Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLeón Peláez, Juan Diego
dc.contributor.advisorVillegas Palacio, Juan Camilo (Thesis advisor)
dc.contributor.authorArango Carvajal, Laura Isabel
dc.date.accessioned2022-08-12T21:15:05Z
dc.date.available2022-08-12T21:15:05Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81896
dc.descriptionIlustraciones
dc.description.abstractLa demanda sobre los recursos naturales se ha incrementado durante los últimos años, favorecida por el aumento poblacional, desencadenando presiones sobre los ecosistemas tropicales de montaña, y alteraciones significativas a las coberturas vegetales naturales y los usos del suelo asociados. Esta dinámica a su vez puede derivar en una variación de las funciones ecosistémicas y comprometer la capacidad de dichos ecosistemas para proveer bienes y servicios. En ese sentido, se hace necesario profundizar en el conocimiento de la dinámica de los servicios en el tiempo y sus interacciones, especialmente aquellos relacionados con los recursos agua y suelo, y que pueden ser susceptibles a los cambios de las coberturas vegetales. En este trabajo, se evalúan las relaciones de trade offs y sinergias de los servicios ecosistémicos potenciales de regulación hídrica y control de la erosión, en la cuenca estratégica de Rio Grande ubicada en los Andes Colombianos, la cual es fundamental para el abastecimiento de agua, la generación de energía hidroeléctrica y la producción agropecuaria de la región. Se generaron mapas de coberturas de la tierra a partir de clasificaciones supervisadas basadas en píxel, sobre imágenes Landsat para los años 1997, 2009 y 2019 y se incluyeron tres escenarios hipotéticos posibles: coberturas naturales, cultivos y pastos. Posteriormente, se emplearon las herramientas de modelación SWAT y RUSLE para representar los servicios ecosistémicos en cada uno de los escenarios planteados. Las transiciones de las coberturas y la intensidad de los cambios de los servicios entre los escenarios 1997-2009, 2009-2019, 1997-2019, 2019-Coberturas naturales, 2019-Cultivos y 2019-Pastos; se evaluaron píxel a píxel, y a partir de este resultado, se implementó un indicador haciendo uso del algebra de mapas, para identificar la posibilidad de que se haya generado trade off o sinergia en cada píxel. Se encontró que, durante las últimas dos décadas, no ha habido variaciones significativas en los servicios evaluados en la cuenca, debido a la alta permanencia de las coberturas vegetales. En general las relaciones de sinergias predominaron bajo todos los escenarios, sin embargo, solo para las transiciones asociadas a 2019-Coberturas naturales se presentaron sinergias incrementales o de ganancia de los servicios. Se identificó además que, para algunas transiciones de coberturas determinadas, pueden presentarse tanto trade offs como sinergias, lo que pone en evidencia la complejidad de las asociaciones entre los factores ambientales de un ecosistema. Nuestros hallazgos indican que el conocimiento y la valoración de las interacciones entre los servicios ecosistémicos sobre escenarios actuales y futuros, son fundamentales en la definición de herramientas de gestión y planificación del territorio, especialmente en áreas estratégicas. (texto tomado de la fuente)
dc.description.abstractThe demand on natural resources has increased in recent years, favored by population growth, triggering pressures on tropical mountain ecosystems and significant alterations to natural vegetation cover and associated land uses. This dynamic in turn can lead to a variation in ecosystem functions and compromise the capacity of these ecosystems to provide goods and services. In this sense, it is necessary to deepen the knowledge of the dynamics of services over time and their interactions, especially those related to water and soil resources, which may be susceptible to changes in vegetation cover. In this work, trade-offs and synergies of potential ecosystem services of water regulation and erosion control are evaluated in the Rio Grande strategic watershed located in the Colombian Andes, which is fundamental for water supply, hydroelectric power generation and agricultural production in the region. Land cover maps were generated from supervised pixel-based classifications on Landsat images for the years 1997, 2009 and 2019 and included three possible hypothetical scenarios: natural cover, crops and pastures. Subsequently, SWAT and RUSLE modeling tools were used to represent the ecosystem services in each of the scenarios. Cover transitions and intensity of service changes between the 1997-2009, 2009-2019, 1997-2019, 2019-Natural Cover, 2019-Crops and 2019-Pasture scenarios were evaluated pixel by pixel, and based on this result, an indicator was implemented using map algebra to identify the possibility of trade off or synergy in each pixel. It was found that, during the last two decades, there have been no significant variations in the services evaluated in the basin, due to the high permanence of vegetation cover. In general, synergistic relationships predominated under all scenarios; however, only for the transitions associated with 2019-Natural Cover were there incremental synergies or gains in services. It was also identified that, for some given cover transitions, both tradeoffs and synergies can occur, highlighting the complexity of associations between environmental factors in an ecosystem. Our findings indicate that knowledge and valuation of the interactions between ecosystem services in current and future scenarios are fundamental in the definition of land management and planning tools, especially in strategic areas.
dc.format.extentxvii, 92 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.titleTrade offs y sinergias de servicios ecosistémicos potenciales con base en cambios de coberturas vegetales
dc.typeTrabajo de grado - Maestría
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.contributor.researchgroupRestauración Ecológica de Tierras Degradadas en el Trópico
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaServicios Ecosistémicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbbaspour, K. (2015). SWAT-CUP SWAT Calibration and Uncertainty Programs. In SWAT-CUP SWAT Calibration and Uncertainty Programs - A user manual
dc.relation.referencesArnold, J., Kiniry, R., Williams, E., Haney, S., & Neitsch, S. (2012). SWAT Input/Output Documentation. https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf
dc.relation.referencesAstorayme, M., García, J., Suarez, W., Felipe, O., Huggel, C., & Molina, W. (2015). Modelización hidrológica con un enfoque semidistribuido en la cuenca del río Chillón, Perú. Revista Peruana Geo Atmosférica RGPA, 4(January), 109–124. https://doi.org/10.5167/uzh-118228
dc.relation.referencesBalthazar, V., Vanacker, V., Molina, A., & Lambin, E. F. (2015). Impacts of forest cover change on ecosystem services in high Andean mountains. Ecological Indicators, 48, 63–75. https://doi.org/10.1016/j.ecolind.2014.07.043
dc.relation.referencesBarral, M. P. (2016). Tutorial para el mapeo de funciones ecosistémicas y servicios ecosistémicos con protocolo ECOSER (Vol. 1).
dc.relation.referencesBarral, M. P., Villarino, S., Levers, C., Baumann, M., Kuemmerle, T., & Mastrangelo, M. (2020). Widespread and major losses in multiple ecosystem services as a result of agricultural expansion in the Argentine Chaco. Journal of Applied Ecology, 57(12), 2485–2498. https://doi.org/10.1111/1365-2664.13740
dc.relation.referencesBarrera, J. E., Rivera, J. H., & Cadena, M. E. (2013). Influencia del sistema radical de cuatro especies vegetales en la estabilidad de laderas a movimientos masales. Cenicafé, 64(2), 59–77. http://biblioteca.cenicafe.org/bitstream/10778/531/1/arc064%2802%2959-77.pdf
dc.relation.referencesBarrios R., A. G. (2000). Distribución Espacial Del Factor Ls. Revista Forestal Venezolana, 44(1), 57–64.
dc.relation.referencesBogdan, S., Ileana, P., & Zaharia, L. (2016). The assessment of regulatory ecosystem services : the case of the sediment retention service in a mountain landscape in the Southern Romanian Carpathians. Procedia Environmental Sciences, 32, 12–27. https://doi.org/10.1016/j.proenv.2016.03.008
dc.relation.referencesBolaños-Valencia, I., Villegas-Palacio, C., López-Gómez, C. P., Berrouet, L., & Ruiz, A. (2019). Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis. Ecosystem Services, 38(65), 100942. https://doi.org/10.1016/j.ecoser.2019.100942
dc.relation.referencesBrea, J. D., & Balocchi, F. (2010). Procesos de erosión - sedimentación en cauces y cuencas. Montevideo: Unesco.
dc.relation.referencesBurkhard, B., Kroll, F., Nedkov, S., & Müller, F. (2012). Mapping ecosystem service supply , demand and budgets. Ecological Indicators, 21, 17–29. https://doi.org/10.1016/j.ecolind.2011.06.019
dc.relation.referencesChen, J., Wang, Y., Sun, J., Liang, E., Shen, M., Yang, B., Jia, X., & Zhang, J. (2021). Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau. Global Ecology and Conservation, 32(August), e01886. https://doi.org/10.1016/j.gecco.2021.e01886
dc.relation.referencesCong, W., Sun, X., Guo, H., & Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112(June 2019), 106089. https://doi.org/10.1016/j.ecolind.2020.106089
dc.relation.referencesCongedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64)(September), 3172. https://doi.org/https://doi.org/10.21105/joss.03172
dc.relation.referencesCorantioquia, & UNAL. (2015). Actualización y ajuste Plan de Ordenación y Manejo de la Cuenca de los ríos Grande y Chico. Contrato 967 de 2013.
dc.relation.referencesCord, A. F., Bartkowski, B., Beckmann, M., Dittrich, A., Hermans-Neumann, K., Kaim, A., Lienhoop, N., Locher-Krause, K., Priess, J., Schröter-Schlaack, C., Schwarz, N., Seppelt, R., Strauch, M., Václavík, T., & Volk, M. (2017). Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosystem Services, 28, 264–272. https://doi.org/10.1016/j.ecoser.2017.07.012
dc.relation.referencesDe Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7
dc.relation.referencesGarcía-Leoz, V., Villegas, J. C., Suescún, D., Flórez, C. P., Merino-Martín, L., Betancur, T., & León, J. D. (2018). Land cover effects on water balance partitioning in the Colombian Andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4), 1117–1129. https://doi.org/10.1007/s10113-017-1249-7
dc.relation.referencesGarcía Hernández, J., Foehn, A., Fluixá Sanmartín, J., Roquier, B., Brauchli, T., Paredes-Arquiola, J., & De Cesare, G. (2020). RS Minerve - Technical Manual. In Crealp (Vol.2, Issue April). https://www.crealp.ch/fr/accueil/le-crealp/telechargement-doc/category/173-manuels-utilisateur.html?download=218:rs-minerve-user-manual
dc.relation.referencesGibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16732–16737. https://doi.org/10.1073/pnas.0910275107
dc.relation.referencesGoldenberg, R., Kalantari, Z., Cvetkovic, V., Mörtberg, U., Deal, B., & Destouni, G. (2017). Distinction , quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Science of the Total Environment, 593–594, 599–609. https://doi.org/10.1016/j.scitotenv.2017.03.130
dc.relation.referencesHaines-Young, R., & Potschin-Young, M. B. (2018). Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosystem, 3:(e27108), 1–6. https://doi.org/10.3897/oneeco.3.e27108
dc.relation.referencesHe, J., Shi, X., Fu, Y., & Yuan, Y. (2020). Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China. Land Use Policy, 99(December), 105020. https://doi.org/10.1016/j.landusepol.2020.105020
dc.relation.referencesHidalgo, I. G., Paredes-Arquiola, J., Andreu, J., Lerma-Elvira, N., Lopes, J. E. G., & Cioffi, F. (2020). Hydropower generation in future climate scenarios. Energy for Sustainable Development, 59, 180–188. https://doi.org/10.1016/j.esd.2020.10.007
dc.relation.referencesHoldridge, L. R. (1987). Ecología basada en zonas de vida (No 83). Agroamérica.
dc.relation.referencesHoyos, N., Correa-Metrio, A., Jepsen, S. M., Wemple, B., Valencia, S., Marsik, M., Doria, R., Escobar, J., Restrepo, J. C., & Velez, M. I. (2019). Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada de Santa Marta, Colombia. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010094
dc.relation.referencesHurni, K., Heinimann, A., & Würsch, L. (2017). Google Earth Engine Image Pre-processing Tool : Background and Methods. https://www.cde.unibe.ch/e65013/e542846/e707304/e707386/e707390/CDE_Pre-processingTool-UserGuide_eng.pdf
dc.relation.referencesHurni, K., Schneider, A., Heinimann, A., Nong, D. H., & Fox, J. (2017). Mapping the expansion of boom crops in Mainland Southeast Asia using dense time stacks of landsat data. Remote Sensing, 9(4). https://doi.org/10.3390/rs9040320
dc.relation.referencesINEGI. (2010). Aspectos Técnicos de las Imágenes Landsat. https://www.inegi.org.mx/temas/imagenes/imgLANDSAT/doc/Aspectos_tecnicos_landsat.pdf
dc.relation.referencesJaramillo, D. (2002). Introducción a la ciencia del suelo. Escuela de Geociencias y Medio Ambiente.
dc.relation.referencesJia, X., Fu, B., Feng, X., Hou, G., Liu, Y., & Wang, X. (2014). The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecological Indicators, 43, 103–113. https://doi.org/10.1016/j.ecolind.2014.02.028
dc.relation.referencesJiménez Arcia, L. (2019). Análisis del riesgo asociado a erosión pluvial en una microcuenca en Colombia y proyecciones de pérdida de suelos bajo escenarios de cambio climático. Universidad de Antioquia.
dc.relation.referencesJones, L., Norton, L., Austin, Z., Browne, A. L., Donovan, D., Emmett, B. A., Grabowski, Z. J., Howard, D. C., Jones, J. P. G., Kenter, J. O., Manley, W., Morris, C., Robinson, D. A., Short, C., Siriwardena, G. M., Stevens, C. J., Storkey, J., Waters, R. D., & Willis, G. F. (2016). Land Use Policy Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy, 52, 151–162.
dc.relation.referencesKearney, S. P., Fonte, S. J., García, E., Siles, P., Chan, K. M. A., & Smukler, S. M. (2019). Evaluating ecosystem service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador. Ecological Indicators, 105(April 2017), 264–278. https://doi.org/10.1016/j.ecolind.2017.08.032
dc.relation.referencesKirby, M., & Morgan, R. (1984). Erosión de suelos. Editorial Limusa.
dc.relation.referencesKulkarni, A. D., & Lowe, B. (2016). Random Forest Algorithm for Land Cover Classification. International Journal on Recent and Innovation Trends in Computing and Communication, 4(3), 58–63. https://scholarworks.uttyler.edu/cgi/viewcontent.cgi?rticle=1002&context=compsci_fac
dc.relation.referencesLabrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 203, 127–139. https://doi.org/10.1016/j.agee.2015.01.027
dc.relation.referencesLe Clec’h, S., Oszwald, J., Decaens, T., Desjardins, T., Dufour, S., Grimaldi, M., Jegou, N., & Lavelle, P. (2016). Mapping multiple ecosystem services indicators : Toward an objective-oriented approach. Ecological Indicators, 69, 508–521. https://doi.org/10.1016/j.ecolind.2016.05.021
dc.relation.referencesLi, B., Chen, N., Wang, Y., & Wang, W. (2018). Spatio-temporal quantification of the trade-offs and synergies among ecosystem services based on grid-cells: A case study of Guanzhong Basin, NW China. Ecological Indicators, 94(January), 246–253. https://doi.org/10.1016/j.ecolind.2018.06.069
dc.relation.referencesLorca, P., Soley, R., & Boyando, D. (2015). Identificación de los principales Trade Offs espaciales, temporales e interpersonales en Santa Rosa de Cauca. https://www.iucn.org/sites/dev/files/content/documents/obj_3_trade_offs_santa_rosa_de_cauca.pdf
dc.relation.referencesLujano, E., David Sosa, J., Lujano iD, R., & Lujano iD, A. (2020). Performance evaluation of hydrological models GR4J, HBV and SOCONT for the forecast of average daily flows in the Ramis river basin, Peru. Revista Ingenieria UC, 27(2), 189–199. https://gdex.cr.usgs.gov/gdex/
dc.relation.referencesMachado, J. (2018). Impacto Potencial de pérdida del servicio ecosistémico intermedio de control de erosión por cambios en el capital natural del suelo. Caso de estudio: Cuenca de Riogrande, Departamento de Antioquia [Universidad Nacional de Colombia]. https://doi.org/10.1016/j.ecolind.2017.07.051
dc.relation.referencesMachado, J., Villegas-Palacio, C., Loaiza, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96(May 2018), 116–126. https://doi.org/10.1016/j.ecolind.2018.08.060
dc.relation.referencesMartín-López, B., González, J., & Vilardy, S. (2012). Guía Docente Ciencias de la Sostenibilidad. CO-BAC, Bogotá. https://doi.org/10.1016/j.ajhg.2011.11.018
dc.relation.referencesMiller, G. R., Baldocchi, D. D., Law, B. E., & Meyers, T. (2007). An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 30(5), 1065–1081. https://doi.org/10.1016/j.advwatres.2006.10.002
dc.relation.referencesMohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O., Sharaf, M., & Harsanyie, E. (2020). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment, 20(December 2019), 100375. https://doi.org/10.1016/j.rsase.2020.100375
dc.relation.referencesMoriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715
dc.relation.referencesMouchet, M. A., Lamarque, P., Martín-López, B., Crouzat, E., Gos, P., Byczek, C., & Lavorel, S. (2014). An interdisciplinary methodological guide for quantifying associations between ecosystem services. Global Environmental Change, 28(1), 298–308. https://doi.org/10.1016/j.gloenvcha.2014.07.012
dc.relation.referencesNeitsch, S. ., Arnold, J. ., Kiniry, J. ., & Williams, J. . (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, 1– 647. https://doi.org/10.1016/j.scitotenv.2015.11.063
dc.relation.referencesNeugarten, R. A., Langhammer, P. F., Osipova, E., Bagstad, K. J., Bhagabati, N., Butchart, S. H. M., Dudley, N., Elliott, V., Gerber, L. R., Arrellano, C. G., Ivanić, K., Kettunen, M., Mandle, L., Merriman, J. C., Mulligan, M., Peh, K. S., Raudsepp- hearne, C., Semmens, D. J., Stolton, S., ... Groves, C. (2018). Tools for measuring, modelling , and valuing ecosystem services (C. Groves (ed.)).
dc.relation.referencesNunes, A. N., Almeida, A. C. De, & Coelho, C. O. A. (2011). Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography, 31(2), 687–699. https://doi.org/10.1016/j.apgeog.2010.12.006
dc.relation.referencesOlofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
dc.relation.referencesOlofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031
dc.relation.referencesPerez, J. D., & Mesa, O. J. (2010). Estimacion del factor de erosividad de la lluvia en Colombia. XV Seminario Nacional de Hidraulica e Hidrologia, January 2002. http://www.bdigital.unal.edu.co/4281/1/DA3468.pdf
dc.relation.referencesPoveda, G., Jaramillo, L., & Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98–118. https://doi.org/10.1002/2013WR014087
dc.relation.referencesQu, L., Chen, Z., Li, M., Zhi, J., & Wang, H. (2021). Accuracy improvements to pixel- based and object-based LULC classification with auxiliary datasets from google earth engine. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030453
dc.relation.referencesRamírez, C. D. (2014). Determinantes Espacialmente Explícitos de Transiciones en Coberturas Terrestres con Significativo Impacto para la Provisión de Servicios Ecosistémicos: Análisis Temporal y Espacial, 1986-2012. Universidad Nacional de Colombia.
dc.relation.referencesRosito, J. (2015). Ecohidrología y servicios de regulación hidrológica en cuatro subcuencas de la Reserva de la Biosfera Sierra de la Minas (RBSM) y sus aplicaciones para la gestión de los recursos hídricos [Universidad de Alicante]. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUK EwjisoLyhIzQAhVDxSYKHX20BaQQFggnMAI&url=https://rua.ua.es/dspace/bitstream/10045/53266/3/tesis_juan_carlos_rosito_monzon.pdf&usg=AFQjCNGZ0mwlQdnz8o_ZeGvrxGBqWUyw4g&sig2=YWESzQyK0J6R1
dc.relation.referencesRozario, P. F., Oduor, P., Kotchman, L., & Kangas, M. (2017). Transition Modeling of Land-Use Dynamics in the Pipestem Creek, North Dakota, USA. Journal of Geoscience and Environment Protection, 05(03), 182–201. https://doi.org/10.4236/gep.2017.53013
dc.relation.referencesRueda, O. A. (2008). Modelamiento de la humedad del suelo en la región cafetera de Colombia bajo diferentes coberturas vegetales.
dc.relation.referencesRuiz, C. A., Hurtado, S. L., & Parrado, C. A. (2020). Modeling interactions among multiple ecosystem services. A critical review. Ecological Modelling, 429(May), 1–22. https://doi.org/10.1016/j.ecolmodel.2020.109103
dc.relation.referencesSchmalz, B., Kruse, M., Kiesel, J., Müller, F., & Fohrer, N. (2016). Water-related ecosystem services in Western Siberian lowland basins — Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecological Indicators, 71, 55–65. https://doi.org/10.1016/j.ecolind.2016.06.050
dc.relation.referencesSepúlveda, L. (2013). Modelo para la definición de áreas estratégicas para la conservación de suelos a partir de la determinación de la susceptibilidad a la erosión hídrica. Universidad de Antioquia.
dc.relation.referencesSpake, R., Lasseur, R., Crouzat, E., Bullock, J. M., Lavorel, S., Parks, K. E., Schaafsma, M., Bennett, E. M., Maes, J., Mulligan, M., Mouchet, M., Peterson, G. D., Schulp, C. J. E., Thuiller, W., Turner, M. G., Verburg, P. H., & Eigenbrod, F. (2017). Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 47, 37–50. https://doi.org/10.1016/j.gloenvcha.2017.08.004
dc.relation.referencesSuescún, D., León, J. D., Villegas, J. C., García-Leoz, V., Correa-Londoño, G. A., & Flórez, C. P. (2018). ENSO and rainfall seasonality affect nutrient exchange in tropical mountain forests. Ecohydrology, e2056, 1–10. https://doi.org/10.1002/eco.2056
dc.relation.referencesSuescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., & Correa-Londoño, G. A. (2017). Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Regional Environmental Change, 17(3), 827–839. https://doi.org/10.1007/s10113-016-1071-7
dc.relation.referencesSun, X., Shan, R., & Liu, F. (2020). Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological ecosystem services in different topographic basins. Journal of Cleaner Production, 268, 1–12. https://doi.org/10.1016/j.jclepro.2020.122338
dc.relation.referencesTarigan, S. D., Wiegand, K., Dislich, C., Slamet, B., Heinonen, J., & Meyer, K. (2016). Mitigation options for improving the ecosystem function of water flow regulation in a watershed with rapid expansion of oil palm plantations. Sustainability of Water Quality and Ecology, 8, 4–13. https://doi.org/10.1016/j.swaqe.2016.05.001
dc.relation.referencesToohey, R. C., Boll, J., Brooks, E. S., & Jones, J. R. (2018). Effects of land use on soil properties and hydrological processes at the point, plot, and catchment scale in volcanic soils near Turrialba, Costa Rica. Geoderma, 315(October 2016), 138–148. https://doi.org/10.1016/j.geoderma.2017.11.044
dc.relation.referencesUPRA, U. de P. R. A.-. (2021). Evaluaciones Agropecuarias Municipales – EVA. Módulo de Consulta de Información. https://www.upra.gov.co/web/guest/consulta-de-informacion
dc.relation.referencesUribe, N., Srinivasan, R., Corzo, G., Arango, D., & Solomatine, D. (2020). Spatio-temporal critical source area patterns of runoff pollution from agricultural practices in the Colombian Andes. Ecological Engineering, 149(April), 105810. https://doi.org/10.1016/j.ecoleng.2020.105810
dc.relation.referencesValencia, S., Villegas, J. C., & Salazar, J. F. (2018). Implementación del modelo swat para representar caudales medios y extremos en una cuenca andina tropical: caso de estudio río chico, antioquia. XXIII Seminario Nacional de Hidrología e Hidráulica, Ibagué-2018, August.
dc.relation.referencesVallet, A., Locatelli, B., Levrel, H., Wunder, S., Seppelt, R., Scholes, R. J., & Oszwald, J. (2018). Relationships Between Ecosystem Services : Comparing Methods for Assessing Tradeoffs and Synergies. Ecological Economics, 150, 96–106. https://doi.org/10.1016/j.ecolecon.2018.04.002
dc.relation.referencesVanacker, V., Bellin, N., Molina, A., & Kubik, P. W. (2014). Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model. Landscape Ecology, 29(2), 293–309.
dc.relation.referencesVanonckelen, S., Lhermitte, S., & Rompaey, A. Van. (2015). The effect of atmospheric and topographic correction on pixel-basedimage composites: Improved forest cover detection in mountainenvironments. International Journal of Applied Earth Observation and Geoinformation, 35(PB), 320–328. https://doi.org/10.1016/j.jag.2014.10.006
dc.relation.referencesVera, P. (2018). Trade off entre servicios ecosistémicos y sus implicaciones en el diseño de un esquema de pagos por servicios ambientales [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/71159/
dc.relation.referencesVera Ramirez, P. Y. (2018). Trade off entre servicios ecosistémicos y sus implicaciones en el diseño de un esquema de pagos por servicios ambientales. http://bdigital.unal.edu.co/71159/
dc.relation.referencesWischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration.
dc.relation.referencesWolff, S., Schulp, C. J. E., Kastner, T., & Verburg, P. H. (2017). Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecological Economics, 136, 14–29. https://doi.org/10.1016/j.ecolecon.2017.02.005
dc.relation.referencesZhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585(March), 124822. https://doi.org/10.1016/j.jhydrol.2020.124822
dc.relation.referencesZhao, M., Peng, J., Liu, Y., Li, T., & Wang, Y. (2018). Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China. Ecological Economics, 152(June), 106-117. https://doi.org/10.1016/j.ecolecon.2018.04.023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembErosión de suelos
dc.subject.lembCobertura vegetal
dc.subject.proposalland cover transitions
dc.subject.proposalHydrologic regulation
dc.subject.proposalmodeling
dc.subject.proposalsynergies
dc.subject.proposalTransiciones de coberturas
dc.subject.proposalControl a la erosión del suelo
dc.subject.proposalServicios ecosistémicos potenciales
dc.subject.proposalTrade offs
dc.subject.proposalRegulación hídrica
dc.subject.proposalSoil erosion control
dc.subject.proposalPotential ecosystem services
dc.title.translatedTrade offs and synergies of potential ecosystem services based on landcover changes
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambiental


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito