Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorNEIRA ARENAS, GUSTAVO
dc.contributor.authorOchoa Correa, Lucía Inés
dc.date.accessioned2022-08-16T16:10:14Z
dc.date.available2022-08-16T16:10:14Z
dc.date.issued2022-08-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81915
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractEste trabajo presenta una posible ruta de beneficio para minerales de tierras raras (REE) y otros minerales como magnetita, ilmenita, rutilo y circones contenidos en las arenas negras de un proceso industrial de minería aluvial de oro. Esta ruta de beneficio comprende separaciones por tamaño, magnéticas, gravimétricas y electrostáticas de una corriente que hace parte de los relaves actuales de la explotación de un depósito de placer aluvial de oro ubicado en el Bajo Cauca Antioqueño (Colombia). Esta corriente presenta una concentración de minerales pesados superior al 50%, distribuidos en diferentes rangos de tamaño y asociaciones mineralógicas. Se encontró que la monacita, mineral de tierras raras de mayor interés, se encuentra concentrado en la fracción gruesa (+20 mallas, tamaño mayor a 0,85 milímetros), con un 1,4% de participación en esta fracción, esta fracción de gruesos a su vez equivale al 7% del total de la corriente sometida a estudio, y en la fracción fina (-70 mallas, tamaños menores a 0,212 milímetros), con un 0,23% de participación en esta fracción que a su vez equivale al 27% de la corriente de este estudio. Partiendo de un muestreo sistemático de la corriente de interés del proceso actual de beneficio aluvial, ensayos de separación y con ayuda del software LIMN®, se establecieron parámetros para la concentración de monacita y otros minerales de interés. La caracterización óptica, física, química y mineralógica de los concentrados obtenidos permitió inferir que, para lograr la recuperación de los minerales de tierras raras puede ser necesario un proceso de liberación mediante conminución, a fin de alcanzar los requerimientos de comercialización de concentrados, esto requiere un análisis técnico económico más profundo. El estudio de calidad realizado evidenció la potencialidad de aprovechamiento de minerales principales de hierro (como magnetita), titanio (ilmenita), monacita y circones, con variadas asociaciones mineralógicas. (Texto tomado de la fuente)
dc.description.abstractThis paper presents a possible route to rare minerals benefit, and also other minerals such as magnetite, ilmenite, rutile, and circones, present in the black sands of an industrial aluvial gold mining company. This benefit route includes size, magnetic, gravimetric, and electrostatic separation of one of the currents that are part of the dredge tails in the mining process of an aluvial placer deposit located in El Bajo Cauca Antioqueño (Colombia). This current contains a heavy mineral concentration higher than 50%, distributed in different ranges of size and mineralogical associations. It was found that the monacite, the rare sands mineral of greater interest is concentrated in the gross section (+20 mesh, size bigger than 0.85 millimeters), with a 1,4% participation in this fraction, which represents the 7% of the total current under study, and in the fine fraction (-70 mesh, sizes under 0,212 millimeters), with a 0.23% of participation in this fraction, which also represents 27% of the current under study. Starting from systematic sampling of the currents of interest of the actual aluvial benefit process and with the support of the Software LIMN®, separation test and based of the, the parameters of concentration of the minerals of interest were stablished, for monacita. The optical, physical, chemical, and mineralogical characterization of the concentrates obtained, allowed to infer that the recovery of the minerals in the rare sands may require a comminution liberation process, with the purpose of achieving the requirements to commercialize the concentrates, which also requires a deeper technical and economic analysis. The quality study, showed the potential of the exploitation of the principal minerals of iron (such us magnetite), titanium (ilmenite), monacite and circones, with various mineralogical associations.
dc.description.sponsorshipMineros Aluvial SAS BIC
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.description.sponsorshipLeeds University
dc.format.extentxx, 128 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.titleEstudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.contributor.researchgroupGrupo de Explotacion y Aprovechamiento Sostenible de Recursos Minerales - Geamin
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Minerales
dc.description.researchareaBeneficio de Minerales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesASTM C 1444 - 00. (2000). Standard test method for measuring the angle of repose of free-flowing mold. ASTM International, 1, 15–16.
dc.relation.referencesBradley S. Van Gosen, Philip L. Verplanck, Robert R. Seal II, K. R. L., & Gambogi, and J. (2013). Rare-Earth Elements Chapter O of Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 – O U . S . Department of the Interior. USGS - U.S. Geological Survey, 01–031. https://doi.org/https://doi.org/10.3133/pp1802O
dc.relation.referencesBustamante, O. M., Gaviria, A. C., & Restrepo, O. J. (2008). CONCENTRACIÓN DE MINERALES (Vol. 17, Issue 34, pp. 39–46). IM CIMEX.
dc.relation.referencesCarpco Inc. (1995). OPERATING MANUAL FOR LABORATORY ELECTROSTTATIC SEPARATOR HT(15, 25, 36) 111-15. SEPOR.
dc.relation.referencesD2320-98, A. D. (1998). Standard Test Method for Density of Solid Pitch (Pycnometer Method ). 98(Reapproved 2003), 1–3.
dc.relation.referencesDíaz, M. (1992). Primer Estimado Producción Arenas Negras para Mineros Nacionales-Confidencial.
dc.relation.referencesDushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103521
dc.relation.referencesEcheverri L., F., & Parra B., J. J. (2019). Los lantánidos: ni tierras ni raras. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 291–296.
dc.relation.referencesElsner, H. (2010). Assessment Manual: Heavy Minerals of Economic Importance. (Ilmenite and Leucoxene, Rutile, Zircon, Monazite and Xenotime, Kyanite, Sillimanite and Andalusite, Staurolite, Garnet, Chromite, Magnetite, Cassiterite, Columbite-Tantalite,Wolframite and Scheeli.
dc.relation.referencesElsner, H. (2013). Zircon – insufficient supply in the future? DERA Deutsche Rohstoffagentur.
dc.relation.referencesEvans, A. (1993). Ore Geology and Industrial Minerals. In B. Company (Ed.), Blackwell Science (Third, Vol. 39, Issue 5).
dc.relation.referencesFrimmel, H. E., & James, C. S. (2021). Placer Deposits and Processes (D. Alderton & S. A. B. T.-E. of G. (Second E. Elias (eds.); pp. 877–898). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00004-7
dc.relation.referencesGalsin, J. S. (2019). Chapter 18 - Magnetism. In J. S. B. T.-S. S. P. Galsin (Ed.), Solid State Physics: An Introduction to Theory (pp. 383–405). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817103-5.00018-9
dc.relation.referencesGambogi, J. (2021). Rare Earths. In Mineral Commodity Summaries. U.S. Geological Survey.
dc.relation.referencesGarzanti, E., & Andò, S. (2019). Heavy Minerals for Junior Woodchucks. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030148
dc.relation.referencesGonçalves, C., & Braga, P. (2019). Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals, 9(3), 176. https://doi.org/10.3390/min9030176
dc.relation.referencesGupta, A, & Yan, D. S. (2006a). Chapter 15 - Gravity Separation. In A Gupta & D. S. B. T.-M. P. D. and O. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (pp. 494–554). Elsevier Science. https://doi.org/10.1016/B978-0-444-51636-7.X5000-1
dc.relation.referencesGupta, A, & Yan, D. S. (2006b). Chapter 2 - Particle Size Estimation and Distributions (A Gupta & D. S. B. T.-M. P. D. and O. Yan (eds.); pp. 32–62). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044451636-7/50003-6
dc.relation.referencesGupta, A, & Yan, D. S. (2016). Chapter 16 - Gravity Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Edition) (pp. 563–628). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00016-2
dc.relation.referencesGupta, Ashok, & Yan, D. (2016). Chapter 17 - Magnetic and Electrostatic Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (2nd ed., pp. 629–687). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00017-4
dc.relation.referencesHaldar, S. K. (2018a). Chapter 12 - Elements of Mining (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 229–258). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00012-5
dc.relation.referencesHaldar, S. K. (2018b). Chapter 13 - Mineral Processing (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 259–290). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00013-7
dc.relation.referencesHaldar, S. K. (2018d). Economic Mineral Deposits and Host Rocks. In Mineral Exploration (2nd ed., pp. 25–45). Joe Hayton. https://doi.org/10.1016/B978-0-12-814022-2.00002-2
dc.relation.referencesHikichi, Y., & Nomura, T. (1987). Melting Temperatures of Monazite and Xenotime. Journal of the American Ceramic Society, 70(10), C‐252-C‐253. https://doi.org/10.1111/j.1151-2916.1987.tb04890.x
dc.relation.referencesHoshino, M., Sanematsu, K., & Watanabe, Y. (2016). Chapter 279 - REE Mineralogy and Resources. In B. Jean-Claude & P. B. T.-H. on the P. and C. of R. E. Vitalij K. (Eds.), Including Actinides (Vol. 49, pp. 129–291). Elsevier. https://doi.org/https://doi.org/10.1016/bs.hpcre.2016.03.006
dc.relation.referencesIUPAC. (2005). NOMENCLATURE OF INORGANIC CHEMISTRY. http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf
dc.relation.referencesJones, G. (2009). Mineral Sands: An Overview of the Industry. In Iluka. http://cdn.ceo.ca.s3-us-west-2.amazonaws.com/1d8eduo-mineral-sands---an-overview-of-the-industry-by-greg-jones-manager-development-geology.pdf
dc.relation.referencesJordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/https://doi.org/10.1016/j.mineng.2012.10.017
dc.relation.referencesJordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.006
dc.relation.referencesJordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Sheridan, R. S., Teng, C., Demers, H., Gauvin, R., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 2: Characterisation of products from gravity and magnetic separation. Minerals Engineering, 99, 96–110. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.007
dc.relation.referencesKim, K., & Jeong, S. (2019). Separation of Monazite from Placer Deposit by Magnetic Separation. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030149
dc.relation.referencesKomar, P. D. (2018). Placer Deposits BT - Encyclopedia of Coastal Science (C. W. Finkl & C. Makowski (eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-48657-4_246-2
dc.relation.referencesKomar, P. D. (2019). Placer Deposits (pp. 1–3). https://doi.org/10.1007/978-3-319-48657-4_246-2
dc.relation.referencesLamus, C. (2005). Mineralogia aplicada al uso y aprovechamiento de las arenas negras. Universidad Nacional de Colombia.
dc.relation.referencesLaurence, R. (2005). INTRODUCTION TO ORE-FORMING PROCESSES. Blackwell Publishing.
dc.relation.referencesMacdonald, E. H. (1983). Alluvial Mining: The geology, technology and economics placers. Springer. https://doi.org/10.1007/978-94-017-5361-6
dc.relation.referencesMange, M. A., & Maurer, H. F. W. (1992). Heavy Minerals in Colour. CHAPMAN & HALL.
dc.relation.referencesManser, R. J., Barley, R. W., & Wills, B. A. (1991). The shaking table concentrator — The influence of operating conditions and table parameters on mineral separation — The development of a mathematical model for normal operating conditions. Minerals Engineering, 4(3), 369–381. https://doi.org/https://doi.org/10.1016/0892-6875(91)90142-I
dc.relation.referencesMazo.Z, J. (2011). UNA MIRADA AL ESTUDIO Y LAS APLICACIONES TECNOLÓGICAS Y BIOMÉDICAS DE LA MAGNETITA. In Revista EIA (pp. 207–223). scieloco.
dc.relation.referencesNoval, V. E., Ochoa Puentes, C., & Carriazo, J. G. (2017). Magnetita (Fe 3 O 4 ): Una estructura inorgánica con multiples aplicaciones en catálisis heterogénea. In Revista Colombiana de Química (Vol. 46, pp. 42–59). scieloco.
dc.relation.referencesO.Burt, R. (1984). Gravity Concentration Technology. Elsevier Science B.V.
dc.relation.referencesOberteuffer, J. (1974). Magnetic separation: A review of principles, devices, and applications. IEEE Transactions on Magnetics, 10(2), 223–238. https://doi.org/10.1109/TMAG.1974.1058315
dc.relation.referencesPellant, C. (2000). ROCKS AND MINERALS.
dc.relation.referencesRey, C. M. (2011). Magnetic separation. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (Eds.), 100 Years of Superconductivity (pp. 797–809). Elsevier. https://doi.org/10.1201/b22268-58
dc.relation.referencesSivamohan, R., & Forssberg, E. (1985). Principles of tabling. International Journal of Mineral Processing, 15(4), 281–295. https://doi.org/https://doi.org/10.1016/0301-7516(85)90046-8
dc.relation.referencesSlatt, R. M. (2006). Chapter 6 Fluvial deposits and reservoirs. In R. M. B. T.-H. of P. E. and P. Slatt (Ed.), Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers (Vol. 6, pp. 203–248). Elsevier. https://doi.org/https://doi.org/10.1016/S1567-8032(06)80041-8
dc.relation.referencesStanding, C. (2016). Mineral sands. Applied Earth Science, 125(3), 105–106. https://doi.org/10.1080/03717453.2016.1201897
dc.relation.referencesSvoboda, J. (2005). Magnetic Separation (K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (eds.); pp. 1–7). Elsevier. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/02031-3
dc.relation.referencesTransmin Metallurgical Consultants. (1995). LIMN The Flowsheet Processor (pp. 1–95). Transmin Metallurgical Consultants.
dc.relation.referencesTrujillo, D. (2015). Desarrollo de un proceso de recuperación de dióxido de titanio a partir de la ilmenita presente en las arenas ferrotitaníferas de la zona de Mompiche [Quito : EPN, 2015.]. https://bibdigital.epn.edu.ec/handle/15000/10597
dc.relation.referencesVan Gosen, B. ., Bleiwas, D. ., Bedinger, G. ., Ellefsen, K. ., & Shah, A. . (2016). Coastal deposits of heavy mineral sands; global significance and us resources. Mining Engineering, 68(10), 36–43. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435202&partnerID=40&md5=db1bbb926d500419d5139a0b303a679e
dc.relation.referencesVan Gosen, B. S., & Sengupta, D. (2016, July 12). PLACER-TYPE RARE EARTH ELEMENT DEPOSITS. https://doi.org/10.1130/abs/2016am-279551
dc.relation.referencesWills, B. A., & Finch, J. A. (2016a). Chapter 10 - Gravity Concentration. In B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (Eds.), Will’s Mineral Processing Technology (pp. 223–244). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00010-8
dc.relation.referencesWills, B. A., & Finch, J. A. (2016b). Chapter 13 - Magnetic and Electrical Separation (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 381–407). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00013-3
dc.relation.referencesWills, B. A., & Finch, J. A. (2016c). Chapter 4 - Particle Size Analysis (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 91–107). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00004-2
dc.relation.referencesZhou, B., Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. In Minerals (Vol. 7, Issue 11). MDPI AG. https://doi.org/10.3390/min7110203
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMetales de tierras raras
dc.subject.lembRare earth metals
dc.subject.proposalArenas negras
dc.subject.proposalREE
dc.subject.proposalMinerales pesados
dc.subject.proposalConcentración
dc.subject.proposalAluvial
dc.subject.proposalBlack sands
dc.subject.proposalConcentration
dc.subject.proposalAlluvial
dc.subject.proposalHeavy minerals
dc.title.translatedStudy of recovery and quality of rare earth minerals as alluvial gold mining by product
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBUILDING RESEARCH AND INNOVATION CAPABILITIES FOR THE SUSTAINABLE EXPLOITATION OF BLACK SANDS AS A SOURCE OF RARE EARTH ELEMENTS
oaire.fundernameThe Royal Academy of Engineering
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Recursos Minerales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito