Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorMejía Cárdenas, Juan Manuel
dc.contributor.authorMarín Soto, Juan David
dc.date.accessioned2022-08-16T21:17:52Z
dc.date.available2022-08-16T21:17:52Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81922
dc.descriptionIlustraciones
dc.description.abstractEl banco de condensado (BC) es una de las fuentes más comunes de daño de formación en yacimientos de gas-condensado. Una de las estrategias más utilizadas para remediar este daño es la movilización del condensado utilizando solventes o químicos. Sin embargo, la mayor desventaja de estos tratamientos es la limitada perdurabilidad que ofrecen. Recientemente, se han diseñado y probado a escala de laboratorio nanofluidos para incrementar la movilidad del banco y potenciar el efecto de perdurabilidad del tratamiento. A pesar de los buenos resultados de laboratorio, la implementación de estos tratamientos se ha visto limitada por a la incertidumbre que se tiene para estimar el desempeño a escala de campo. En este documento se desarrolla una metodología para simular los beneficios potenciales que se podrían generar al implementar a escala de campo un tratamiento de base nanofluido para movilizar e inhibir el BC. Como caso de estudio se tomó un pozo de gas-condensado del piedemonte llanero colombiano y el nanofluido desarrollado por Franco et al. (2018). Para simular el flujo de fluidos y el perfil del BC, se utilizó un modelo composicional. Adicionalmente, se utilizó el modelo de doble sitio desarrollado por Zhang (2012), para simular el proceso de retención/removilización de las nanopartículas. El esquema numérico se implementó en el simulador FlowTram de la Universidad Nacional de Colombia y fue posteriormente validado con datos experimentales reportados en la literatura. Para la evaluación económica se utilizó como input los valores reales tomados del caso de estudio. El resultado de la evaluación técnico/económica mostró que los tratamientos base nanofluido tienen un alto potencial para mitigar el daño por BC, generando incrementales de producción y beneficios económicos. (texto tomado de la fuente)
dc.description.abstractCondensate banking is one of the most common sources of formation damage in gas-condensate reservoirs. A common strategy for remediating the damage is mobilizing the condensate banking using solvents or chemicals. However, the major drawback of these treatments is the limited perdurability, being considered short-term solutions in the industry. Recently, nanofluids have been engineered to increase condensate mobility and treatment perdurability by changing the rock surface wettability. Although there is a potential use of nanofluids for increasing the productivity of gas fields having condensate-banking problems, its main limitation is the uncertainty to estimate the performance at field scale. In this document develops a methodology to simulate the potential benefits at field scale of using a nanofluid treatments for condensate banking mobilization and inhibition. As a case of study, it was taken a gas condensate well in the Colombian foothills (llanos basin) and a nanofluid developed by Franco et al. (2018) with silica nanoparticles functionalized with a commercial anionic surfactant. To simulate benefits, a compositional model was used to modelling fluid flow and condensate banking profile. Additionally, a double site model was used to simulate nanoparticles retention/remobilization process (Zhang, 2012). The numerical scheme was implemented in an in-house simulator (FlowTram) and further validated with experimental data reported in literature. For the economic analysis were taken as input the real values of the case study. The result of the technical/economic evaluation shows nanofluid treatment has a large potential to mitigate condensate-banking damage at field scale, leading to an incremental production and an economic benefit.
dc.description.sponsorshipEcopetrol SA
dc.format.extentxv, 70 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleEvaluación de la viabilidad técnico/económica de utilizar nano-fluidos para mitigar daño por banco de condensado, en el piedemonte llanero colombiano
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos
dc.contributor.researchgroupDinámicas de Flujo y Transporte en Medios Porosos
dc.contributor.subjectmatterexpertValencia Londoño , Juan David
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Petróleos
dc.description.researchareaSimulación de flujo en medio porosos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAfidick, D., Kaczorowski, N. J., & Bette, S. (1994, January). Production performance of a retrograde gas reservoir: a case study of the Arun field. In SPE Asia pacific oil and gas conference. Society of Petroleum Engineers.
dc.relation.referencesAmani, M., & Nguyen, N. T. (2015). An overview of methods to mitigate condensate banking in retrograde gas reservoirs. Advances in Petroleum Exploration and Development, 9(2), 1-6.
dc.relation.referencesAl-Anazi, H. A., Walker, J. G., Pope, G. A., Sharma, M. M., & Hackney, D. F. (2003, January). A successful methanol treatment in a gas-condensate reservoir: Field application. In SPE production and operations symposium. Society of Petroleum Engineers.
dc.relation.referencesAl-Yami, A. M., Gomez, F. A., AlHamed, K. I., & Al-Buali, M. H. (2013). A Successful Field Application of a New Chemical Treatment in a Fluid Blocked Well in Saudi Arabia. In SPE Saudi Arabia Section Technical Symposium and Exhibition (p. 8). Society of Petroleum Engineers. https://doi.org/10.2118/168086-MS
dc.relation.referencesAlzate, G. A., Franco, C. A., Restrepo, A., Del Pino Castrillon, J. J., Barreto Alvares, D. L., & Escobar Murillo, A. A. (2006). Evaluation of Alcohol-Based Treatments for Condensate Banking Removal. In SPE International Symposium and Exhibition on Formation Damage Control (p. 7). Society of Petroleum Engineers. https://doi.org/10.2118/98359-MS
dc.relation.referencesAmani, M., & Nguyen, N. T. (2015). An overview of methods to mitigate condensate banking in retrograde gas reservoirs. Advances in Petroleum Exploration and Development, 9(2), 1–6.
dc.relation.referencesBarnum, R. S., Brinkman, F. P., Richardson, T. W., & Spillette, A. G. (1995, January). Gas condensate reservoir behavior: productivity and recovery reduction due to condensation. In SPE annual technical conference and exhibition. Society of Petroleum Engineers.
dc.relation.referencesBayat, A. E., Junin, R., Shamshirband, S., and Chong, W. T. (2015). Transport and retention of engineered al 2 o 3, Tio 2, and Sio 2 nanoparticles through various sedimentary rocks. Scientific reports, 5:14264.
dc.relation.referencesBrassard, J. D., Sarkar, D. K., & Perron, J. (2011). Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS applied materials & interfaces, 3(9), 3583-3588.
dc.relation.referencesBueno, N., y Mejía, J. M. (2020). Heavy Oil In-Situ Upgrading Evaluation by a Laboratory-Calibrated EoS-based Reservoir Simulator (forthcoming). Journal of Petroleum Science and Engineering, Accepted 24 May 2020.
dc.relation.referencesBueno, N., Morales Mora, O. A., y Mejía Cárdenas, J. M. (2019). Practical Kinetic Coupling to Multi-Component and Multi-Phase Flow Transport During In-Situ Heavy Oil Upgrading Processes Using an Equation of State Based Numerical Reservoir Simulation. En SPE reservoir characterization and simulation conference and exhibition (p. 16). Abu Dhabi, UAE: Society of Petroleum Engineers. Descargado de https://doi.org/10.2118/196667-MS doi: 10.2118/196667-MS
dc.relation.referencesBueno Zapata, N. (2019). Desarrollo de un modelo de simulación térmica y composicional para estudiar el impacto en el recobro de crudo y cambios de composición durante la coinyección de vapor y gases no condensables en yacimientos de crudo pesado (Tesis de Master, Universidad Nacional de Colombia, Medellín). Descargado 2020- 05-24, de https://repositorio.unal.edu.co/handle/unal/77352
dc.relation.referencesBybee, K. (2000). Well Productivity in Gas/Condensate Reservoirs. Journal of Petroleum Technology, 52(04), 67–68. https://doi.org/10.2118/0400-0067-JPT
dc.relation.referencesChaback, J. J., & Williams, M. L. (1994). px Behavior of a Rich-Gas Condensate in Admixture with CO2 and (N2+ CO2). SPE Reservoir Engineering, 9(01), 44-50.
dc.relation.referencesCivan, F. (2015). Reservoir formation damage. Gulf Professional Publishing.
dc.relation.referencesDu, L., Walker, J. G., Pope, G. A., Sharma, M. M., & Wang, P. (2000, January). Use of solvents to improve the productivity of gas condensate wells. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
dc.relation.referencesEl-Amin, M. F., Salama, A., & Sun, S. (2012, January). Modeling and simulation of nanoparticle transport in a two-phase flow in porous media. In SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers.
dc.relation.referencesEl-Amin, M. F., Salama, A., & Sun, S. (2015). Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media. Journal of Petroleum Science and Engineering, 128, 53-64.
dc.relation.referencesEl-Amin, M. F., Kou, J., Sun, S., & Salama, A. (2016). An iterative implicit scheme for nanoparticles transport with two-phase flow in porous media. Procedia Computer Science, 80, 1344-1353.
dc.relation.referencesEl-Amin, M., Saad, A. M., Sun, S., & Salama, A. (2017). Numerical Simulation of Magnetic Nanoparticles Injection into Two–phase Flow in a Porous Medium.
dc.relation.referencesEl-Amin, M. F., Saad, A. M., Salama, A., & Sun, S. (2017). Modeling and analysis of magnetic nanoparticles injection in water-oil two-phase flow in porous media under magnetic field effect. Geofluids, 2017.
dc.relation.referencesElimelech, M. and O'Melia, C. R. (1990). Kinetics of deposition of colloidal particles in porous media. Environmental science & technology, 24(10):1528{1536.
dc.relation.referencesEsmaeilzadeh, P., Sadeghi, M. T., Fakhroueian, Z., Bahramian, A., & Norouzbeigi, R. (2015). Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery. Journal of Natural Gas Science and Engineering, 26, 1294-1305.
dc.relation.referencesFan, L., Harris, B. W., Jamaluddin, A., Kamath, J., Mott, R., Pope, G. A., ... & Whitson, C. H. (2005). Understanding gas-condensate reservoirs. Oilfield review, 17(4), 14-27.
dc.relation.referencesFarzad, I., & Amani, M. (2012). An analysis of reservoir production strategies in miscible and immiscible gas injection projects. Advances in Petroleum Exploration and Development, 3(1), 18-32.
dc.relation.referencesFevang, Ø., & Whitson, C. H. (1996). Modeling gas-condensate well deliverability. SPE Reservoir Engineering, 11(04), 221-230.
dc.relation.referencesFranco-Aguirre, M., Zabala, R. D., Lopera, S. H., Franco, C. A., & Cortés, F. B. (2018). Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 51, 53-64.
dc.relation.referencesFranco, C. A., Zabala, R. D., Zapata, J., Mora, E., Botero, O., Candela, C., & Castillo, A. (2013). Inhibited gas stimulation to mitigate condensate banking and maximize recovery in Cupiagua field. SPE production & operations, 28(02), 154-167.
dc.relation.referencesHassan, A., Mahmoud, M., Al-Majed, A., Alawi, M. B., Elkatatny, S., BaTaweel, M., & Al-Nakhli, A. (2019). Gas condensate treatment: A critical review of materials, methods, field applications, and new solutions. Journal of Petroleum Science and Engineering, 177, 602–613. https://doi.org/10.1016/j.petrol.2019.02.089
dc.relation.referencesHwang, J. (2011). Gas injection techniques for condensate recovery and remediation of liquid banking in gas-condensate reservoirs (Doctoral dissertation).
dc.relation.referencesIslam, M. R., Hossain, M., Moussavizadegan, S., Mustaz, S., and Abou-Kassem, J. (2016). Advanced Petroleum Reservoir Simulation: Towards Developing Reservoir Emulators. Scrivener Publishing & WILEY, Salem, Massachusetts, second edi edition
dc.relation.referencesivind, F., & Whitson, C. (1996). Modeling Gas-Condensate Well Deliverability. SPE Reservoir Engineering, 11, 221–230. https://doi.org/10.2118/30714-PA
dc.relation.referencesJongsoo Hwang, B. . (2011). Gas Injection Techniques for Condensate Recovery and Remediation of Liquid Banking in Gas-Condensate Reservoirs [The University of Texas at Austin]. http://hdl.handle.net/2152/ETD-UT-2011-05-3558
dc.relation.referencesKenyon, D. (1987, Agosto). Third SPE Comparative Solution Project: Gas Cycling of Retrograde Condensate Reservoirs. Journal of Petroleum Technology, 39 (08), 981–997. Descargado 2020-06-01, de http://www.onepetro .org/doi/10.2118/12278-PA doi: 10.2118/12278-PA
dc.relation.referencesKiraz, N., Burunkaya, E., Kesmez, Ö., Asiltürk, M., Camurlu, H. E., & Arpaç, E. (2010). Sol–gel synthesis of 3-(triethoxysilyl) propylsuccinicanhydride containing fluorinated silane for hydrophobic surface applications. Journal of sol-gel science and technology, 56(2), 157-166.
dc.relation.referencesLi, S., & Torsaeter, O. (2015). The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Intermediate Wet Berea Sandstone. In SPE Middle East Unconventional Resources Conference and Exhibition (p. 14). Society of Petroleum Engineers. https://doi.org/10.2118/172943-MS
dc.relation.referencesLoaiza, C. S., Patiño, J. F., y Mejía, J. M. (2020, Agosto). Numerical evaluation of a combined chemical enhanced oil recovery process with polymer and nanoparticles based on experimental observations. Journal of Petroleum Science and Engineering, 191 , 107166. Descargado 2020-06-01, de https://linkinghub.elsevier.com/retrieve/pii/ S0920410520302539 doi: 10.1016/j.petrol.2020.107166
dc.relation.referencesLoaiza, C.S., (2020). Simulación de procesos de recobro químico mejorado con inyección de polímero y surfactante potencializados con nanotecnología (Tesis de Master, Universidad Nacional de Colombia, Medellín). Descargado 2020-05-24, de https://repositorio.unal.edu.co/handle/unal/77477
dc.relation.referencesLuo, K., Li, S., Zheng, X., Chen, G., Liu, N., & Sun, W. (2001, January). Experimental investigation into revaporization of retrograde condensate. In SPE Production and Operations Symposium. Society of Petroleum Engineers.
dc.relation.referencesMiller, N., Nasrabadi, H., & Zhu, D. (2010, January). On application of horizontal wells to reduce condensate blockage in gas condensate reservoirs. In International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers.
dc.relation.referencesMousavi, M. A., Hassanajili, S., & Rahimpour, M. R. (2013). Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Applied Surface Science, 273, 205-214.
dc.relation.referencesN. Bueno, J. M. Mejia. Numerical verification of in-situ heavy oil upgrading experiments and thermal processes for enhanced recovery. Fuel. Volume 313, 1 April, 122730. 2022. https://doi.org/10.1016/j.fuel.2021.122730
dc.relation.referencesNicolás Bueno, & Mejía, J. M. (2021). Heavy oil in-situ upgrading evaluation by a laboratory-calibrated EoS-based reservoir simulator. Journal of Petroleum Science and Engineering, 196, 107455. https://doi.org/https://doi.org/10.1016/j.petrol.2020.107455
dc.relation.referencesPeng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
dc.relation.referencesPedersen, K. S., Christensen, P. L., & Shaikh, J. A. (2014). Phase behavior of petroleum reservoir fluids. CRC press.
dc.relation.referencesRestrepo, A., Ocampo, A., Lopera Castro, S. H., Diaz, M. P., Clavijo, J., & Marin, J. (2012, April 4). GaStim Concept - A Novel Technique for Well Stimulation. Part I: Understanding the Physics. SPE Latin America and Caribbean Petroleum Engineering Conference. https://doi.org/10.2118/152309-MS
dc.relation.referencesS. Echavarría, S. Velasquez, N. Bueno, J. D. Valencia, H. Solano, J. M. Mejía. Semi-implicit finite volume procedure for compositional subsurface flow simulation in highly anisotropic porous media. Fluids. 6(10), 341. 2021. https://doi.org/10.3390/fluids6100341.
dc.relation.referencesSmits, R. M. M., Van der Post, N., & Al Shaidi, S. M. (2001, January). Accurate prediction of well requirements in gas condensate fields. In SPE Middle East Oil Show. Society of Petroleum Engineers.
dc.relation.referencesSolano, H. (2019). Modelamiento de la generación, transporte y destrucción de espumas formadas por gasodispersiones en yacimientos naturalmente fracturados para aplicaciones de Recobro Mejorado (Tesis de Master, Universidad Nacional de Colombia, Medellín). Descargado 2020-05-24, de https://repositorio.unal.edu.co/handle/unal/ 77169
dc.relation.referencesSolano, H., Valencia, J., Mejia, J., y Ocampo, A. (2019, abril). A Modeling Study for Foam Generation for EOR Applications in Naturally Fractured Reservoirs Using Disperse Surfactant in the Gas Stream. En (Vol. 2019, pp. 1– 14). European Association of Geoscientists & Engineers. Descargado 2020-05-22, de https://www.earthdoc.org/ content/papers/10.3997/2214-4609.201900132 doi: 10.3997/2214-4609.201900132
dc.relation.referencesSolano, H., Icardi, M., Bueno, N., & Mejía, J. (2020, September). A Novel Nanoparticle Retention Model in Porous Media for IOR & EOR Applications. In ECMOR XVII (Vol. 2020, No. 1, pp. 1-10). European Association of Geoscientists & Engineers.
dc.relation.referencesSun, X., Zhang, Y., Chen, G., and Gai, Z. (2017). Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies, 10(3):345.
dc.relation.referencesTajmiri, M. and Ehsani, M. R. (2017). Wettability alteration of oil-wet and water-wet of iranian heavy oil reservoir by CuO nanoparticles. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(4):171{182.
dc.relation.referencesUPME. (2021). BOLETÍN ESTADÍSTICO DE MINAS Y ENERGÍA 2016 - 2020. www.upme.gov.co
dc.relation.referencesValencia, J. D. (2016). Modelamiento del flujo y generación de espumas en medios porosos usando surfactante disperso en gas (Tesis de Master, Universidad Nacional de Colombia, Medellín). Descargado 2020-05-24, de https://repositorio.unal.edu.co/handle/unal/58331
dc.relation.referencesValencia, J. D., Mejia, J. M., y Ocampo, A. (2018a, September). Model Development And Validation For Chemical Droplets Injection In Gas Phase In Eor Applications. En (Vol. 2018, pp. 1–11). European Association of Geoscientists & Engineers. Descargado 2020-05-24, de https://www.earthdoc.org/content/papers/10.3997/ 2214-4609.201802171 doi: 10.3997/2214-4609.201802171
dc.relation.referencesValencia, J. D., Mejia, J. M., y Ocampo, A. (2018b, September). Modelling Sweep Efficiency Improvement By In-Situ Foam Generation Using A Dispersed Surfactant In The Gas Phase. En (Vol. 2018, pp. 1–16). European Association of Geoscientists & Engineers. Descargado 2020-05-24, de https://www.earthdoc.org/content/papers/10.3997/ 2214-4609.201802169 doi: 10.3997/2214-4609.201802169
dc.relation.referencesValencia, J. D., Mejía, J. M., Ocampo, A., y Restrepo, A. (2019, septiembre). Modelling Dispersed Chemical Droplets Injection in the Gas Stream for EOR Applications. Society of Petroleum Engineers. Descargado 2020-05-22, de https://www.onepetro.org/conference-paper/SPE-196620-MS doi: 10.2118/196620-MS
dc.relation.referencesValencia, J. D., Ocampo, A., y Mejía, J. M. (2020, enero). Development and Validation of a New Model for In Situ Foam Generation Using Foamer Droplets Injection. Transport in Porous Media, 131 (1), 251–268. Descargado 2020-05-24, de http://link.springer.com/10.1007/s11242-018-1156-5 doi: 10.1007/s11242-018-1156-5
dc.relation.referencesWang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., and Jin, Y. (2012). Retention and transport of silica nanoparticles in saturated porous media: e_ect of concentration and particle size. Environmental science & technology, 46(13):7151-7158.
dc.relation.referencesWeinstein, H. G., Chappelear, J. E., & Nolen, J. S. (1986). Second comparative solution project: A three-phase coning study. Journal of petroleum technology, 38(03), 345-353.
dc.relation.referencesZabala, R., Mora, E., Botero, O. F., Cespedes, C., Guarin, L., Franco, C. A., Cortes, F. B., Patino, J. E., & Ospina, N. (2014). Nano-technology for asphaltenes inhibition in Cupiagua South Wells. IPTC 2014: International Petroleum Technology Conference.
dc.relation.referencesZhang, T. (2012). Modeling of nanoparticle transport in porous media (Doctoral dissertation).
dc.relation.referencesZhang, T., Davidson, D., Bryant, S. L., Huh, C., et al. (2010). Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. In SPE improved oil recovery symposium. Society of Petroleum Engineers.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcNanofluídos
dc.subject.lembDinámica de fluidos
dc.subject.lembCampos petrolíferos - Métodos de simulación
dc.subject.proposalBanco de condensado
dc.subject.proposalDaño de formación
dc.subject.proposalNanofluido
dc.subject.proposalYacimiento de gas-condensado
dc.subject.proposalEstimulación de yacimientos
dc.subject.proposalSimulación numérica
dc.subject.proposalCondensate banking
dc.subject.proposalFormation damage
dc.subject.proposalNanofluid
dc.subject.proposalGas-condensate reservoir
dc.subject.proposalReservoir stimulation
dc.subject.proposalNumerical modeling
dc.title.translatedFeasibility study of using nanofluid for condensate banking remediation in Colombian foothill fields
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito