Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRey Buitrago, Mauricio
dc.contributor.advisorOtero Mendoza, Liliana Margarita
dc.contributor.advisorGonzález Martínez, Farith Damián
dc.contributor.authorSir-Mendoza, Francisco Javier
dc.date.accessioned2022-08-11T14:25:08Z
dc.date.available2022-08-11T14:25:08Z
dc.date.issued2022-03-04
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81845
dc.descriptiongráficas, ilustraciones, tablas
dc.description.abstractEl objetivo del presente estudio fue determinar variantes de nucleótido único (SNVs) en la región promotora de los genes IL-1β c.-511C>T, c.-31T>C; TNF-α c.-308 G>A; IL-6 c.- 572G>C, c.-174C>G, y los niveles de proteínas de estas citoquinas proinflamatorias en saliva de individuos con apnea obstructiva del sueño (AOS) y periodontitis crónica (PC). Se realizó un estudio de casos y controles que comprendió un total de 129 individuos de Bogotá, Colombia. El grupo de casos fue subdividido en PC, AOS, PC más AOS. Para la genotipificación se realizó extracción de ADN y amplificación por PCR para llevar a cabo secuenciación Sanger. Los datos fueron analizados mediante estadística descriptiva e inferencial con el programa R (v3.6.2). Los alelos IL-1β presentaron asociación significativa (IL-1β c.-511T p=0.0007 (OR 2.83 IC: 1.57-5.10), IL-1β c.-31C p=0.001 (OR 2.81 IC: 1.51- 5.20)) y en sus estados homocigotos (IL-1β c.-511TT p=0.002 (OR 7.9 IC : 2.09-29.8), IL-1β c.-31CC p=0.0001 (OR 7.2 IC: 1.8-27.9)). Estas estimaciones se obtuvieron al comparar individuos con AOS vs controles, y sujetos con PC más AOS vs controles, sugiriendo que individuos con estos SNVs poseen más de dos veces riesgo de desarrollar estos fenotipos inflamatorios, incluso aumenta a más de 7 veces siendo homocigotos. En ambos análisis, alélico y genotípico, el efecto de riesgo se mantuvo en pacientes diagnosticados concomitantemente con ambas enfermedades. Este efecto puede ser correlacionado con los niveles de proteínas, individuos IL-1β c.-511TT con PC más AOS tuvieron mayores niveles de proteína IL-1β en saliva que controles IL-1β c.-511 CC (p= 0.011), así mismo, controles IL-1β c.-31TT vs PC más AOS IL-1β c.-31 CT (p= 0.001). Los alelos de IL-1β analizados incrementan el riesgo de desarrollar AOS y/o AOS más PC simultáneamente, siendo mayor en genotipos homocigotos. Por otro lado, se ha identificado una nueva variante en IL-1β con un efecto protector (IL-1β c.4654A p=0.028 (OR 0.22 IC:0.06-0.7)). (Texto tomado de la fuente)
dc.description.abstractThe aim of the present research was to determine single nucleotide variants (SNVs) in the promoter region of IL-1β (c.-511C>T, c.-31T>C), TNF-α (c.-308G>A), IL-6 (c.-572G>C, c.-174C>G) gene, and the protein level of these proinflammatory cytokines in saliva of individuals with Obstructive Sleep Apnea (OSA) and Chronic periodontitis (CP). A case and control study that comprised a total 129 subjects from Bogotá, Colombia was conducted. The cases group was subdivided into a group with only CP, only with OSA, and presenting CP and OSA in concomitance. For genotyping, DNA extraction and PCR amplification were performed to carry out Sanger sequencing. Descriptive and inferential statistic was performed using R (v3.6.2). The IL-1β alleles had significant association (IL-1β c.-511T p=0.0007 (OR 2.83 CI: 1.57-5.10), IL-1β c.-31C p=0.001 (OR 2.81 CI: 1.51-5.20)) as well as its homozygous states (IL-1β c.-511TT p=0.002 (OR 7.9 CI : 2.09-29.8), IL-1β c.-31CC p=0.0001 (OR 7.2 CI: 1.8-27.9)). These estimations were obtained when comparing individuals with OSA vs Controls and subjects with CP + OSA vs Controls, suggesting that individuals with the mentioned SNVs have two times more risk to develop these inflammatory phenotypes and the risk is even seven times more when having two copies of the allele. In both allelic and genotypes analyzes the risk effect of the SNVs was maintained in patients diagnosed with both diseases. In addition, this genotypic effect could be correlated to the protein level, homozygous individuals IL-1β c.-511TT diagnosed simultaneously with OSA and CP had more IL-1β protein level in saliva than controls IL-1β c.-511CC (p= 0.011), as well as when comparing controls IL-1β c.-31TT with OSA and CP IL-1β c.-31 CT (p= 0.001). The alleles IL-1β c.-511T and IL-1β c.-31C increase the risk of develop OSA and/or OSA with CP concomitantly, even more in a homozygous state. Otherwise, a novel variant in IL-1β has been identified with a protective effect (IL-1β c.4654A p=0.028 (OR 0.22 IC:0.06-0.7)). (Text taken fron the source)
dc.format.extentxv, 82 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcGenetica
dc.subject.ddcPatologia
dc.titleGenotipificación de SNVs de la región promotora de los genes IL-6, IL-1β, TNF-a asociados a respuesta inflamatoria en los fenotipos de Apnea Obstructiva del Sueño y Enfermedad Periodontal
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Genética Humana
dc.contributor.researchgroupGenetica clinica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Genética Humana
dc.description.methodsSe realizó un estudio de casos y controles que comprendió un total de 129 individuos de Bogotá, Colombia. El grupo de casos fue subdividido en PC, AOS, PC más AOS. Para la genotipificación se realizó extracción de ADN y amplificación por PCR para llevar a cabo secuenciación Sanger. Los datos fueron analizados mediante estadística descriptiva e inferencial con el programa R (v3.6.2).
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Genética
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDe Pablo P, Chapple ILC, Buckley CD, Dietrich T. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol. 2009;5(4):218–24
dc.relation.referencesVos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.
dc.relation.referencesNazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72.
dc.relation.referencesLindhe J, Karring T, Lang NP. Clinical periodontology and implant dentistry. Blackwell; 2003.
dc.relation.referencesEstudio Nacional de Salud Bucal ENSAB IV [Internet]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB IV-Situacion-Bucal-Actual.pdf
dc.relation.referencesEstudio Nacional de Salud Bucal ENSAB IV [Internet]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB IV-Situacion-Bucal-Actual.pdf
dc.relation.referencesTremblay C, Beaudry P, Bissonnette C, Gauthier CA, Girard S, Milot MP, et al. Periodontitis and obstructive sleep apnea: A literature review. J Dent Sleep Med. 2017;4:103–10.
dc.relation.referencesMedicine AA of S. International classification of sleep disorders. Diagnostic coding Man. 2005;51–5.
dc.relation.referencesAlDabal L, BaHammam AS. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J. 2011;5:31.
dc.relation.referencesGoel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. In: Seminars in neurology. © Thieme Medical Publishers; 2009. p. 320–39.
dc.relation.referencesBesedovsky L, Lange T, Born J. Sleep and immune function. Pflügers Arch J Physiol. 2012;463(1):121–37.
dc.relation.referencesLal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012;141(6):1601–10.
dc.relation.referencesGuilleminault C, Abad VC. Obstructive sleep apnea. Curr Treat Options Neurol. 2004;6(4):309–17.
dc.relation.referencesOtero L, del Carmen Figueredo M, Riveros-Rivera A, Hidalgo P. Cognitive impairment and obstructive sleep apnea. In: Updates in Sleep Neurology and Obstructive Sleep Apnea. IntechOpen; 2019.
dc.relation.referencesAl-Jewair TS, Al-Jasser R, Almas K. Periodontitis and obstructive sleep apnea’s bidirectional relationship: a systematic review and meta-analysis. Sleep Breath. 2015;19(4):1111–20.
dc.relation.referencesLatorre C, Escobar F, Velosa J, Rubiano D, Hidalgo-Martinez P, Otero L. Association between obstructive sleep apnea and comorbidities with periodontal disease in adults. J Indian Soc Periodontol. 2018;22(3):215.
dc.relation.referencesSeo WH, Cho ER, Thomas RJ, An S, Ryu JJ, Kim H, et al. The association between periodontitis and obstructive sleep apnea: a preliminary study. J Periodontal Res. 2013;48(4):500–6.
dc.relation.referencesPopko K, Gorska E, Potapinska O, Wasik M, Stoklosa A, Plywaczewski R, et al. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J Physiol Pharmacol. 2008;59(Suppl 6):607–14.
dc.relation.referencesZhang Z, Wang Q, Chen B, Wang Y, Miao Y, Han L. Association study of genetic variations of inflammatory biomarkers with susceptibility and severity of obstructive sleep apnea. Mol Genet genomic Med. 2019;7(8):e801.
dc.relation.referencesBird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1β. Cytokine Growth Factor Rev. 2002;13(6):483–502.
dc.relation.referencesBird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1β. Cytokine Growth Factor Rev. 2002;13(6):483–502.
dc.relation.referencesKornman KS, di Giovine FS. Genetic variations in cytokine expression: a risk factor for severity of adult periodontitis. Ann Periodontol. 1998 Jul;3(1):327–38.
dc.relation.referencesOwens RL, Eckert DJ, Yeh SY, Malhotra A. Upper airway function in the pathogenesis of obstructive sleep apnea: a review of the current literature. Curr Opin Pulm Med. 2008;14(6):519.
dc.relation.referencesSoga Y, Nishimura F, Ohyama H, Maeda H, Takashiba S, Murayama Y. Tumor necrosis factor-alpha gene (TNF-alpha) -1031/-863, -857 single-nucleotide polymorphisms (SNPs) are associated with severe adult periodontitis in Japanese. J Clin Periodontol. 2003 Jun;30(6):524–31.
dc.relation.referencesWu X, Offenbacher S, Lόpez NJ, Chen D, Wang H, Rogus J, et al. Association of interleukin‐1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities. J Periodontal Res. 2015;50(1):52–61.
dc.relation.referencesNikolopoulos GK, Dimou NL, Hamodrakas SJ, Bagos PG. Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. J Clin Periodontol. 2008 Sep;35(9):754–67.
dc.relation.referencesMonguí AC, Pastrana MCM, Quiroga GMS, Torres MH, Uriza CL, Arregocés FE, et al. Condición periodontal de pacientes con apnea obstructiva del sueño/Periodontal Status of Patients with Obstructive Sleep Apnea. Univ Odontológica. 2016;35(74):141–58.
dc.relation.referencesDinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8
dc.relation.referencesZhang J-M, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin. 2007;45(2):27.
dc.relation.referencesTakeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.
dc.relation.referencesTakeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21(1):335–76.
dc.relation.referencesDong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20(1):55–72.
dc.relation.referencesGay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature. 1991;351(6325):355– 6.
dc.relation.referencesDinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, J Am Soc Hematol. 2011;117(14):3720–32.
dc.relation.referencesLibby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986;124(2):179.
dc.relation.referencesEder C. Mechanisms of interleukin-1β release. Immunobiology. 2009;214(7):543– 53.
dc.relation.referencesKominato Y, Galson D, Waterman WR, Webb AC, Auron PE. Monocyte expression of the human prointerleukin 1 beta gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi-1/PU. 1. Mol Cell Biol. 1995;15(1):59–68.
dc.relation.referencesAdamik J, Wang KZQ, Unlu S, Su A-JA, Tannahill GM, Galson DL, et al. Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One. 2013;8(8):e70622.
dc.relation.referencesHagemeier C, Bannister AJ, Cook A, Kouzarides T. The activation domain of transcription factor PU. 1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci. 1993;90(4):1580–4
dc.relation.referencesPulugulla SH, Packard TA, Galloway NLK, Grimmett ZW, Doitsh G, Adamik J, et al. Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine. 2018;111:373–81.
dc.relation.referencesDinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.
dc.relation.referencesGaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov. 2009;8(6):480–99.
dc.relation.referencesDinarello CA. Biologic basis for interleukin-1 in disease. 1996
dc.relation.referencesWeber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1–cm1.
dc.relation.referencesGreenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex∗. J Biol Chem. 1995;270(23):13757–65
dc.relation.referencesBrikos C, Wait R, Begum S, O’Neill LAJ, Saklatvala J. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. Mol Cell Proteomics. 2007;6(9):1551–9
dc.relation.referencesLi S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci. 2002;99(8):5567– 72.
dc.relation.referencesKawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, et al. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9(6):684–91
dc.relation.referencesCao Z, Xiong J, Takeuchi M, Kurama T, Goeddel D V. TRAF6 is a signal transducer for interleukin-1. Nature. 1996;383(6599):443–6.
dc.relation.referencesChang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40.
dc.relation.referencesWhitmarsh AJ, Davis RJ. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene. 2007;26(22):3172–84.
dc.relation.referencesAhn Y-H, Yang Y, Gibbons DL, Creighton CJ, Yang F, Wistuba II, et al. Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor γ2 expression. Mol Cell Biol. 2011;31(21):4270–85.
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
dc.relation.referencesSims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2009;28:367–88.
dc.relation.referencesLibermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.
dc.relation.referencesAkira S, Kishimoto T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev. 1992;127:25–50.
dc.relation.referencesCosta-Pereira AP. Regulation of IL-6-type cytokine responses by MAPKs. Portland Press Ltd.; 2014.
dc.relation.referencesOhtani T, Ishihara K, Atsumi T, Nishida K, Kaneko Y, Miyata T, et al. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3-and SHP2- mediated signals in immune responses. Immunity. 2000;12(1):95–105
dc.relation.referencesKamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;1–38.
dc.relation.referencesMoutabarrik A, Nakanishi I, Ishibashi M. Interleukin‐6 and interleukin‐6 receptor are expressed by cultured glomerular epithelial cells. Scand J Immunol. 1994;40(2):181–6.
dc.relation.referencesOberg H-H, Wesch D, Grüssel S, Rose-John S, Kabelitz D. Differential expression of CD126 and CD130 mediates different STAT-3 phosphorylation in CD4+ CD25− and CD25high regulatory T cells. Int Immunol. 2006;18(4):555–63.
dc.relation.referencesSu H, Lei C-T, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405.
dc.relation.referencesNovick D, Engelmann H, Wallach D, Rubinstein M. Soluble cytokine receptors are present in normal human urine. J Exp Med. 1989;170(4):1409–14
dc.relation.referencesAtsumi T, Ishihara K, Kamimura D, Ikushima H, Ohtani T, Hirota S, et al. A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J Exp Med. 2002;196(7):979–90.
dc.relation.referencesScheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol. 2006;195(4):173–83.
dc.relation.referencesEbihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A. Role of the IL-6 classic-and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest Ophthalmol Vis Sci. 2011;52(12):8549–57
dc.relation.referencesRothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2016;1863(6):1218–27
dc.relation.referencesLust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ. Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine. 1992;4(2):96–100.
dc.relation.referencesLamas JR, Rodríguez-Rodríguez L, Tornero-Esteban P, Villafuertes E, Hoyas J, Abasolo L, et al. Alternative splicing and proteolytic rupture contribute to the generation of soluble IL-6 receptors (sIL-6R) in rheumatoid arthritis. Cytokine. 2013;61(3):720–3.
dc.relation.referencesDimitrov S, Lange T, Benedict C, Nowell MA, Jones SA, Scheller J, et al. Sleep enhances IL‐6 trans‐signaling in humans. FASEB J. 2006;20(12):2174–6.
dc.relation.referencesChalaris A, Gewiese J, Paliga K, Fleig L, Schneede A, Krieger K, et al. ADAM17- mediated shedding of the IL6R induces cleavage of the membrane stub by γ secretase. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2010;1803(2):234–45.
dc.relation.referencesMatthews V, Schuster B, Schütze S, Bussmeyer I, Ludwig A, Hundhausen C, et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem. 2003;278(40):38829–39.
dc.relation.referencesSchumacher N, Meyer D, Mauermann A, von der Heyde J, Wolf J, Schwarz J, et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J Biol Chem. 2015;290(43):26059–71.
dc.relation.referencesScheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (BBA)- Molecular Cell Res. 2011;1813(5):878–88.
dc.relation.referencesStahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Yancopoulos GD. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science (80- ). 1995;267(5202):1349–53
dc.relation.referencesHemmann U, Gerhartz C, Heesel B, Sasse J, Kurapkat G, Grötzinger J, et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130: II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem. 1996;271(22):12999–3007
dc.relation.referencesHeinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6- type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(2):297–314.
dc.relation.referencesFlynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–72.
dc.relation.referencesSpriggs DR, Deutsch S, Kufe DW. Genomic structure, induction, and production of TNF-alpha. Immunol Ser. 1992;56:3–34.
dc.relation.referencesKriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988;53(1):45–53.
dc.relation.referencesTartaglia LA, Pennica D, Goeddel D V. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem. 1993;268(25):18542–8
dc.relation.referencesHsu H, Xiong J, Goeddel D V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell. 1995;81(4):495–504.
dc.relation.referencesHsu H, Huang J, Shu H-B, Baichwal V, Goeddel D V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996;4(4):387–96.
dc.relation.referencesTakeuchi M, Rothe M, Goeddel D V. Anatomy of TRAF2: distinct domains for nuclear factor-κB activation and association with tumor necrosis factor signaling proteins. J Biol Chem. 1996;271(33):19935–42.
dc.relation.referencesVallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.
dc.relation.referencesChen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol. 2005;7(8):758– 65.
dc.relation.referencesChen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol. 2005;7(8):758– 65.
dc.relation.referencesCaton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. Vol. 89, Journal of periodontology. Wiley Online Library; 2018. p. S1–8.
dc.relation.referencesKinane DF, Peterson M, Stathopoulou PG. Environmental and other modifying factors of the periodontal diseases. Periodontol 2000. 2006;40(1):107–19.
dc.relation.referencesLalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7(12):738–48.
dc.relation.referencesEke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20
dc.relation.referencesFeres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016;72(1):30–53.
dc.relation.referencesKinane DF, Demuth DR, Gorr S-U, Hajishengallis GN, Martin MH. Human variability in innate immunity. Periodontol 2000. 2007;45:14–34
dc.relation.referencesKinane DF, Hajishengallis G. Polymicrobial infections, biofilms, and beyond. J Clin Periodontol. 2009;36(5):404–5.
dc.relation.referencesBenakanakere M, Kinane DF. Innate cellular responses to the periodontal biofilm. Periodontal Dis. 2012;15:41–55.
dc.relation.referencesGemmell E, Marshall RI, Seymour GJ. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol 2000. 1997;14(1):112–43
dc.relation.referencesSalud M de. IV Estudio Nacional de Salud Bucal. ENSAB IV. Situación en Salud Bucal. Para Saber cómo estamos y saber qué hacemos. Ministerio de Salud, República de Colombia Bogotá; 2014.
dc.relation.referencesBibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, Garcia FAR, et al. Screening for obstructive sleep apnea in adults: US Preventive Services Task Force recommendation statement. Jama. 2017;317(4):407–14.
dc.relation.referencesEguía VM, Cascante JA. Síndrome de apnea-hipopnea del sueño: Concepto, diagnóstico y tratamiento médico. In: Anales del Sistema Sanitario de Navarra. SciELO Espana; 2007. p. 53–74.
dc.relation.referencesTietjens JR, Claman D, Kezirian EJ, De Marco T, Mirzayan A, Sadroonri B, et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019;8(1):e010440.
dc.relation.referencesDempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.
dc.relation.referencesLloberes P, Durán-Cantolla J, Martínez-García MÁ, Marín JM, Ferrer A, Corral J, et al. Diagnóstico y tratamiento del síndrome de apneas-hipopneas del sueño. Arch Bronconeumol. 2011;47(3):143–56.
dc.relation.referencesJordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383(9918):736–47.
dc.relation.referencesÁlvarez-Sala JL, Calle M, Fernández JM, Martínez R, Rodríguez JL. Apnea obstructiva del sueño. Inf Ter Sist Nac Salud. 1999;23(5):121–31.
dc.relation.referencesSenaratna C V, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81.
dc.relation.referencesCruz AA. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization; 2007.
dc.relation.referencesBenjafield A V, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98.
dc.relation.referencesHidalgo-Martínez P, Lobelo R. Epidemiología mundial, latinoamericana y colombiana y mortalidad del síndrome de apnea-hipopnea obstructiva del sueño (SAHOS). Rev la Fac Med. 2017;65(1Sup):17–20.
dc.relation.referencesWang HF, He FQ, Xu CJ, Li DM, Sun XJ, Chi YT, et al. Association between the interleukin-1β C-511T polymorphism and periodontitis: a meta-analysis in the Chinese population. Genet Mol Res. 2017;16(1):1–9.
dc.relation.referencesKarimbux NY, Saraiya VM, Elangovan S, Allareddy V, Kinnunen T, Kornman KS, et al. Interleukin‐1 gene polymorphisms and chronic periodontitis in adult whites: a systematic review and meta‐analysis. J Periodontol. 2012;83(11):1407–19.
dc.relation.referencesRogus J, Beck JD, Offenbacher S, Huttner K, Iacoviello L, Latella MC, et al. IL1B gene promoter haplotype pairs predict clinical levels of interleukin-1β and C reactive protein. Hum Genet. 2008;123(4):387–98.
dc.relation.referencesGok I, Huseyinoglu N, Ilhan D. Genetic polymorphisms variants in interleukin-6 and interleukin-1beta patients with obstructive sleep apnea syndrome in East Northern Turkey. Med Glas. 2015;12(2).
dc.relation.referencesWu W, Li Z, Tang T, Wu J, Liu F, Gu L. 5‐HTR2A and IL‐6 polymorphisms and obstructive sleep apnea‐hypopnea syndrome. Biomed reports. 2016;4(2):203–8
dc.relation.referencesLarkin EK, Patel SR, Zhu X, Tracy RP, Jenny NS, Reiner AP, et al. A Study of The Relationship between The Interleukin‐6 Gene and Obstructive Sleep Apnea. Clin Transl Sci. 2010;3(6):337–9.
dc.relation.referencesCosta AM, Guimarães MCM, de Souza ER, Nóbrega OT, Bezerra ACB. Interleukin 6 (G-174C) and tumour necrosis factor-alpha (G-308A) gene polymorphisms in geriatric patients with chronic periodontitis. Gerodontology. 2010 Mar;27(1):70–5.
dc.relation.referencesVgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab. 1997;82(5):1313–6
dc.relation.referencesDosseva-Panova V, Mlachkova A, Popova C, Kicheva M. EVALUATION OF INTERLEUKIN-6, LYMPHOTOXIN-alpha AND TNF-alpha GENE POLYMORPHISMS IN CHRONIC PERIODONTITIS. J IMAB. 2015;21(3):868–75.
dc.relation.referencesHaffajee AD. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000. 1994;5:78–111.
dc.relation.referencesAlbandar JM, Brunelle JA, Kingman A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988‐1994. J Periodontol. 1999;70(1):13–29.
dc.relation.referencesVan Dyke TE, van Winkelhoff AJ. Infection and inflammatory mechanisms. J Clin Periodontol. 2013;40:S1–7.
dc.relation.referencesKoziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep. 2014;16(3):408
dc.relation.referencesNizam N, Basoglu OK, Tasbakan MS, Nalbantsoy A, Buduneli N. Salivary cytokines and the association between obstructive sleep apnea syndrome and periodontal disease. J Periodontol. 2014;85(7):e251–8
dc.relation.referencesVan Dyke TE, Dave S. Risk factors for periodontitis. J Int Acad Periodontol. 2005;7(1):3.
dc.relation.referencesYoung T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. Jama. 2004;291(16):2013–6.
dc.relation.referencesLoke W, Girvan T, Ingmundson P, Verrett R, Schoolfield J, Mealey BL. Investigating the association between obstructive sleep apnea and periodontitis. J Periodontol. 2015;86(2):232–43.
dc.relation.referencesAhmad NE, Sanders AE, Sheats R, Brame JL, Essick GK. Obstructive sleep apnea in association with periodontitis: a case–control study. Am Dent Hyg Assoc. 2013;87(4):188–99.
dc.relation.referencesSaito T, Shimazaki Y, Koga T, Tsuzuki M, Ohshima A. Relationship between upper body obesity and periodontitis. J Dent Res. 2001;80(7):1631–6.
dc.relation.referencesZhang X, Liu R-Y, Lei Z, Zhu Y, Huang J-A, Jiang X, et al. Genetic variants in interleukin-6 modified risk of obstructive sleep apnea syndrome. Int J Mol Med. 2009;23(4):485–93.
dc.relation.referencesSong Z, Song Y, Yin J, Shen Y, Yao C, Sun Z, et al. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. 2012;
dc.relation.referencesLembo D, Caroccia F, Lopes C, Moscagiuri F, Sinjari B, D’Attilio M. Obstructive sleep apnea and periodontal disease: a systematic review. Medicina (B Aires). 2021;57(6):640.
dc.relation.referencesTrevilatto PC, de Souza Pardo AP, Scarel-Caminaga RM, de Brito Jr RB, Alvim Pereira F, Alvim-Pereira CC, et al. Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians. Arch Oral Biol. 2011;56(1):54–62.
dc.relation.referencesHuang HY, Zhang JC. Investigation on the association of interleukin-1 genotype polymorphism with chronic periodontitis. Hua xi kou Qiang yi xue za zhi= Huaxi Kouqiang Yixue Zazhi= West China J Stomatol. 2004;22(5):415–9.
dc.relation.referencesTanaka K, Miyake Y, Hanioka T, Arakawa M. Relationship between IL1 gene polymorphisms and periodontal disease in Japanese women. DNA Cell Biol. 2014;33(4):227–33.
dc.relation.referencesSchulz S, Stein JM, Altermann W, Klapproth J, Zimmermann U, Reichert Y, et al. Single nucleotide polymorphisms in interleukin-1gene cluster and subgingival colonization with Aggregatibacter actinomycetemcomitans in patients with aggressive periodontitis. Hum Immunol. 2011;72(10):940–6.
dc.relation.referencesRibeiro MSM, Pacheco RBA, Fischer RG, Macedo JMB. Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility. Contemp Clin Dent. 2016;7(3):349.
dc.relation.referencesDomínguez-Pérez RA, Loyola-Rodriguez JP, Abud-Mendoza C, Alpuche-Solis AG, Ayala-Herrera JL, Martínez-Martínez RE. Association of cytokines polymorphisms with chronic peridontitis and rheumatoid arthritis in a Mexican population. Acta Odontol Scand. 2017 May;75(4):243–8.
dc.relation.referencesHong S-J, Kang SW, Kim SK, Kim YS, Ban JY. Lack of association between interleukin-1β gene polymorphism (rs16944) and chronic periodontitis: from a case control studies to an updated meta-analysis. Dis Markers. 2018;2018.
dc.relation.referencesLiu X, Li H. A Systematic Review and Meta-Analysis on Multiple Cytokine Gene Polymorphisms in the Pathogenesis of Periodontitis. Front Immunol. 2021;12:713198.
dc.relation.referencesTang TY, Zhou XX, Huang H, Huang QD. Relationship between IL-1β polymorphisms and obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci. 2017;21(13):3120–8.
dc.relation.referencesMajumder P, Panda SK, Ghosh S, Dey SK. Interleukin gene polymorphisms in chronic periodontitis: a case-control study in the Indian population. Arch Oral Biol. 2019;101:156–64.
dc.relation.referencesKomatsu Y, Galicia JC, Kobayashi T, Yamazaki K, Yoshie H. Association of interleukin‐1 receptor antagonist+ 2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. Int J Immunogenet. 2008;35(2):165–70.
dc.relation.referencesKobayashi T, Murasawa A, Ito S, Yamamoto K, Komatsu Y, Abe A, et al. Cytokine gene polymorphisms associated with rheumatoid arthritis and periodontitis in Japanese adults. J Periodontol. 2009 May;80(5):792–9.
dc.relation.referencesShete AR, Joseph R, Vijayan NN, Srinivas L, Banerjee M. Association of Single Nucleotide Gene Polymorphism at Interleukin‐1β+ 3954,− 511, and− 31 in Chronic Periodontitis and Aggressive Periodontitis in Dravidian Ethnicity. J Periodontol. 2010;81(1):62–9.
dc.relation.referencesAmirisetty R, Patel RP, Das S, Saraf J, Jyothy A, Munshi A. Interleukin 1ß (+ 3954,-511 and-31) polymorphism in chronic periodontitis patients from North India. 2015
dc.relation.referencesHuang W, He B-Y, Shao J, Jia X-W, Yuan Y-D. Interleukin-1β rs1143627 polymorphism with susceptibility to periodontal disease. Oncotarget. 2017;8(19):31406
dc.relation.referencesBrodzikowska A, Górska R, Kowalski J. Interleukin-1 genotype in periodontitis. Arch Immunol Ther Exp (Warsz). 2019;67(6):367–73
dc.relation.referencesDing C, Ji X, Chen X, Xu Y, Zhong L. TNF-α gene promoter polymorphisms contribute to periodontitis susceptibility: evidence from 46 studies. J Clin Periodontol. 2014 Aug;41(8):748–59.
dc.relation.referencesRiha RL, Brander P, Vennelle M, Mcardle N, Kerr SM, Anderson NH, et al. Tumour necrosis factor-α (− 308) gene polymorphism in obstructive sleep apnoea– hypopnoea syndrome. Eur Respir J. 2005;26(4):673–8.
dc.relation.referencesCoventry J, Griffiths G, Scully C, Tonetti M. Periodontal disease. Bmj. 2000;321(7252):36–9.
dc.relation.referencesAzab E, Elfasakhany FM. Effect of Tumor Necrosis Factor Alpha (TNF-α)-308 and 1031 Gene Polymorphisms on Periodontitis among Saudi Subjects. Saudi Dent J. 2022
dc.relation.referencesShi L, Zhang L, Zhang D, Zhou J, Jiang X, Jin Y, et al. Association between TNF‐α G‐308A (rs1800629) polymorphism and susceptibility to chronic periodontitis and type 2 diabetes mellitus: a meta‐analysis. J Periodontal Res. 2021;56(2):226–35
dc.relation.referencesTrombone APF, Cardoso CR, Repeke CE, Ferreira SBJ, Martins WJ, Campanelli AP, et al. Tumor necrosis factor-alpha -308G/A single nucleotide polymorphism and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased periodontal tissues. J Periodontal Res. 2009 Oct;44(5):598–608.
dc.relation.referencesMoreira PR, Costa JE, Gomez RS, Gollob KJ, Dutra WO. TNFA and IL10 gene polymorphisms are not associated with periodontitis in Brazilians. Open Dent J. 2009 Sep;3:184–90.
dc.relation.referencesMenezes NG de, Colombo APV. Lack of association between the TNF-alpha -308 (G/A) genetic polymorphism and periodontal disease in Brazilians. Braz Oral Res 2008;22(4):322–7.
dc.relation.referencesHuang J, Liao N, Huang Q-P, Xie Z-F. Association between tumor necrosis factor α-308G/A polymorphism and obstructive sleep apnea: a meta-analysis. Genet Test Mol Biomarkers. 2012;16(4):246–51.
dc.relation.referencesWu Y, Cao C, Wu Y, Zhang C, Zhu C, Ying S, et al. TNF-α-308G/A polymorphism contributes to obstructive sleep apnea syndrome risk: evidence based on 10 case control studies. PLoS One. 2014;9(9):e106183
dc.relation.referencesSaygun I, Nizam N, Keskiner I, Bal V, Kubar A, Açıkel C, et al. Salivary infectious agents and periodontal disease status. J Periodontal Res. 2011 Apr;46(2):235–9.
dc.relation.referencesRico-Rosillo MG, Vega-Robledo GB. [Sleep and immune system]. Rev Alerg Mex. 2018;65(2):160–70.
dc.relation.referencesNadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin sleep Med JCSM Off Publ Am Acad Sleep Med. 2013 Oct;9(10):1003–12.
dc.relation.referencesIacoviello L, Di Castelnuovo A, Gattone M, Pezzini A, Assanelli D, Lorenzet R, et al. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear
dc.relation.referencesChen H, Wilkins LM, Aziz N, Cannings C, Wyllie DH, Bingle C, et al. Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum Mol Genet. 2006 Feb;15(4):519–29.
dc.relation.referencesHall SK, Perregaux DG, Gabel CA, Woodworth T, Durham LK, Huizinga TWF, et al. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein. Arthritis Rheum. 2004 Jun;50(6):1976–83.
dc.relation.referencesViguera E, Canceill D, Ehrlich SD. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 2001 May;20(10):2587–95
dc.relation.referencesCheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020 Jan;12(1):2.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPeriodontitis
dc.subject.proposalApnea obstructiva del sueño
dc.subject.proposalSNV
dc.subject.proposalCitoquinas
dc.subject.proposalPeriodontitis
dc.subject.proposalObstructive sleep apnea
dc.subject.proposalSNV
dc.subject.proposalcytokines
dc.title.translatedGenotyping of SNVs of the promoter region of the genes IL-6, IL-1β, TNF-a associated to inflammatory response in Obstructive Sleep Apnea and Periodontal Disease phenotypes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleGenotipificación de SNVs de la región promotora de los genes IL-6, IL-1β, TNF-α y sus niveles proteicos asociados a respuesta inflamatoria en Apnea Obstructiva del Sueño y Enfermedad Periodontal
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernamePontificia Universidad Javeriana
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito