107135.
dc.relation.referencesHöhne G.W.H., Hemminger W.F. and Flammersheim H.J. (2003). Differencial Scanning Calorimetry. Berlín, Alemania. Springer.
dc.relation.referencesHosseinihashemi S.K., Arwinfar F., Najafi A., Nemli G. and Ayrilmis, N. (2016). Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement. 86, 202 – 208.
dc.relation.referencesHuang L., Mu B., Yi X., Li S. and Wang, Q. (2018). Sustainable Use of Coffee Husks for Reinforcing Polyethylene Composites. Journal Polymer Environment. 26 (1), 48 – 58.
dc.relation.referencesHuang J. K. and Young W. B. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B. 166, 272 – 283. Doi: https://doi.org/10.1016/j.compositesb.2018.12.013.
dc.relation.referencesJayakumar A., Heera K. V., Sumi T.S., Joseph M., Mathew S., Praveen G., Nair I. C. and Radhakrishnan E.K. (2019). Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules. 136, 395 – 403. Doi: https://doi.org/10.1016/j.ijbiomac.2019.06.018.
dc.relation.referencesKarimi N., Wai K. T., Richter A., Williams J. and Ibrahim H. (2021). Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. Journal of Environmental Management. 287, 112320.
dc.relation.referencesKuburi L.S., Dauda M., Obada D. O., Umaru S., Dodoo-Arhin D., Iliyasu I., Balogun M.B. and Mustapha S. (2017). Effects of coir fiber loading on the physio-mechanical and morphological properties of coconut Shell poder filled low density polyrthylene composites.Procedia Manufacturing. 7, 138 – 144.
dc.relation.referencesLammi S., Moigne N., Djenane D., Gontard N. and Coussy H. (2018). Dry fractionation of olive pomace for the development of food packaging biocomposites. Industrial Crops & Products. 120, 250 – 261. Doi: https://doi.org/10.1016/j.indcrop.2018.04.052.
dc.relation.referencesLarrain M., Van Passel S., Thomassen G., Van Gorp B., Nhu T. T., Huysveld S., Van Geem K. M., De Meester S. and Billen P. (2021). Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. Resources, Conservation & Recycling. 170, 105607. Doi: https://doi.org/10.1016/j.resconrec.2021.105607.
dc.relation.referencesLilaa M. K., Shukla K., Komal U. K. and Singh I. (2019). Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Composites Part B. 156, 121 – 127. Doi: https://doi.org/10.1016/j.compositesb.2018.08.068.
dc.relation.referencesLima E. M. B., Middea A., Neumann R., Thiré R. M. S., Pereira J. F., Freitas S. C., Penteado M. S., Lima A. M.,aMinguita M. P. S., Mattos M. C., Teixeira A. S., Pereira I. C. S., Santos N. R. R., Marconcini J. M., Oliveira R. N. and Corrêa A. C. (2021). Biocomposites of PLA and Mango seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. Starch - Stärke.73 (5 – 6), 2000118. Doi: https://doi-org.ezproxy.unal.edu.co/10.1002/star.202000118.
dc.relation.referencesMachado C. R. and Hettiarachchi H. (2020). Composting as a Municipal Solid Waste Management Strategy: Lessons Learned from Cajicá, Colombia. Hettiarachchi H., Caucci S., Schwärzel K. (eds) Organic Waste Composting through Nexus Thinking. 17 – 38. Doi: https://doi.org/10.1007/978-3-030-36283-6_2.
dc.relation.referencesMahmud S., Hasan K. M. F., Jahid M. A., Mohiuddin K., Zhang R. and Zhu J. (2021). Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal Materials Science. 56, 7231–7264. Doi: https://doi.org/10.1007/s10853-021-05774-9.
dc.relation.referencesMazian B., Bergereta A., Benezeta J. and Malhautierb L. (2020). Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Industrial Crops & Products. 143, 111912. Doi: https://doi.org/10.1016/j.indcrop.2019.111912.
dc.relation.referencesMejri M., Toubal L., Cuillière J. C. and François V. (2017). Hygrothermal aging effects on mechanical and fatigue behaviors of a shortnatural-fiber-reinforced composite. International Journal of Fatigue. Doi: https://doi.org/10.1016/j.ijfatigue.2017.11.004. 108, 96-108.
dc.relation.referencesMoliner C., Badiab J. D., Bosioa B., Aratoa E., Teruel-Juanes R., Kittikorn T., Strömberg E., Ek M., Karlsson S. and Ribes-Greus A. (2018). Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites. Thermochimica Acta. 670, 169 – 177. Doi: https://doi.org/10.1016/j.tca.2018.10.029.
dc.relation.referencesMoreno P., Rodriguez D., Giroux Y., Ballerini A. and Gacituan W. (2013). Morphological and mechanical characterization of recycled thermoplastic foams reinforced with wood subproducts. Maderas, Ciencia y Tecnología. 15 (1), 3 – 16.
dc.relation.referencesNorhasnan N. H. A., Hassan M. Z., Nor A. F. M., Zaki S. A., Dolah R., Jamaludin K. R. and Aziz S. A. (2021). Physicomechanical Properties of Rice Husk/Coco Peat Reinforced Acrylonitrile Butadiene Styrene Blend Composites. Polymers. 13, 1171. Doi: https://doi.org/10.3390/polym13071171.
dc.relation.referencesNunes S.G., da Silva L.V., Amico S.C., Viana J.D. and Rico, F. D. (2017). Study of Composites Produced with Recovered Polypropylene and Piassava Fiber. Materials Research. 20 (1), 144 – 150. Doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0659
dc.relation.referencesPeng Y., Liu R. and Cao J. (2015). Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Applied Surface Science. 332, 253 – 259.
dc.relation.referencesQian S., Zhang H., Yao W. and Sheng K. (2018). Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Composites Part B. 133, 203 – 209. Doi: https://doi.org/10.1016/j.compositesb.2017.09.040.
dc.relation.referencesQuarshie R. and Carruthers J. (2014). Technology overview Biocomposites. Reino Unido. Materials KTN and NetComposites Ltd.
dc.relation.referencesRamesh M., Deepa C., Selvan M. T., Rajeshkumar L., Balaji D. and Bhuvaneswari V. (2020). Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Materials Today: Proceedings. Doi: https://doi.org/10.1016/j.matpr.2020.11.480.
dc.relation.referencesRodriguez L. J.,Peças P., Carvalho H. and Orrego C. E. (2020). A literature review on life cycle tools fostering holistic sustainability assessment: An application in biocomposite materials. Journal of Environmental Management. 262, 110308.
dc.relation.referencesSarasini F., Tirillo J., Zuorro A., Maffei G., Lavecchia R., Puglia D., Dominici F., Luzi F., Valente T. and Torre L. (2018). Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly (3-hydroxybutyrate-co-3- hydroxyvalerate) matrix. Industrial Crops & Products.118, 311 – 320. Doi: https://doi.org/10.1016/j.indcrop.2018.03.070.
dc.relation.referencesSierra I., Gómez S., Pérez D., and Morante S. (2009). Análisis Instrumental. La Coruña, España. Netbiblo.
dc.relation.referencesSingh Y. D., Mahanta P. and Bora U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy. 103, 490 – 500. Doi: http://dx.doi.org/10.1016/j.renene.2016.11.039.
dc.relation.referencesSiqueira D.D., Luna C.B.B., Ferreira E.S.B., Araújo E.M. and Wellen R.M.R. (2020). Tailored PCL/Macaíba fiber to reach sustainable biocomposites. Journal of Materials Research and Technology. 9 (5), 9691 – 9708. Doi: https://doi.org/10.1016/j.jmrt.2020.06.066 2238-7854.
dc.relation.referencesSpeyer R.F. and Agarwall G. (1996). Materials Research Society Symposia Proceedings. 11, 671.
dc.relation.referencesSugumaran V., Prakash S., Arorab A. K., Kapur G. S. and Narulaa A. K. (2017). Thermal cracking of potato-peel powder-polypropylene biocomposite and characterization of products—Pyrolysed oils and bio-char. Journal of Analytical and Applied Pyrolysis. 126, 425 – 414. Doi: http://dx.doi.org/10.1016/j.jaap.2017.04.014.
dc.relation.referencesSukudom N., Jariyasakoolroj P., Jarupan L. and Tansin K. (2019). Mechanical, thermal, and biodegradation behaviors of poly (vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. Journal of Material Cycles and Waste Management. 21, 125 – 133. Doi: https://doi.org/10.1007/s10163-018-0773-y.
dc.relation.referencesSun Z. (2018). Progress in the research and applications of natural fiber-reinforced polymer matrix composites. Science and Engineering of Composite Materials. 25 (5), 835 – 846. Doi: https://doi.org/10.1515/secm-2016-0072.
dc.relation.referencesTrejos J.D. (2014). Propiedades mecánicas de una matriz de poliéster reforzada con fibra de coco comparadas con la misma matriz reforzada con fibra de vidrio. Trabajo de grado para optar por el título de Ingeniero Mecánico. Universidad Tecnológica de Pereira, Risaralda.
dc.relation.referencesUddin N. (2013). Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. Cambridge, Reino Unido. Woodhead Publishing Limited.
dc.relation.referencesUniversidad Industrial de Santander - UIS. (2017). Analytical Services.Articles: Proximate And Ultimate. Disponible en: http://www.uis-as.co.za/index.php/component/content/article/2-news/46-ultimate-a-proximate-analysis. Consultado en Marzo del 2017.
dc.relation.referencesUitterhaegena E., Parineta J., Labonnea L., Mérianc T., Ballasd S., Véronèsed T., Meraha O., Taloua T., Stevensb C. V., Chabertc F. and Evona P. (2018). Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander Straw. Composites Part A. 113, 254 – 263. Doi: https://doi.org/10.1016/j.compositesa.2018.07.038.
dc.relation.referencesVenegas D.F. (2017). Calorimetría Diferencial de Barrido. Departamento de Ingeniería de Materiales –DIMAT. Doi: 10.13140/RG.2.2.12849.79204.
dc.relation.referencesZambrano A. M., Castellar G. C., Vallejo W. A., Piñeres I. E., Cely M. M. and Valencia J. S. (2017). Conceptual approach to thermal analysis and its main applications. Prospect. 15 (2), 117 – 125. Doi: http://dx.doi.org/10.15665/rp.v15i2.1166.
dc.relation.referencesZhang Q., Zhang D., Lu W., Khan M. U., Xu H., Yi W., Lei H., Huo E., Qian M., Zhao Y. and Zou R. (2020). Production of high-density polyethylene biocomposites from rice husk biochar: Effects of varying pyrolysis temperatura. Science of the Total Environment. 738, 139910. Doi: https://doi.org/10.1016/j.scitotenv.2020.139910.
dc.relation.referencesAdams K., Bankston J., Barlow A., Holdren M. W., Meyer J. and Marchesani J. (1999). Development of emission factors for polypropylene processing. Journal of the air and waste management association. 49 (1), 49 – 56. Doi: https://doi.org/10.1080/10473289.1999.10463782.
dc.relation.referencesAudsley E., Brander M., Chatterton J., Murphy-Bokern D., Webster C. and Williams A. G. (2010). An assessment of greenhouse gas emissions from the UK food system and the scope for reduction by 2050: how low can we go. Godalming, UK: WWF UK and Food Climate Research Network.
dc.relation.referencesBarlow A., Contos D. A., Holdren M. W., Garrison P. J., Harris L. R. and Janke B. (1996). Development of Emission Factors for Polyethylene Processing. Journal of the Air & Waste Management Association. 46 (6), 569 – 580. Doi: https://doi.org/10.1080/10473289.1996.10467493.
dc.relation.referencesBriassoulis D., Pikasi A. and Hiskakis M. (2021). Recirculation potential of post-consumer /industrial bio-based plastics through mechanical recycling - Techno-economic sustainability criteria and indicators. Polymer Degradation and Stability. 183, 109217. Doi: https://doi.org/10.1016/j.polymdegradstab.2020.109217.
dc.relation.referencesCubeddu A., Rauh C. and Delgado A. (2014). 3D thermo-fluid dynamic simulations of high-speed-extruded starch based products. Open Journal of Luid Dynamics. 4, 103 – 114.
dc.relation.referencesHaylock R. and Rosentrater K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and BioBased Fillers. Journal of Polymers and the Environment. 26, 1484 – 1503. Doi: 10.1007/s10924-017-1041-2.
dc.relation.referencesHernandez J. D., Hernandez H. F. and Ocampo L. M. (2019). A holistic framework for assessing hot-dip galvanizing process sustainability. Journal of Cleaner Production. 206, 755 – 766. Doi: https://doi.org/10.1016/j.jclepro.2018.09.177.
dc.relation.referencesIndustrial Tray-Dryer Tray-Dryer Price. (2021, Junio). Recuperado de https://www.alibaba.com/product-detail/Industrial-Tray-Dryer-Tray-Dryer-Price_60429893034.html?spm=a2700.galleryofferlist.normal_offer.d_image.73942e70Bwu6tV&s=p.
dc.relation.referencesInstitution of Chemical Engineers (IChem). (2019). Sustainable development progress metrics. Disponible en: http://nbis.org/nbisresources/metrics/triple_bottom_line_indicators_process_industries.pdf
dc.relation.referencesJuárez D., Balart R., Peydró M. A. and Errandiz S. (2012). Estudio y análisis del moldeo por inyección de materiales poliméricos termoplásticos. Revista de Investigación.
dc.relation.referencesLa Rosa A. D., Greco S., Tosto C. and Cicala G. (2021). LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios. Journal of Cleaner Production. 304, 127158. Doi: https://doi.org/10.1016/j.jclepro.2021.127158.
dc.relation.referencesMayson S. and Williams I. D. (2021). Applying a circular economy approach to valorize spent coffee grounds. Resources, Conservation & Recycling. 172, 105659. Doi: https://doi.org/10.1016/j.resconrec.2021.105659.
dc.relation.referencesOrtiz M., Solarte J. C., González J. A., Peltonen K. E., Richard P. and Cardona C. A. (2020). Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochemical Engineering Journal. 161, 107680. Doi: https://doi.org/10.1016/j.bej.2020.107680.
dc.relation.referencesPeters M. S. and Timmerhaus K. D (Cuarta Edición). (1991). Plant design and economics for chemical engineers international edition. Singapur: McGraw – Hill Book Co.
dc.relation.referencesPrashanth S. R., Arumugama S. K., Gangradey R., Mukherjee S., Kasthurirengan S., Behera U., Pabbineedi G. and Ma M. (2019). CFD modelling and performance analysis of a twin screw hydrogen extruder. Fusion Engineering and Design. 138, 151 – 158. Doi: https://doi.org/10.1016/j.fusengdes.2018.11.014.
dc.relation.referencesRodriguez L. J., Orrego C. E., Ribeiro I. and Peças, P. (2018). Life-Cycle Assessment and Life-Cycle Cost study of Banana (Musa sapientum) fiber Biocomposite materials. Procedia. 69, 585 – 590.
dc.relation.referencesRuiz G. J., Smith R. L. and Gonzalez M. A. (2012). Sustainability indicators for chemical processes: I. Taxonomy. Industrial and engineering chemistry research. 51, 2309 – 2328.
dc.relation.referencesSilent Plastic Crusher Machine For Crushing. (2021, Junio). Recuperado de https://www.alibaba.com/product-detail/Silent-Plastic-Crusher-Machine-For-Crushing_62477498542.html?spm=a2700.galleryofferlist.normal_offer.d_image.da586350AZQDBy.
dc.relation.referencesŠupić A., Bečirović A., Obućina A. and Zrilić M. (2018). Modeling and Simulation for Aluminium Profile Extrusion. Procedia Structural Integrity. 13, 2077 – 2082. Doi: 10.1016/j.prostr.2018.12.205.
dc.relation.referencesSzabó F., Suplicz A. and Kovács J. G. (2021). Development of injection molding simulation algorithms that take into account segregation. Powder Technology. 389, 368 – 375. Doi: https://doi.org/10.1016/j.powtec.2021.05.053.
dc.relation.referencesTurner D. A., Williams I. D. and Kemp S. (2015). Greenhouse gas emission factors for recycling of source-segregated waste materials. Resources, Conservation & Recycling. 105(Part A), 186-197.
dc.relation.referencesTwin Screw Extruder Co-Extruder Best. (2021, Junio). Recuperado de https://www.alibaba.com/product-detail/Twin-Screw-Extruder-Co-Extruder-Best_62403216739.html?spm=a2700.galleryofferlist.normal_offer.d_image.3e2d6f412soB5U&s=p.
dc.relation.referencesUnidad de Planeación Minero Energética - UPME. (2020). Resolución 385 de 2020. Bogotá, Colombia.
dc.relation.referencesVOS supply Wood Chip-Crusher Wood. (2021, Junio). Recueprado de https://www.alibaba.com/product-detail/VOS-supply-Wood-Chip-Crusher-Wood_60699952219.html?spm=a2700.details.0.0.1e1175e37wvvQx.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBiocompuesto
dc.subject.proposalResiduo
dc.subject.proposalMaterial lignocelulósico
dc.subject.proposalPlástico pos industrial
dc.subject.proposalFibra
dc.subject.proposalBiocomposite
dc.subject.proposalWaste
dc.subject.proposalLignocellulosic material
dc.subject.proposalPost industrial plastic
dc.subject.proposalFiber
dc.subject.unescoTratamiento de desechos
dc.subject.unescoWaste treatment
dc.title.translatedObtaining wood plastic composite materials from the mixture of lignocellulosic and post-consumer plastics waste
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaQuímica Y Procesos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito