Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.advisorCadena Ch., Edith M.
dc.contributor.advisorVelez, Juan Manuel
dc.contributor.authorMora Gordillo, Sara Lucia
dc.date.accessioned2022-08-16T23:44:04Z
dc.date.available2022-08-16T23:44:04Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81923
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractLos colorantes sintéticos se han convertido en una problemática ambiental con graves consecuencias en las fuentes hídricas, en la fauna de los ríos y en la salud pública, esto a raíz de la deficiente disposición de las soluciones coloreadas. Con el fin de brindar alternativas a los procesos de tratamiento, se usaron fibras vegetales extraídas del pseudotallo de plátano como soporte para la inmovilización por adsorción de lacasas y para la síntesis de nanopartículas de MnO2 con el fin de determinar la efectividad en la remoción de colorante índigo carmín. En la primera fase, se realizó un pretratamiento enzimático sobre la fibra y mediante el uso KMnO4 como precursor se obtuvo la síntesis de nanopartículas sobre las fibras de plátano que en contacto con el colorante logran una remoción del 98% en 5 minutos, después se evaluó la reutilización de la fibra funcionalizada. La siguiente fase fue la inmovilización de la enzima lacasa sobre fibras pretratadas mecánica y enzimáticamente, los resultados determinaron degradación del 98% índigo carmín con una dosis mínima de lacasa inmovilizada cuando el colorante estuvo en contacto con la fibra por 4h. Finalmente se realizó una revisión bibliográfica para orientar la determinación del mecanismo de acción teórico de la remoción mediada por lacasas y nanopartículas de MnO2. (Texto tomado de la fuente)
dc.description.abstractSynthetic dyes have become an environmental problem with serious consequences for water sources, river wildlife and public health, that due to poor availability of colored solutions. In order to offer another possibility to the treatment processes, vegetable fibers extracted from the plantain pseudostem were used as carrier for the immobilization by adsorption of laccases and for the synthesis of MnO2 nanoparticles in order to recognize the usefulness removal indigo carmine dye. In the first phase, an enzymatic pretreatment was carried out on the fiber, KMnO4 was used as precursor and the synthesis of nanoparticles was carried out onto plantain fibers, they achieve 98% dye removal in 5 minutes, after functionalized fiber was evaluated for reuse. The next phase was laccase enzyme immobilization. Fibers were pretreated mechanically and enzymatically, results determined 98% indigo carmine degradation with minimum doses of immobilized laccase when the dye was in contact with the fiber for 4h. Finally, a review was performed to guide the theoretical removal mechanism mediated by laccases and MnO2 nanoparticles.
dc.format.extent98 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc670 - Manufactura::677 - Textiles
dc.subject.ddc540 - Química y ciencias afines
dc.titleEfecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupBiofibras y Derivados Vegetales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaTecnología y Productos de Fibras Vegetales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesBhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7(April), 100212. https://doi.org/10.1016/j.biteb.2019.100212
dc.relation.referencesBlanco, T., Ávila, C. A., & Ramírez, H. R. (2016). Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation. Revista Colombiana de Química, 45(2), 30. https://doi.org/10.15446/rev.colomb.quim.v45n2.60395
dc.relation.referencesCadavid, Y., Cadena, E. M., Velez, J. M., & Santa, J. F. (2016). Degradation of Dyes Using Plantain Fibers Modified with Nanoparticles. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications (pp. 99–110). https://doi.org/10.1007/7854
dc.relation.referencesChacon, M., Blanco, C., Hinestroza, J., & Combariza, M. (2013). Biocomposite of nanoctructured MnO2 and Fique fibers for efficient dye degradation. Green Chemistry, 129(9), 1463–9262. https://doi.org/10.1039/C3GC40911B
dc.relation.referencesCordeiro, N., Gouveia, C., Moraes, A. G. O., & Amico, S. C. (2011). Natural fibers characterization by inverse gas chromatography. Carbohydrate Polymers, 84(1), 110–117. https://doi.org/10.1016/j.carbpol.2010.11.008
dc.relation.referencesFAOSTAT – Food and Agriculture Organization of the United Nations. (2018). Plaintain production 2018. http://faostat.fao.org/
dc.relation.referencesGañán, P., Zuluaga, R., Restrepo, A., Labidi, J., & Mondragon, I. (2008). Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technology, 99(3), 486–491. https://doi.org/10.1016/j.biortech.2007.01.012
dc.relation.referencesGangwar, A. K., Prakash, N. T., & Prakash, R. (2014). Applicability of Microbial Xylanases in Paper Pulp Bleaching: A Review. BioResources, 9(2), 3733–3754. https://doi.org/10.15376/biores.9.2.3733-3754
dc.relation.referencesGeorge, M., Mussone, P. G., & Bressler, D. C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Industrial Crops and Products, 53, 365–373. https://doi.org/10.1016/j.indcrop.2013.12.037
dc.relation.referencesGonzález, J. T. C., Dillon, A. J. P., Pérez-Pérez, A. R., Fontana, R., & Bergmann, C. P. (2015). Enzymatic surface modification of sisal fibers (Agave Sisalana) by Penicillium echinulatum cellulases. Fibers and Polymers, 16(10), 2112–2120. https://doi.org/10.1007/s12221-015-4705-3
dc.relation.referencesIzquierdo, H. (2009). Empleo del follaje de plantas de Musa spp como alternativa para la alimentación animal. Temas de Ciencia y Tecnología, 49–60. https://doi.org/https://doi.org/10.24188/recia.v6.n1.2014.260
dc.relation.referencesJiao, C., Tao, J., Xu, S., Zhang, D., Chen, Y., & Lin, H. (2017). In situ synthesis of hierarchical structured cotton fibers/MnO2 composites: a versatile and recyclable device for wastewater treatment. RSC Advances, 7, 31475–31484. https://doi.org/10.1039/C7RA04287F
dc.relation.referencesKalia, S., Thakur, K., Celli, A., Kiechel, M. A., & Schauer, C. L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 1(3), 97–112. https://doi.org/10.1016/j.jece.2013.04.009
dc.relation.referencesMazzeo, M., Agaton, L., Mejia, L., Guerrero, L., & Botero, J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha de plátano en el departamento de Caldas. Revista Educación En Ingeniería, No. 9, 128–139.
dc.relation.referencesPanyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56(C), 406–413. https://doi.org/10.1016/j.egypro.2014.07.173
dc.relation.referencesPrysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A., Obradovic, B. M., Kuraica, M. M., & Kostic, M. (2013). Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose, 20(1), 315–325. https://doi.org/10.1007/s10570-012-9817-y
dc.relation.referencesRiahi, K., Mammou, A. Ben, & Thayer, B. Ben. (2009). Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials, 161(2), 608–613. https://doi.org/10.1016/j.jhazmat.2008.04.013
dc.relation.referencesSfiligoj, M., Hribernik, S., Stana, K., & Kreže, T. (2012). Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research (pp. 370–398). https://doi.org/10.5772/67458
dc.relation.referencesSubramonian, W., Wu, T. Y., & Chai, S. P. (2015). An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Industrial Crops and Products, 70, 107–115. https://doi.org/10.1016/j.indcrop.2015.02.026
dc.relation.referencesSyed M., H., Umar, A., Azra, Y., Faisal, S., & Naseem, A. (2020). Recent trends of MnO2-derived adsorbents for water treatment: a review. New Journal of Chemistry, 44, 6096–6120. https://doi.org/10.1039/C9NJ06392G.Volume
dc.relation.referencesZhai, R., Hu, J., Chen, X., Xu, Z., Wen, Z., & Jin, M. (2020). Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 315(May), 123846. https://doi.org/10.1016/j.biortech.2020.123846
dc.relation.referencesZhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282
dc.relation.referencesZheng, Y., Yu, S., Shuai, S., Zhou, Q., & Cheng, Q. (2013). Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, 89–95. https://doi.org/10.1016/j.desal.2013.01.004
dc.relation.referencesAbdelileh, M., Ticha, M. Ben, Moussa, I., & Meksi, N. (2019). Pretreatment optimization process of cotton to overcome the limits of its dyeability with indigo carmine. Chemical Industry and Chemical -Engineering Quarterly, 25(3), 277–288. https://doi.org/10.2298/CICEQ181115006A
dc.relation.referencesBaltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131. https://doi.org/10.1016/j.mimet.2015.10.007
dc.relation.referencesBrandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41(1–2), 61–69. https://doi.org/10.1016/j.molcatb.2006.04.012
dc.relation.referencesCano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944
dc.relation.referencesCastaño Urueña, J. D. (2014). Optimización del proceso de producción, purificación y caracterización de una lacasa a partir de un hongo nativo con potencial aplicación en procesos biotecnológicos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45348/
dc.relation.referencesCho, E. A., Seo, J., Lee, D. W., & Pan, J. G. (2011). Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme and Microbial Technology, 49(1), 100–104. https://doi.org/10.1016/j.enzmictec.2011.03.005
dc.relation.referencesÇifçi, D. I., Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Science and Technology, 80(1), 134–143. https://doi.org/10.2166/wst.2019.255
dc.relation.referencesCristóvão, R. O., Tavares, A. P. M., Brígida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72(1–2), 6–12. https://doi.org/10.1016/j.molcatb.2011.04.014
dc.relation.referencesDa Silva, A. M., Tavares, A. P. M., Rocha, C. M. R., Cristóvão, R. O., Teixeira, J. A., & MacEdo, E. A. (2012). Immobilization of commercial laccase on spent grain. Process Biochemistry, 47(7), 1095–1101. https://doi.org/10.1016/j.procbio.2012.03.021
dc.relation.referencesFernández-Fernández, M. (2013). Inmovilización de Lacasa: Métodos y Potenciales Aplicaciones Industriales [Universidad de Vigo]. Tesis de doctorado
dc.relation.referencesGiardina, P., & Faraco, V. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385. https://doi.org/10.1007/s00018-009-0169-1
dc.relation.referencesJesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: a review. Adsorption, 20, 801–821. https://doi.org/https://doi.org/10.1007/s10450-014-9623-y
dc.relation.referencesLegerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases - A mini-review. Nova Biotechnologica et Chimica, 15(1), 90–106. https://doi.org/10.1515/nbec-2016-0010
dc.relation.referencesLi, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2015). Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese Journal of Chemical Engineering, 23(1), 227–233. https://doi.org/10.1016/j.cjche.2014.11.001
dc.relation.referencesLiu, J., Xie, Y., Peng, C., Yu, G., & Zhou, J. (2017). Molecular Understanding of Laccase Adsorption on Charged Self- Assembled Monolayers. The Journal of Physucal Chemistry, 121, 10610–10617.
dc.relation.referencesMichniewicz, A., Ledakowicz, S., Ullrich, R., & Hofrichter, M. (2008). Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments, 77, 295–302. https://doi.org/10.1016/j.dyepig.2007.05.015
dc.relation.referencesMichniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. https://doi.org/10.1007/s00253-005-0015-9
dc.relation.referencesMohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192
dc.relation.referencesPolak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307. https://doi.org/10.1016/j.procbio.2012.05.006
dc.relation.referencesRen, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(February), 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141
dc.relation.referencesRodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. (2015). Laccase-based biosensors for detection of phenolic compounds. TrAC - Trends in Analytical Chemistry, 74, 21–45. https://doi.org/10.1016/j.trac.2015.05.008
dc.relation.referencesSharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3
dc.relation.referencesSheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082
dc.relation.referencesSilva, D. F., Carvalho, A. F. A., Shinya, T. Y., Mazali, G. S., & Herculano, R. D. (2017). Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis. Enzyme Research, 2017, 18. https://doi.org/10.1155/2017/4362704
dc.relation.referencesSyazwani, N., Rahman, A., Firdaus, M., & Baharin, Y. (2018). Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 121–131. https://doi.org/10.1007/s10570-018-1935-8
dc.relation.referencesWang, S.-S., Ning, Y.-J., Wang, S.-N., Zhang, J., Zhang, G.-Q., & Chen, Q.-J. (2016). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/j.ijbiomac.2016.10.079
dc.relation.referencesYang, J., Ng, T. B., Lin, J., & Ye, X. (2015). A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. International Journal of Biological Macromolecules, 77, 344–349. https://doi.org/10.1016/j.ijbiomac.2015.03.028
dc.relation.referencesZhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403(July 2020), 126–272. https://doi.org/10.1016/j.cej.2020.126272
dc.relation.referencesAmmar, S., Abdelhedi, R., Flox, C., Arias, C., & Brillas, E. (2006). Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters, 4(4), 229–233. https://doi.org/10.1007/s10311-006-0053-2
dc.relation.referencesAnjos, F. S. C., Vieira, E. F. S., & Cestari, A. R. (2002). Interaction of Indigo Carmine Dye with Chitosan Evaluated by Adsorption and Thermochemical Data. 246, 243–246. https://doi.org/10.1006/jcis.2002.8537
dc.relation.referencesBabak, S., Queru, S., & Feraud, M. (2016). Procede de preparation du carmin d’ indigo (Patent No. 3059664).
dc.relation.referencesBenkhaya, S., Harfi, S. El, & Harfi, A. El. (2017). Classifications, properties and applications of textile dyes : A review. Apllied Journal of Enviromental Engineering Science, 3, 311–320.
dc.relation.referencesBenkhaya, S., M’ rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107–891. https://doi.org/10.1016/j.inoche.2020.107891
dc.relation.referencesBernal, A. (2013). Evaluación de una columna de burbujeo de flujo ascendente para la ozonación catalizada con arcillas pilareadas con Fe. Universidad Autónoma del Estado de México.
dc.relation.referencesCampos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0
dc.relation.referencesCano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944
dc.relation.referencesChequer, M., Rodrigues De Oliveira, G., Anastácio, E., Carvalho, J., Boldrin, M., & Palma De Oliveira, D. (2013). Textile Dyes : Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing (pp. 152–175).
dc.relation.referencesChoi, K. (2021). Dyes and Pigments Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes and Pigments, 184(August 2020), 108749. https://doi.org/10.1016/j.dyepig.2020.108749
dc.relation.referencesChowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Rahman, M. T., & Awual, M. R. (2020). Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 318, 114061. https://doi.org/10.1016/j.molliq.2020.114061
dc.relation.referencesCraick, J., Khan, D., & Afifi, R. (2009). The Safety of Intravenous Indigo Carmine to Assess Ureteric Patency During Transvaginal Uterosacral Suspension of the. Journal of Pelvic Medicine and Surgey, 15(1). https://doi.org/10.1097/SPV.0b013e3181986ace
dc.relation.referencesDalmázio, I., De Urzedo, A. P. F. ., Alvez, T. M. ., Cathatino, R. R., Eberlin, M. N., Nascentes, C. C., & Augusti, R. (2007). Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. Journal of Mass Spectrometry, 43(7), 854–864. https://doi.org/10.1002/jms
dc.relation.referencesDe Oliveira, S., Carvalho, L., & Azevedo, R. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials Journal, 174, 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020
dc.relation.referencesDuarte, S., Jiménez, A., Pineda, J., & Mora, E. (2018). Degradación de índigo carmín por hongos de pudrición blanca Indigo carmine degradation by white rot fungi. CEBA, 1(June), 4–12.
dc.relation.referencesGarcía, N. (2016). Síntesis de hidrotalcitas con ftalocianina y aplicación en la decoloración de índigo carmín. Universidad Autónoma de Puebla.
dc.relation.referencesGogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II : hybrid methods. 8(03), 553–597. https://doi.org/10.1016/S1093-0191(03)00031-5
dc.relation.referencesGoud, B. S., Cha, Lim, H., Koyyada, G., & Kim, H. (2020). Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes : A Sustainable , Eco ‑ Friendly Alternative. Current Microbiology, 20, 1–16. https://doi.org/10.1007/s00284-020-02202-0
dc.relation.referencesGregory, P. (1990). Classification of Dyes by Chemical Structure. The Chemistry and Application of Dyes, 17–47. https://doi.org/10.1007/978-1-4684-7715-3_2
dc.relation.referencesJang, J. W., & Park, J. W. (2014). Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. Journal of Hazardous Materials, 273, 1–6. https://doi.org/10.1016/j.jhazmat.2014.03.002
dc.relation.referencesJones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72(5), 869–883. https://doi.org/10.1007/s00018-014-1826-6
dc.relation.referencesKhataee, A. R., Vatanpour, V., & Ghadim, A. R. A. (2009). Decolorization of C . I . Acid Blue 9 solution by UV / Nano-TiO 2 , Fenton , Fenton-like , electro-Fenton and electrocoagulation processes : A comparative study. 161, 1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075
dc.relation.referencesLi, H. X., Xu, B., Tang, L., Zhang, J. H., & Mao, Z. G. (2015). Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. International Biodeterioration and Biodegradation, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007
dc.relation.referencesLi, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2014). Evaluation of Bacillus sp . MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of Environmental Sciences, 26(5), 1125–1134. https://doi.org/10.1016/S1001-0742(13)60540-9
dc.relation.referencesMarketWatch. (2020, November). Global Indigo Carmine Market 2020 Regional Production Volume , Business Operation Data Analysis , Revenue and Growth Rate by 2026. MarketWatch News Department, 4–7.
dc.relation.referencesMarras, S. (2014). Aplpication of advanced methodologies to the identification of natural dyes and lakes in pictorial artworks. Unniveristà Ca’Fscaru Venezia.
dc.relation.referencesMishra, A., Kumar, S., & Kumar, A. (2011). International Biodeterioration & Biodegradation Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration & Biodegradation, 65(3), 487–493. https://doi.org/10.1016/j.ibiod.2011.01.011
dc.relation.referencesPrado, A. G. S., Torres, J. D., Faria, E. A., & Dias, S. C. L. (2004). Comparative adsorption studies of indigo carmine dye on chitin and chitosan. 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056
dc.relation.referencesQuintero, L. U. Z., & Cardona, S. (2010). Índigo Carmín technologies for the decolorization of dyes : indigo and indigo carmine. Dyna, 77, 371–386.
dc.relation.referencesRamya, M., Anusha, B., & Kalavathy, S. (2008). Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation, 19(2), 283–291. https://doi.org/10.1007/s10532-007-9134-6
dc.relation.referencesRoshan, P., Blackburn, R. S., & Bechtold, T. (2001). Indigo and Indigo Colorants. Ullmann’s Encyclopedia of Industrial Chemistry, 1–16. http://repositorio.udlap.mx/xmlui/handle/123456789/8349
dc.relation.referencesRuiz, S. (2011). Evaluación de la remoción del colorante INDIGO utilizado en empresas dedicadas a la producción de telas tipo DENIM empleando a Pleutoris ostreatus como modelo biológico. Univesrsidad de la Sabana.
dc.relation.referencesSayʇili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009
dc.relation.referencesSolís, H., Loera-Serna, S., Gómez-Chávez, V., Ruiz-Ramos, R., Cortés-Romero, C. M., & Ortiz, E. (2016). Degradation of Indigo Carmine Using Advanced Oxidation Processes: Synergy Effects and Toxicological Study. Journal of Environmental Protection, 07(12), 1693–1706. https://doi.org/10.4236/jep.2016.712137
dc.relation.referencesStasiak, N., A-koch, W. K., & Owniak, K. G. (2014). Review Modern Industrial And Pharmacological Applications Of Indigo Dye And Its Derivatives: A Review. Acta Poloniae Pharmaceutica - Drug Research, 71(2), 215–221.
dc.relation.referencesTorres, T. (2015). Degradación de índigo carmín mediante procesos avanzados de oxidación empleando ozono catalizado con diferentes metales. Universidad Autónoma del Estado de México.
dc.relation.referencesVasco, A. (2014). Evaluación de la adsorción de índigo carmin en pellets abrasivos para la industria textil. In Universidad Pontificia Bolivariana (Issue 1). Universidad Pontificia Bolivariana.
dc.relation.referencesVidya Lekshmi, K. P., Yesodharan, S., & Yesodharan, E. P. (2018). MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00897
dc.relation.referencesVikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. https://doi.org/10.1016/j.biortech.2018.01.029
dc.relation.referencesZaharia, C., & Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. In T. Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update (1st ed., pp. 56–85). https://doi.org/10.5772/32373
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPlant fibers
dc.subject.lembFibras vegetales
dc.subject.proposalFibras naturales
dc.subject.proposalinmovilización
dc.subject.proposallacasa
dc.subject.proposalnanopartículas MnO2
dc.subject.proposalíndigo carmín
dc.subject.proposaldegradación
dc.subject.proposalmecanismo
dc.subject.proposalNatural fibers
dc.subject.proposalimmobilization laccase
dc.subject.proposalMnO2 nanoparticles
dc.subject.proposalindigo carmine dye
dc.subject.proposaldegradation
dc.subject.proposalmechanism
dc.title.translatedSynthesis effect of MnO2 nanoparticles and laccase immobilization onto plantain fibers from pseudostem for degradation of indigo carmine dye
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito