Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBarrera Sánchez, Carlos Felipe
dc.contributor.advisorGuzmán Hernández, Manuel Alejandro
dc.contributor.authorCoronado Aleans, Verónica
dc.date.accessioned2022-08-18T15:39:57Z
dc.date.available2022-08-18T15:39:57Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81948
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractCon el objetivo de evaluar el uso del fenotipado de raíces basado en imágenes digitales fueron evaluados genotipos de maíz (Zea mays L.) en condiciones de campo para rasgos de interés agronómico y rasgos asociados con la arquitectura de las raíces en Antioquia, Colombia. En cada lote experimental se aplicó un diseño de bloques completos al azar con tres repeticiones. Para el análisis de fenotipo del sistema de raíces se emplearon dos metodologías: I) fenotipado manual y II) fenotipado por análisis de imágenes digitales. Las variables asociadas a la parte aérea y de raíz fueron relacionadas utilizando correlaciones de Pearson. Se usaron componentes principales para evaluar patrones en la variación de la arquitectura de la raíz. El diámetro de raíz medido manualmente se correlacionó con el diámetro de raíz derivado de la imagen (r = 0,97) y los ángulos de apertura derecho e izquierdo con valores de r = 0,96 y 0,94 respectivamente. Los resultados presentados en este estudio muestran que se puede adoptar un protocolo de fenotipado de raíces automatizado bajo el software REST que permite un nivel de investigación fenotípica adecuado para la evaluación de genotipos y estudios fisiológicos.
dc.description.abstractWith the objective of evaluating the use of root phenotyping based on digital images, genotypes of maize (Zea mays L.) were evaluated under field conditions for traits of agronomic interest and traits associated with root architecture in Antioquia, Colombia. A randomized complete block design with three replications was applied to each experimental batch. For the analysis of the phenotype of the root system, two methodologies were used: I) manual phenotyping and II) phenotyping by digital image analysis. The variables associated with the aerial and root parts were related using Pearson's correlations. Principal components were used to evaluate patterns in root architecture variation. The results indicated significant differences (P ≤ 0.05) between genotypes for yield, male and female flowering, leaf area, plant height, ear height, plant and ear height ratio. The manually measured root diameter was correlated with the image-derived root diameter (r = 0.97) and the right and left opening angles with values of r = 0.96 and 0.94 respectively. The results presented in this study show that an automated root phenotyping protocol can be adopted under REST software that allows an adequate level of phenotypic investigation for the evaluation of genotypes and physiological studies.
dc.format.extentxvi, 63 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleFenotipado de alto rendimiento mediante el análisis de imágenes digitales en raíces de maíz (Zea mays L.)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.researchareaMejoramiento genético de plantas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronómicas
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesArmengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., & Amtmann, A. (2009). EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant journal: for cell and molecular biology, 57(5), 945–956.
dc.relation.referencesArvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B. (2011). A growth phenotyping pipeline for arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol, 895–907.
dc.relation.referencesBand, R., Fozard, A., Godin, C., Jensen, E., Pridmore, T., Bennett, J., King, R. (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906. https://doi.org/10.1105/tpc.112.101550
dc.relation.referencesBänziger, M., Edmeades, G., Beck, D., & Bellon, M. (2012) Mejoramiento para Aumentar la Tolerancia a Sequía y a Deficiencia de Nitrógeno en el Maíz. De la Teoría a la Práctica. Centro Internacional de Mejoramiento de Maíz y Trigo. México, D. F, 68.
dc.relation.referencesBarber, S.A. (1995). Soil nutrient bioavailability: a mechanistic approach, second ed. John Wiley and Sons, New York, NY.
dc.relation.referencesBasu, P., & Pal, A. (2012). A new tool for analysis of root growth in the spatio-temporal continuum. The New phytologist, 195(1), 264–274.
dc.relation.referencesBasu, P., Pal, A., Lynch, J. P., & Brown, K. M. (2007). A novel image-analysis technique for kinematic study of growth and curvature. Plant physiology, 145(2), 305–316.
dc.relation.referencesBauriegel, E., Giebel, A., Herppich, W. B. (2011). Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears. Sensors, 3765–377.
dc.relation.referencesBauw, P.D., Ramarolahy, J.A., Senthilkumar, K., Rakotoson, T., Merckx, R., Smolders, E., Houtvinck, R.V., Vandamme, E. (2020). Phenotyping Root Architecture of Soil-Grown Rice: A Robust Protocol Combining Manual Practices with Image-based Analyses.
dc.relation.referencesBenoit, L., Rousseau, D., Belin, E., Demilly, D., Chapeau-Blondeau, F. (2014) Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms. Computers and Electronics in Agriculture, Elsevier, 104, pp.84-92.
dc.relation.referencesBrewer, M.T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S. (2006) Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology 141, 15-25.
dc.relation.referencesBurton, A.L., Williams, M., Lynch, J.P., Brown, K.M. (2012) RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil, 357, 189–203.
dc.relation.referencesCIMMYT/IBPGR. (1991). Descriptores para maíz. 30 p
dc.relation.referencesClark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.
dc.relation.referencesClark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., Mccouch, S.R., Aneshansley, D.J., Kochian, L.V. (2013). High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 36, 454–466.
dc.relation.referencesClark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., Kochian, L.V. (2011). Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156, 455–465
dc.relation.referencesColombi, T., Kirchgessner, N., Le Marié, C.A., York, L.M., Lynch, J.P., Hund, A. (2015) Next generation shovelomics: set up a tent and REST. Plant Soil, 388, 1–20.
dc.relation.referencesDas, A., Schneider, H., Burridge., Burridge, J., Martinez, A., Wojciechowski, T., Topp, C., Lynch, J., Weitz, J., Bucksch, A. (2015). Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11, 51.
dc.relation.referencesDathe, A., Postma, J.A., Postma-Blaauw, M.B., Lynch, J.P. (2016). Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany,118, 401–414.
dc.relation.referencesDe Bauw, P., Vandamme, E., Lupembe, A., Mwakasege, L., Senthilkumar, K., Merckx, R. (2019). Architectural root responses of rice to reduced water availability can overcome phosphorus stress. Agronomy, 9.
dc.relation.referencesDen, H.G., Van I. G., Beeckman, T., De, S.I. (2010) The roots of a new green revolution. Trends Plant Sci 15, 600–607)
dc.relation.referencesDuan, L.F., Yang, W.N., Huang, C.L., Liu, Q. (2011). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods, 7.
dc.relation.referencesEberbach, P.L., Hoffmann, J., Moroni, S.J., Wade, L.J., Weston, L.A. (2013). Rhizo-lysimetry: Facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods, 9, 3.
dc.relation.referencesEnnos, A.R., Pellerin, S., Smit A.L., Bengough A.G., Engels C., van Noordwijk M., Pellerin S., van de Geijn S.C. (2000) Plant Anchorage. Root Methods. Springer.
dc.relation.referencesFahlgren, N., Gehan, M. A., Baxter I. (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, vol. 24, 93–99.
dc.relation.referencesFernandez, M. G. S., Bao, Y., Tang, L., & Schnable, P. S. (2017). A high‐throughput, field‐based phenotyping technology for tall biomass crops. Plant Physiology, 174(4),
dc.relation.referencesFalconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Pearson Education Limited.
dc.relation.referencesFan, M. S., Zhu, J. M., Richards, C., Brown, K. M. & Lynch, J. P. 2003 Physiological roles for aerenchyma in phosphorus-stressed roots. Funct. Plant Biol. 30, 493–506.
dc.relation.referencesFiorani, F., Schurr, U. (2013). Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013, 64, 267–291.
dc.relation.referencesFrench, A., Ubeda-Tomás, S., Holman, T. J., Bennett, M. J., & Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiology, 150(4), 1784–1795.
dc.relation.referencesFrench, A.P., Wilson, M.H., Kenobi, K. (2012). Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7.
dc.relation.referencesFurbank, R. (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36.
dc.relation.referencesGalkovskyi, T., Mileyko, Y.,Bucksch, A., Moore, B.; Symonova, O., Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S. (2012). GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12, 116
dc.relation.referencesGeng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M., Tham, C., Duan, L., & Dinneny, J. R. (2013). A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant cell, 25(6), 2132–2154.
dc.relation.referencesGolzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., Lun, D.S. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7, 1–11.
dc.relation.referencesGraham, P. H., Rosas, J. C., de Jensen, C. E., Peralta, E., Tlusty, B., Acosta-Gallegos, J. & Pereira, P. A. A. 2003 Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP project in perspective. Field Crops Res. 82, 179–192.
dc.relation.referencesGruber, B.D., Giehl, R.F., Friedel, S., von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol.163, 161–179
dc.relation.referencesGrzesiak, S., Hura, T., Grzesiak, M., Pieńkowski, S. (1999). The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum, 21, 305-315
dc.relation.referencesGuingo, E., Hébert, Y. (1997). Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica, 42, 265-274
dc.relation.referencesHallauer, A. R., Miranda, J. B. (1988). Quantitative Genetics in Maize Breeding (2nd ed.). Iowa, Ames. USA: Iowa State University Press.
dc.relation.referencesHauck, A.L., Novais, J., Grift, T.E. (2015). Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus 4, 424.
dc.relation.referencesHirel, B., Le, Gouis, J., Ney, B., Gallais, A. (2007). The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 2369–2387
dc.relation.referencesHortelano Santa Rosa, René, Gil Muñoz, Abel, Santacruz Varela, Amalio, López Sánchez, Higinio, López, Pedro Antonio, & Miranda Colín, Salvador. (2012). Diversidad fenotípica de maíces nativos del altiplano centro-oriente del estado de Puebla, México. Revista fitotecnia mexicana, 35(2), 97-109. Recuperado en 25 de abril de 2021
dc.relation.referencesHuot, C., Zhou, Y., Philp, J., Denton, M. (2020). Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant Soil 456, 145–158.
dc.relation.referencesJansen, M., Gilmer, F., Biskup, B., Nagel, K.A., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in 59 Bibliografía arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914.
dc.relation.referencesJu, C., Buresh, R.J., Wang, Z., Zhang, H., Liu, L., Yang, J., Zhang, J. (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res 175 47–55.
dc.relation.referencesKano, M., Inukai, Y., Kitano, H., Yamauchi, A. (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil; 342,117–128.
dc.relation.referencesKlukas, C., Chen, D., Pape, J. (2014). Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant Physiology, 165(2), 506-518.
dc.relation.referencesKuijken, P., van Eeuwijk, A., Marcelis, M., Bouwmeester, J. (2015). Root phenotyping: from component trait in the lab to breeding. J Exp Bot; 66, 5389–5401.
dc.relation.referencesLe Bot, J., Serra, V., Fabre, J., Draye, X., Adamowicz, S., Pagès, L. (2010). DART: A software to analyse root system architecture and development from captured images. Plant Soil, 326,
dc.relation.referencesLeitner, D., Felderer, B., Vontobel, P., & Schnepf, A. (2014). Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant physiology, 164(1), 24–35.
dc.relation.referencesLobet, G., Draye, X., Perilleux, C. (2013). An online database for plant image analysis software tools. Plant Methods 9 -38.
dc.relation.referencesLobet, G., Pagès, L., Draye, X. (2011). A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. Plant Physiology, 157(1), 29 -39.
dc.relation.referencesLynch, J. (1995). Root architecture and plant productivity. Plant Physiology 109, 7-13.
dc.relation.referencesLynch, J. P. & Brown, K. B. 2008 Root strategies for phosphorus acquisition. In The ecophysiology of plant– phosphorus interaction P. J. White & J. P. 64-68.
dc.relation.referencesLynch, J. P., Brown, K.M. (2012). New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1598–1604
dc.relation.referencesLynch, J. P., Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1-2), 45-56.
dc.relation.referencesLynch, J.P. (2019). Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist 223, 548–564.
dc.relation.referencesLynch, J.P., Brown, K.M. (2001). Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237, 225–237.
dc.relation.referencesLynch, J.P., Nielsen, K.L., Davis, R.D. SimRoot (1997): Modelling and visualization of root systems. Plant and Soil 188, 139–151
dc.relation.referencesMaeght, J.L., Rewald, B., Pierret, A. (2013). How to study deep roots—And why it matters. Front. Plant Sci. 4, 299.
dc.relation.referencesMairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M.J., Mooney, S.J., Pridmore, T.P. (2013). Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 9, 1–7.
dc.relation.referencesMathieu, L., Lobet, G., Tocquin, P., Perilleux, C. (2015). “Rhizoponics”: A novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants. Plant Methods, 11.
dc.relation.referencesMenzel, M. I., Tittmann, S., Bühler, J., Preis, S., Wolters, N., Jahnke, S., Walter, A., Chlubek, A., Leon, A., Hermes, N., Offenhäuser, A., Gilmer, F., Blümler, P., Schurr, U., & Krause, H. J. (2009). Non-invasive determination of plant bioma ss with microwave resonators. Plant, cell & environment, 32(4), 368–379
dc.relation.referencesMiyao, A. Yukimoto Y., Kitano H., Itoh J, Maekawa, M., Murata, K., Yatou, O., Nagato, Y., and Hirochika, (2006) H. “A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes,” Plant Molecular Biology, 63, (5),625–635
dc.relation.referencesMonforte, A. J., Diaz, A., Caño-Delgado, A., van der Knaap, E. (2014). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of experimental botany, 65(16), 4625–4637
dc.relation.referencesMooney, S., Pridmore, T., Helliwell, J., Bennett, M. (2012). Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil, 352,
dc.relation.referencesMu, X., Chen, F., Wu, Q., Chen, Q., Wang, J., Yuan, L., Mi, G. (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63, 55–61.
dc.relation.referencesPace, J., Lee, N., Naik, H. S., Ganapathysubramanian, B., & Lübberstedt, T. (2014). Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PloS one, 9(9),
dc.relation.referencesPaez-Garcia, A., Motes, C., Scheible, W.R., Chen, R., Blancaflor, E., Monteros, M. (2015). Root Traits and Phenotyping Strategies for Plant Improvement. Plants; 4: 334–355.
dc.relation.referencesPardey Rodríguez, C., García Dávila, M. A., & Moreno Cortés, N. (2016). Caracterización de maíz procedente del departamento del Magdalena, Colombia. Ciencia & Tecnología Agropecuaria, 17(2), 167-190
dc.relation.referencesPanguluri, S.K., Kumar, A.A. (2013). Phenotyping for Plant Breeding. New York, NY: Springer New York.
dc.relation.referencesPecina Martínez, J. A.; M. C. Mendoza Castillo, J. A. López Santillán, F. Castillo González y M. Mendoza Rodríguez. (2009). Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia 43 (7): 681-694
dc.relation.referencesPierret, A., Gonkhamdee, S., Jourdan, C., Maeght, J. L. (2013). Rhizo: An open-source software to measure scanned images of root samples. Plant Soil, 373, 531–539.
dc.relation.referencesPieruschka, R., Poorter, H. (2012). Phenotyping plants: genes, phenes and machines. Functional Plant Biology 39, 813–820
dc.relation.referencesPound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J., Pridmore, T. (2013) RootNav: Navigating images of complex root architectures. Plant Physiol, 162, 1802–1814.
dc.relation.referencesRao, N.S., Laxman, R.H. (2013). Phenotyping horticultural crops for abiotic stress tolerance. In Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 147–157
dc.relation.referencesRellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.L.M., Yee, M.-C., Sebastian, J., Geng, Y., Trontin, C., LaRue, T., Lavelle, A.S. (2015). Multidimensional mapping of root responses to soil environmental cues using a luminescence-based imaging system. bioRxiv, 016931.
dc.relation.referencesRich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of experimental botany, 64(5), 1193–1208.
dc.relation.referencesRich, S.M., Watt, M. (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64: 1193–1208.
dc.relation.referencesRichard, C.A., Hickey, L.T., Fletcher, S., Jennings, R., Chenu, K., Christopher, J.T. (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods,11, 13.
dc.relation.referencesRichardson, A. 2011 Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 349, 121–156.
dc.relation.referencesRistova, D., Rosas, U., Krouk, G., Ruffel, S., Birnbaum, K. D., & Coruzzi, G. M. (2013). RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis. Plant physiology, 161(3), 1086–1096
dc.relation.referencesRubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., Lynch, J.P. (2001) Root Gravitropism and below-ground competition among neighbouring plants: a modelling approach. Ann Bot 88, 929–940
dc.relation.referencesSchmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., Ronneberger, O., & Palme, K. (2014). The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution. The Plant journal: for cell and molecular biology, 77(5), 806–814.
dc.relation.referencesSerebrovsky, A. S. (1925). “Somatic segregation” in domestic fowl. J. Genet. 16 33–42.
dc.relation.referencesShakoor, N., Lee, S., Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38, 184–192.
dc.relation.referencesShi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F., Hammond, J.P. (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot (Lond) 112, 381–38.
dc.relation.referencesShrestha, R., Al-Shugeairy, Z., Al-Ogaidi, F., Munasinghe, M., Radermacher, M., Vandenhirtz, J., Price, A. (2014). Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol. 16, 632–642
dc.relation.referencesSingh, V., Van Oosterom, E.J., Jordan, D.R., Messina, C.D., Cooper, M., Hammer, G.L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil 333 (1-2), 287-299.
dc.relation.referencesStanfield, W.D. (1971). Genetics. Theory and 440 solved problems. Segunda ed. Serie Schaum, McGraw-Hill, México, 405
dc.relation.referencesThomas, C. L., Graham, N. S., Hayden, R., Meacham, M. C., Neugebauer, K., Nightingale, M., Broadley, M. R. (2016). High‐throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field‐grown oilseed rape (Brassica napus L.). Annals of Botany, 118(4), 655–665
dc.relation.referencesTrachsel, S., Kaeppler, S.M., Brown, K.M. (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87.
dc.relation.referencesTrachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P. (2013). Maize root growth angles become steeper under low N conditions. Field Crops Research 140, 18–31.
dc.relation.referencesvan der Weele, C. M., Jiang, H. S., Palaniappan, K. K., Ivanov, V. B., Palaniappan, K., & Baskin, T. I. (2003). A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant physiology, 132(3), 1138–1148
dc.relation.referencesVoss-Fels, K.P., Snowdon, R.J., Hickey, L.T. (2018) Designer Roots for Future Crops. Trends Plant Sci. 23, 957–960.
dc.relation.referencesWalter, A., Silk, W.K., Schurr, U. (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Ann. Rev. Plant Biol., 60, 279–304.
dc.relation.referencesWang, L., Uilecan, I.V., Assadi, A.H., Kozmik, C.A., Spalding, E.P. (2009) HYPOTrace: Image Analysis Software for Measuring Hypocotyl Growth and Shape Demonstrated on Arabidopsis Seedlings Undergoing Photomorphogenesis. Plant Physiology 149,1632–1637.
dc.relation.referencesWasson, P., Richards, A., Chatrath, R., Misra, C., Prasad, S., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany 63, (pp.3485–3498)
dc.relation.referencesZeng, G., Birchfield, S. T., & Wells, C. E. (2008). Automatic discrimination of fine roots in minirhizotron images. The New phytologist, 177(2), 549–557.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCorn - Roots -Anatomy
dc.subject.lembMaíz - Anatomía de las raíces
dc.subject.proposalFenotipado
dc.subject.proposalArquitectura del sistema de raíces
dc.subject.proposalImágenes digitales
dc.subject.proposalSoftware REST
dc.subject.proposalPhenotyping
dc.subject.proposalDigital imaging
dc.subject.proposalRoot system architecture
dc.title.translatedHigh -throughput phenotyping using digital image analysis in maize roots
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito